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Abstract—This paper considers the transmission of codewords
over a quasi–static binary erasure channel, where the erasure
probability changes independently at each transmitted codeword.
An approximation to the random–coding union bound suggests
that the error probability exceeds the outage probability by a
quantity that is inversely proportional to the blocklength.

I. INTRODUCTION

A quasi–static channel is a good model for delay–
constrained communication over slow–varying channels [1].
The outage capacity has been emphasized as the most impor-
tant information–theoretic measure in quasi–static channels.
However, little attention has been given to the error probability.
In [2], the performance of the quasi–static fading channel is
described by means of Gallager–type random–coding bounds.
Malkamäki et al. [3] proposed a tighter bound, and showed
that the average error probability is asymptotically given by
the outage probability in the limit of infinite codeword block-
length [3, Th. 2]. However, for finite codeword blocklength,
this tighter bound has to be evaluated numerically, as the
optimization of the bound involves the fading coefficients.

This paper considers the random–coding union (RCU)
bound [4] to the error probability in the simple quasi–static
binary erasure channel (BEC). By writing the RCU bound as
a tail probability, we propose two saddlepoint approximations
[5] that build upon the techniques of [2], [3]. By inspecting the
asymptotic behavior of the saddlepoint with the blocklength,
we finally derive an expansion of the RCU bound in inverse
powers of the blocklength that suggests that the error proba-
bility converges to the outage probability as δ(R)

n , where n is
the codeword blocklength, R is the rate of the code, and δ(R)
is a rate–dependent constant.

II. PRELIMINARIES

Consider the transmission of codewords of blocklength n

symbols, where each codeword spans a single BEC with
uniformly distributed erasure probability ε, that changes in-
dependently from codeword to codeword. Given the erasure
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probability ε, the transition probability during the transmission
of a codeword can be factorized as

W
n
ε (y|x) =

n�

i=1

Wε(yi|xi), (1)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are the channel
input and channel output sequence, respectively, and Wε(y|x)
denotes the transition probability of a single BEC of erasure
probability ε [6].

We study the transmission of equiprobable messages
m ∈ {1, . . . ,M}, where each message is mapped onto a
codeword x(m), and the collection of all codewords is a code
of rate R = 1

n logM . For a fixed erasure probability ε, the
average error probability of the code is denoted as Pe(n, ε).
Here, we are mostly interested in the error probability averaged
over the erasure probability, i.e.,

Pe(n) = E [Pe(n, ε)] . (2)

Random–coding arguments show the existence of a code
whose error probability is, at least, as good as that of the
ensemble average. In this work, we consider such a code.

Two random–coding upper bounds to the error probability
for the block–fading channel were reported by Malkamäki et
al. in [3]. Particularized for the quasi–static BEC, the first
bound is based on a conditional Gallager bound [7] given the
erasure probability [3, Eq. (16)–(17)], i.e.,

Pe(n, ε) ≤






1 ρ̂ε < 0

e−n(E0(ρ̂ε,ε)−ρ̂εR) 0 ≤ ρ̂ε ≤ 1

e−n(E0(1,ε)−R) ρ̂ε > 1.

(3)

Then, the average over the erasure probability is applied. In
(3), ρ̂ε is the argument that maximizes E0(ρ, ε)− ρR, closely
related to (15) later derived in the paper. As ρ̂ε is a function
of the erasure probability, the expectation of (3) with respect
to ε has to be numerically evaluated for a finite blocklength.
Asymptotically, the Gallager bound (3) shows that the error
probability converges to the outage probability, denoted as
Pout(R) and given as

Pout(R) = P [I(ε) < R] , (4)

where I(ε) is the mutual information of a single BEC with
erasure probability ε maximized over the input distribution.



For the quasi–static BEC with uniformly distributed error
probability, we have that

I(ε) = (1− ε) log 2, (5)

Pout(R) =
R

log 2
. (6)

A simpler bound was also proposed in [3, Eq. (22)] by
first averaging the erasure probability and then optimizing a
parameter that does not depend on ε:

Pe(n) ≤






1 ρ̂ < 0

e−n(E0(ρ̂)−ρ̂R) 0 ≤ ρ̂ ≤ 1

e−n(E0(1)−R) ρ̂ > 1.

(7)

Here, ρ̂ is the argument that maximizes E0(ρ) − ρR, closely
related to (30) later derived in the paper. As pointed out in
[3], (7) is a weaker bound to the error probability, as ρ̂ will
be only optimal for some realizations of ε.

In summary, Gallager arguments lead to a tighter bound
that needs to be numerically evaluated, and a simpler bound
that is especially loose in quasi–static channels (see [3, Fig.
2]). In this work, we discuss whether the performance gap
between (3) and (7) is a genuine issue of quasi–static channels
by studying more refined expressions of the error probability
based on the random–coding union bound. We further study
the convergence of the error probability to the outage proba-
bility. For a different perspective, the dual problem, i.e., the
convergence of the achievable rate to the outage capacity, see
the recent work by Yang et al. [8].

III. SADDLEPOINT APPROXIMATIONS

A. Saddlepoint Approximation of RCU(n, ε)

For a fixed BEC realization of the erasure probability ε, the
RCU bound to the average error probability [4] is given by

Pe(n, ε) ≤ E [min {1,
MP

�
W

n
ε (Y |X) ≥ W

n
ε (Y |X)|X,Y

���
, (8)

where X , Y are the random variables for channel input and
channel output sequences, respectively, and X is distributed
as X but independent of Y . As noted in [9], we can apply
Markov’s inequality and weaken the RCU bound as

Pe(n, ε) ≤ RCU(n, ε) (9)

where RCU(n, ε) is the tail probability

RCU(n, ε) = P [Φn(X,Y , ε) ≤ 0] . (10)

In (10), the random variable Φn(X,Y , ε) is

Φn(X,Y , ε) =
n�

i=1

is(Xi, Yi, ε) + logU − nR, (11)

where U is a uniform (0, 1) random variable, and the symbol
s–information density is defined as

is(X,Y, ε) = log
Wε(Y |X)s

E[Wε(Y |X)s|Y ]
. (12)

For the quasi–static BEC, we note that (12) is independent on
s, and that the bounds (8) and (10) coincide [9].

As noted in [10], the tail probability (10) can be expressed
in terms of the inverse Laplace transformation [11] as

RCU(n, ε) =
1

2πj

� ν+j∞

ν−j∞

E
�
e−tΦn(X,Y ,ε)

�

t
dt, (13)

where we assume that ν is within the range of convergence,
i.e., ν ∈ (0, 1). The evaluation of the expectation term in (13),
using (11) and (12), leads to

E
�
e
−tΦn(X,Y ,ε)

�
=

eκn,ε(t)

1− t
, (14)

where κn,ε(t) is given as

κn,ε(t) = ntR+ n log

�
1

2t
(1− ε) + ε

�
. (15)

We note that the former expression can be written in terms
of the Gallager function E0(t, ε) that appears in (3) through
κn,ε(t) = −n(E0(t, ε) − tR). The critical points of (13) are
two poles at t = 0 and t = 1, and a saddlepoint at t = tn,ε,
the absolute minimum of κn,ε(t) in the real axis, i.e.,

tn,ε = argmin
−∞<t<∞

κn,ε(t). (16)

If 0 ≤ tn,ε ≤ 1, it is safe to set ν = tn,ε in (13). Yet, whenever
tn,ε < 0 and tn,ε > 1, the poles at t = 0 and t = 1 introduce
additional terms due to the Cauchy’s residue theorem [11].

Since no closed–form solutions to the complex–integration
(13) are available in general, we propose a Taylor expansion
of κn,ε(t) around tn,ε, i.e.,

κn,ε(t) ≈ κn,ε(tn,ε) + κ
�
n,ε(tn,ε)(t− tn,ε)

+
1

2
κ
��
n,ε(tn,ε)(t− tn,ε)

2
, (17)

where κ�
n,ε(t) and κ��

n,ε(t) denote, respectively, the first and
second derivatives of κn,ε(t) with respect to t. Finally, fol-
lowing the footsteps of [10], we obtain that the RCU bound
for the quasi–static BEC can be approximated as

RCU(n, ε) ≈ γn,ε + σn,εe
κn,ε(tn,ε). (18)

Here, the additive term γn,ε can be expressed as

γn,ε =






1 tn,ε < 0

0 0 ≤ tn,ε ≤ 1

eκn,ε(1) tn,ε > 1,

(19)

whereas the pre–exponential term σn,ε is given by

σn,ε = Q

�
tn,ε

�
κ��
n,ε(tn,ε)

�
+Q

�
(1− tn,ε)

�
κ��
n,ε(tn,ε)

�
,

(20)
where

Q(x) = sign(x)
1

2
erfc

�
|x|√
2

�
e

x2

2 . (21)

The proposed approximation of the RCU involves determining
the saddlepoint of (15), given by

tn,ε = log2

�
1− ε

ε

log 2−R

R

�
. (22)



It is straightforward to show that, asymptotically, the sad-
dlepoint approximation (18) satisfies

lim
n→∞

RCU(n, ε) = 1{I(ε) < R} , (23)

where 1{·} is the indicator function. As n → ∞, the saddle-
point approximation (18) approaches a Bernoulli random vari-
able with probability of success Pout(R). Since this random
variable is bounded, we can apply the Lebesgue dominated
convergence theorem [12] to prove that

lim
n→∞

E [RCU(n, ε)] = Pout(R). (24)

Therefore, the average of the saddlepoint approximation to
the RCU given the erasure probability, shows that the error
probability converges to the outage probability, but gives no
direct information about the rate of this convergence.

B. Saddlepoint Approximation of RCU(n)

For symmetry with the work by Malkamäki et al. [3], we
now study the RCU bound to the error probability averaged
over the erasure probability, i.e.,

Pe(n) ≤ E [min {1,
MP

�
W

n
ε (Y |X) ≥ W

n
ε (Y |X)|X,Y , ε

���
. (25)

Similarly to (9), we can apply the Markov’s inequality and
further weaken (25) as

Pe(n) ≤ RCU(n), (26)

where now the erasure probability ε is treated as a ran-
dom variable in the evaluation of the tail probability of
Φn(X,Y , ε), i.e.,

RCU(n) = P [Φn(X,Y , ε) ≤ 0] . (27)

We can again express the tail probability (27) in terms of
the inverse Laplace transformation as

RCU(n) =
1

2πj

� ν+j∞

ν−j∞

E
�
e−tΦn(X,Y ,ε)

�

t
dt, (28)

where ν is within the region of convergence, i.e., ν ∈ (0, 1).
Taking into account the erasure probability ε in the following
expectation

E
�
e
−tΦn(X,Y ,ε)

�
=

eκn(t)

1− t
, (29)

now κn(t) is defined as

κn(t) = ntR+ log
2t − 2−nt

(2t − 1)(n+ 1)
. (30)

Again, (30) is related to the Gallager function E0(t) involved
in (7) through κn(t) = −n (E0(t)− tR). The saddlepoint to
RCU(n) is defined as the absolute minimum of κn(t) over the
real axis, i.e.,

tn = argmin
−∞<t<∞

κn(t). (31)

Similarly to (17), we approximate (28) by expanding κn(t)
around tn, and obtain that the averaged RCU bound for the
quasi–static BEC can be approximated as

RCU(n) ≈ γn + σne
κn(tn) (32)

where now

γn =






1 tn < 0

0 0 ≤ tn ≤ 1

eκn(1) tn > 1,

(33)

and

σn = Q

�
tn

�
κ��
n(tn)

�
+Q

�
(1− tn)

�
κ��
n(tn)

�
. (34)

Even though closed-form expressions for the saddlepoint
tn are not available in this case, we further investigate its
relation to the outage probability by proposing a saddlepoint
approximation to the outage probability.

C. Saddlepoint Approximation of Pout(R)

We note that the outage probability (4) can be seen as a tail
probability of the random variable

Φout(R) = I(ε)−R. (35)

Therefore, it is natural to express the outage probability as the
inverse Laplace transformation

Pout(R) =
1

2πj

� ν+j∞

ν−j∞

E
�
e−tΦout(R)

�

t
dt, (36)

where now the expectation is only with respect to the erasure
probability, and ν ∈ (0,∞). This leads to

E
�
e
−tΦout(R)

�
= e

κout(t), (37)

where κout(t) is given as

κout(t) = tR+ log
1− 2−t

t log 2
. (38)

Now, (36) has only one pole at t = 0 and a saddlepoint at

tout(R) = argmin
−∞<t<∞

κout(t). (39)

Mimicking (17) with (38), we may hence approximate the
outage probability as

Pout(R) ≈ γout(R) + σout(R)eκout(tout(R))
. (40)

In this case, we have that the additive term γout(R) and the
pre–exponential term σout(R) are given, respectively, as

γout(R) =

�
1 tout(R) < 0

0 tout(R) ≥ 0
(41)

σout(R) = Q

�
tout(R)

�
κ��(tout(R))

�
. (42)



IV. AN ASYMPTOTIC EXPANSION OF RCU(n)

One advantage of the complex–integration expression of
the RCU (28) is that the average with respect to the erasure
probability is naturally incorporated in the definition of κn(t).
By further inspecting the behavior of the saddlepoint to the
RCU as the codeword blocklength n → ∞, we numerically
notice that the saddlepoint tn → 0. This motivates to study
the behavior of the product ntn, illustrated in Fig. 1 for three
different rates. Remarkably, ntn converges to tout(R). This
suggests that it is safe to make the change of variable nt = α

and integrate with α, i.e.,

RCU(n) =
1

2πj

� ν+j∞

ν−j∞

e
κn(α

n )

α
�
1− α

n

� dα, (43)

where now the region of convergence is ν ∈ (0, n). From (30),
we note that κn

�
α
n

�
has the form

κn

�
α

n

�
= αR+ log

2
α
n − 2−α

(2
α
n − 1)(n+ 1)

. (44)

For sufficiently large codeword blocklength n, we derive a
Taylor expansion in inverse powers of the codeword block-
length n, i.e.,

e
κn(α

n )

α
�
1− α

n

� = θ0(α) +
θ1(α)

n
+O

�
1

n2

�
, (45)

where O
�

1
n2

�
is a term that vanishes at least as fast as 1

n2 ,
and the coefficients θ0(α) and θ1(α) are given by

θ0(α) =
eαR(1− 2−α)

α2 log 2
, (46)

and

θ1(α) =
eαR(1− 2−α)

α log 2
− eαR(1− 2−α)

α2 log 2
+

eαR(1 + 2−α)

2α
,

(47)
respectively. Comparing (38) and (46), we first observe that
in fact θ0(α) is related to κout(t) as

θ0(α) =
eκout(α)

α
. (48)

Hence, we may identify θ0(α) with the evaluation of the
outage probability

1

2πj

� ν+j∞

ν−j∞

eαR(1− 2−α)

α2 log 2
dα = Pout(R). (49)

Regarding θ1(α), we identify that the first term of θ1(α) is
actually eκout(α), and therefore that the complex–integration
of this term is the probability density function of Φout (35)
evaluated at the origin (see [11]). Since ε is uniformly dis-
tributed, Φout is then uniformly distributed in the interval
[−R, log 2−R], and we have that

1

2πj

� ν+j∞

ν−j∞

eαR(1− 2−α)

α log 2
dα =

1

log 2
. (50)

Likewise, we identify the second term of θ1(α) as θ0(α) in
(48), again leading to the outage probability as in (49). Finally,
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Fig. 1. Convergence of ntn to tout(R), versus the blocklength n, for several
rates.

the last term in (47) can be be split into two additive terms
that are identified as tail probabilities of two random variables.
The first one is a random variable whose probability density
function is a Dirac delta of mass one located at −R. Hence,
we have that

1

2πj

� ν+j∞

ν−j∞

eαR

2α
dα =

1 {R > 0}
2

. (51)

Similarly, the second one is a random variable whose proba-
bility density function is a Dirac delta of mass one located at
and −R+ log 2 that evaluates as

1

2πj

� ν+j∞

ν−j∞

eαR2−α

2α
dα =

1 {R > log 2}
2

. (52)

Defining δ(R) as

δ(R) =
1

2πj

� ν+j∞

ν−j∞
θ1(α) dα, (53)

within 0 < R < log 2 we have that

δ(R) =
1

log 2
− R

log 2
+

1

2
. (54)

As a consequence, the expansion of the RCU is given by

RCU(n) =
R

log 2
+

1

n

�
1

log 2
− R

log 2
+

1

2

�
+O

�
1

n2

�
.

(55)
The former expansion suggests that the error probability
converges to the outage probability as δ(R)

n , where δ(R) is
a monotonically decreasing function of the rate.

V. NUMERICAL RESULTS

In this section, we compare the proposed error probability
approximations with the Gallager bounds (3) and (7), and
the simulated RCU (27). More specifically, we numerically
evaluate the saddlepoint approximations (18), (32), and (40),
as well as the expansion (55).



100 101 102 103
10−1

100

Blocklength n

Er
ro

r
pr

ob
ab

ili
ty

P
e
(n

)

Gallager (3)
Gallager (7)
RCU (27)
Saddlepoint (18)
Saddlepoint (32)
RCU Approx. (55)

Outage saddlepoint (40)

Pout(R) (6)

Fig. 2. Error probability bounds and approximations versus blocklength at
R = 1

5 log 2.

In Fig. 2, we observe that the saddlepoint approximation
(18) is an accurate approximation of the RCU. As n → ∞,
the error probability converges to the outage probability (4),
numerically confirming (24). Comparing the Gallager bound
(3) with the saddlepoint approximation (18), and the Gallager
bound (7) with the saddlepoint approximation (32), we note
that in both cases the additive and the pre–exponential terms
of the saddlepoint approximation provide a more refined
characterization of the error probability. The contribution of
these terms cannot be neglected in the quasi–static channel,
since the exponential term of the error probability is not a
dominant term when the error probability saturates.

A second observation from Fig. 2 is that, compared to the
Gallager bound (7), the saddlepoint approximation (32) is
tighter for small codeword blocklength. However, since the
randomness of the erasure probability is considered in the
approximation of the tail probability (27), this approximation
exhibits a misadjustment for large blocklength, as it converges
to the saddlepoint approximation of the outage probability
(40), rather than to the actual outage probability (6).

Finally, we are interested in the convergence of the error
probability to the outage probability. In particular, Fig. 3
depicts the convergence rate δn(R), defined as

δn(R) = n (Pe(n)− Pout(R)) , (56)

where Pe(n) is a placeholder for the bounds and approxima-
tions of Fig. 3. Remarkably, Fig. 2 numerically illustrates that
the Taylor expansion of the RCU (55) is a good approxima-
tion even for small codeword blocklength. Moreover, Fig. 3
illustrates that the error probability indeed exceeds the outage
probability in a quantity that vanishes proportionally to 1

n .
That is,

lim
n→∞

δn(R) = δ(R). (57)

As expected, none of the Gallager bounds provide the con-
vergence in 1

n , as the bounds are only tight for sufficiently
large n. Contrarily, the saddlepoint approximation (32) does
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Fig. 3. Rate of convergence of the error probability to the outage probability
versus codeword blocklength at R = 1

5 log 2.

exhibit, although misadjusted, a convergence coefficient as
1
n , whereas the saddlepoint approximation (18) leads to the
correct convergence rate of the RCU (27).

VI. CONCLUSIONS

In this paper, we have derived refined approximations of
the random–coding union bound in quasi–static binary erasure
channels with uniformly distributed erasure probability. An
expansion of the random–coding union bound in inverse
powers of the codeword blocklength suggests that the error
probability exceeds the outage probability by a quantity that
is inversely proportional to the codeword blocklength.
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