Hypothesis Testing and Quasi-Perfect Codes

Gonzalo Vazquez-Vilar
Universidad Carlos III de Madrid
gvazquez@ieee.org

Albert Guillén i Fàbregas
ICREA \& Universitat Pompeu Fabra
University of Cambridge
guillen@ieee.org

Sergio Verdú
Princeton University
verdu@princeton.edu

Abstract

Hypothesis testing lower bounds to the channel coding error probability are studied. For a family of symmetric channels, block lengths and coding rates, the error probability of the best code is shown to coincide with that of a binary hypothesis test with certain parameters. The points in which they coincide, are precisely the points at which perfect or quasi-perfect codes exist. General conditions are given for a code to attain minimum error probability.

I. Introduction

Consider the channel coding problem of transmitting a set of messages over a binary symmetric channel (BSC). The spherepacking bound [1, Eq. (5.8.19)] establishes a lower bound on the block error probability of a code with a given rate and blocklength. This bound follows from counting the maximum number of non-overlapping Hamming spheres that can be packed in the output space. In certain cases the sphere-packing bound is achievable. A binary code is said to be perfect if non-overlapping Hamming spheres of radius t centered on the codewords exactly fill out the space. Perfect codes are a subset of the class of quasi-perfect codes. A quasi-perfect code is defined as a code in which Hamming spheres of radius t centered on the codewords are non-overlapping and Hamming spheres of radius $t+1$ cover the space, possibly with overlaps. Since quasi-perfect codes attain the sphere-packing bound for a BSC, they achieve the minimum error probability among all the codes with the same block length and rate [1, Sec. 5.8]. However, these codes are rare. For each rate $R, 0<R<1$, there exists a block length beyond which neither perfect nor quasi-perfect codes exist [2], [3].

A generalization of the definition of perfect and quasiperfect codes beyond the Hamming space was proposed by Hamada in [4]. Using a variation of the Fano metric, Hamada derived a lower bound to the channel coding error probability. This bound is achievable by perfect and quasi-perfect codes (defined with respect to the new metric), whenever they exist. This result applies for a class of symmetric discrete memoryless channels.

Binary hypothesis testing has been shown instrumental in the derivation of converse bounds (see e.g. [5], [6]), one prominent recent example being the the meta-converse bound

This work has been funded in part by the European Research Council under ERC grant agreement 259663, by the Spanish Ministry of Economy and Competitiveness under grants TEC2012-38800-C03-03, TEC2013-41718-R and FPDI-2013-18602, by the US National Science Foundation under Grant CCF-1016625, and by the Center for Science of Information, an NSF Science and Technology Center under Grant CCF-0939370.
by Polyanskiy et al. [7, Th. 27]. Particularized for the BSC, the meta-converse bound recovers the sphere-packing bound [1, Eq. (5.8.19)] (see [7, Sec. III.H] for details). As a result, when perfect or quasi-perfect codes exist, the the meta-converse bound gives the minimum error probability in the BSC.

In this work, we generalize the definitions of perfect and quasi-perfect codes for a class of symmetric channels and we establish a connection between hypothesis testing lower bounds and perfect or quasi-perfect codes. The results of this paper are general enough to recover Hamada's condition for achieving minimum error probability [4, Th. 3].

II. Generalized Quasi-Perfect Codes

Consider the one-shot channel coding problem, where an equiprobable message $v \in\{1, \ldots, M\}$ is to be transmitted over a random transformation $P_{Y \mid X}, x \in \mathcal{X}$ and $y \in \mathcal{Y}$ with \mathcal{X} and \mathcal{Y} discrete alphabets. A channel code \mathcal{C} is defined as the set of M codewords $\mathcal{C}=\left\{x_{1}, \ldots, x_{M}\right\}$ assigned to each of the messages. We assume that the maximum likelihood (ML) rule is used to choose the decoded message $\hat{v} \in\{1, \ldots, M\}$. The error probability is given by

$$
\begin{align*}
\epsilon(\mathcal{C}) & =\operatorname{Pr}[\hat{V} \neq V] \tag{1}\\
& =1-\frac{1}{M} \sum_{y} \max _{x \in \mathcal{C}} P_{Y \mid X}(y \mid x) . \tag{2}
\end{align*}
$$

Definition 1: A discrete channel is symmetric if the rows of the transition matrix of the channel (with inputs as rows and outputs as columns), i. e., $P_{Y \mid X}(\cdot \mid x)$, are permutations of each other.
This definition of symmetric channels coincides with that of uniformly dispersive channels of Massey [8, Sec. 4.2] and is less restrictive than those of Cover and Thomas [9] and Gallager [1]. The definition in [9, Sec. 7.2] additionally requires that the columns of the channel transition matrix be permutations of each other, i.e., uniformly focusing according to [8, Sec. 4.2]. The definition in [1, p. 94] requires the channel transition matrix to be partitioned in submatrices such that each submatrix fulfills the condition in [9, Sec. 7.2]. Relations among these definitions are investigated in [10, Sec. VI.B].

We define $\mathcal{S}_{x}(\theta)$ to be the set of output sequences y with a likelihood given input x of at least $\theta \in[0,1]$., i. e.,

$$
\begin{equation*}
\mathcal{S}_{x}(\theta) \triangleq\left\{y \in \mathcal{Y} \mid P_{Y \mid X}(y \mid x) \geq \theta\right\} \tag{3}
\end{equation*}
$$

We denote the interior and the shell of $\mathcal{S}_{x}(\theta)$, respectively, as

$$
\begin{align*}
& \mathcal{S}_{x}^{\bullet}(\theta) \triangleq\left\{y \in \mathcal{Y} \mid P_{Y \mid X}(y \mid x)>\theta\right\} \tag{4}\\
& \mathcal{S}_{x}^{\circ}(\theta) \triangleq\left\{y \in \mathcal{Y} \mid P_{Y \mid X}(y \mid x)=\theta\right\} \tag{5}
\end{align*}
$$

Although we are not assuming that the input and output alphabets are identical and $P_{Y \mid X}(y \mid x)$ (or the related Fano metric $\left.\sim \log P_{Y \mid X}(y \mid x)\right)$ do not fulfill the properties of a mathematical distance in general, we refer to $\mathcal{S}_{x}(\theta)$ as a sphere of radius θ centered on x. For specific channels, such as the binary symmetric channel, $\log P_{Y \mid X}(y \mid x)$ is an affine function of the Hamming distance between x and y and hence $\mathcal{S}_{x}(\theta)$ becomes a sphere with respect to that distance.

Proposition 1: Let $P_{Y \mid X}(y \mid x)$ be a symmetric channel defined over input and output alphabets \mathcal{X}, \mathcal{Y}. Then, cardinalities (or "volumes") $\left|\mathcal{S}_{x}(\theta)\right|,\left|\mathcal{S}_{x}^{\bullet}(\theta)\right|,\left|\mathcal{S}_{x}^{\circ}(\theta)\right|$ are independent of x.

Then, for any symmetric channel, we define $S(\theta) \triangleq$ $\left|\mathcal{S}_{x}(\theta)\right|, \quad S_{\bullet}(\theta) \triangleq\left|\mathcal{S}_{x}^{\bullet}(\theta)\right|, \quad S_{\circ}(\theta) \triangleq\left|\mathcal{S}_{x}^{\circ}(\theta)\right|$. Obviously, $S(\theta)=S_{\bullet}(\theta)+S_{\circ}(\theta)$.

Definition 2: A code is perfect if there exists $\theta \in[0,1]$ such that

$$
\begin{equation*}
\bigcup_{x \in \mathcal{C}} \mathcal{S}_{x}(\theta)=\mathcal{Y} \tag{6}
\end{equation*}
$$

where the union is disjoint. More generally, a code is quasiperfect if there exists $\theta \in[0,1]$ such that (6) is satisfied and the codeword-centered spheres $\left\{\mathcal{S}_{x}^{\bullet}(\theta), x \in \mathcal{C}\right\}$ are disjoint.

This definition of perfect codes coincides with that in [4, Def. 1] when the channel fulfills the Properties 1-4 in [4]. Definition 2 applies however to any symmetric channel according to 1 (which corresponds to Property 4 in [4]). Also, the definition of quasi-perfect code in Definition 2 includes both perfect and quasi-perfect codes from [4, Def. 1].

III. The Meta-Converse Bound

Let $\hat{H} \in\{0,1\}$ be the random variable associated to the output of a binary hypothesis test discriminating between distributions P (hypothesis 0) and Q (hypothesis 1). Then, the test can be described by the conditional distribution $P_{\hat{H} \mid Y}$. Let $\pi_{j \mid i}$ denote the probability of deciding j when i is the true hypothesis. More precisely, we define

$$
\begin{align*}
& \pi_{0 \mid 1} \triangleq \sum_{y} Q(y) P_{\hat{H} \mid Y}(0 \mid y) \tag{7}\\
& \pi_{1 \mid 0} \triangleq \sum_{y} P(y) P_{\hat{H} \mid Y}(1 \mid y) \tag{8}
\end{align*}
$$

Let $\alpha_{\beta}(P, Q)$ denote the minimum error probability $\pi_{1 \mid 0}$ among all tests $T \triangleq P_{\hat{H} \mid Y}$ with $\pi_{0 \mid 1}$ at most β, that is

$$
\begin{equation*}
\alpha_{\beta}(P, Q) \triangleq \inf _{T: \pi_{0 \mid 1} \leq \beta} \pi_{1 \mid 0} \tag{9}
\end{equation*}
$$

In [11], Neyman and Pearson derived the explicit form of a (possibly randomized) test T achieving the optimum trade-off
(9), given by

$$
T_{\mathrm{NP}}(0 \mid y)= \begin{cases}1, & \text { if } \frac{P(y)}{Q(y)}>\gamma \tag{10}\\ p, & \text { if } \frac{P(y)}{Q(y)}=\gamma \\ 0, & \text { otherwise }\end{cases}
$$

where $\gamma \geq 0$ and $p \in[0,1]$ are parameters chosen such that $\pi_{0 \mid 1}=\beta$.
Let $P_{X}^{\mathcal{C}}$ denote the channel input distribution induced by the codebook $\mathcal{C}=\left\{x_{1}, \ldots, x_{M}\right\}$, i. e.,

$$
\begin{equation*}
P_{X}^{\mathcal{C}}(x) \triangleq \frac{1}{M} \sum_{m=1}^{M} \mathbb{1}\left\{x=x_{m}\right\} \tag{11}
\end{equation*}
$$

where $\mathbb{1}\{\cdot\}$ denotes the indicator function.
It has been shown in [12, Th. 1] that the exact error probability $\epsilon(\mathcal{C})$ in (2) can be expressed as the best type-0 error probability of an induced binary hypothesis test discriminating between the original distribution $P_{X}^{\mathcal{C}} \times P_{Y \mid X}$ and an alternative product distribution $P_{X}^{\mathcal{C}} \times Q_{Y}$ with type-1-error equal to $\frac{1}{M}$, i. e.,

$$
\begin{equation*}
\epsilon(\mathcal{C})=\max _{Q_{Y}}\left\{\alpha_{\frac{1}{M}}\left(P_{X}^{\mathcal{C}} \times P_{Y \mid X}, P_{X}^{\mathcal{C}} \times Q_{Y}\right)\right\} \tag{12}
\end{equation*}
$$

The right hand side of Eq. (12) is precisely the metaconverse bound [7, Th. 26] after optimization over the auxiliary distribution Q_{Y}. By choosing the auxiliary output distribution $\bar{Q}_{Y}(y)=|\mathcal{Y}|^{-1}$ and minimizing over all distributions defined over the input alphabet \mathcal{X}, identity (12) can be weakened to obtain

$$
\begin{equation*}
\epsilon(\mathcal{C}) \geq \inf _{P_{X}}\left\{\alpha_{\frac{1}{M}}\left(P_{X} \times P_{Y \mid X}, P_{X} \times \bar{Q}_{Y}\right)\right\} \tag{13}
\end{equation*}
$$

For the class of symmetric channels considered in Definition 1, we resort to the Neyman-Pearson lemma to find an alternative expression for right-hand side of (13). This expression will be then shown to coincide with the exact error probability $\epsilon(\mathcal{C})$ when \mathcal{C} is a quasi-perfect code according to Definition 2.

IV. Optimal Code Structure

We particularize the Neyman-Pearson test (10) with $P \leftarrow$ $P_{X} \times P_{Y \mid X}$ and $Q \leftarrow P_{X} \times \bar{Q}_{Y}$,

$$
T_{\mathrm{NP}}\left(\mathcal{H}_{0} \mid x, y\right)= \begin{cases}1, & \text { if } y \in \mathcal{S}_{x}^{\bullet}(\theta) \tag{14}\\ p, & \text { if } y \in \mathcal{S}_{x}^{\circ}(\theta) \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta=\gamma|\mathcal{Y}|^{-1}$ and $p \in[0,1]$ are parameters that allow to balance $\pi_{1 \mid 0}$ and $\pi_{0 \mid 1}$. We proceed to analyze the two error types.

Substituting (14) in (7) we obtain

$$
\begin{align*}
\pi_{0 \mid 1} & =\sum_{x, y} P_{X}(x) \bar{Q}_{Y}(y) T_{\mathrm{NP}}\left(\mathcal{H}_{0} \mid x, y\right) \tag{15}\\
& =|\mathcal{Y}|^{-1} \sum_{x} P_{X}(x)\left(\left|\mathcal{S}_{x}^{\bullet}(\theta)\right|+p\left|\mathcal{S}_{x}^{\circ}(\theta)\right|\right) \tag{16}\\
& =|\mathcal{Y}|^{-1}\left(S_{\bullet}(\theta)+p S_{\circ}(\theta)\right) \tag{17}
\end{align*}
$$

Given the constraint on $\pi_{0 \mid 1}$ imposed by (13), and the structure of the Neyman-Pearson test, the parameters $p, \theta \in[0,1]$ are chosen such that $\pi_{0 \mid 1}=\frac{1}{M}$, i.e.,

$$
\begin{equation*}
S_{\bullet}(\theta)+p S_{\circ}(\theta)=\frac{|\mathcal{Y}|}{M} \tag{18}
\end{equation*}
$$

Substituting (14) in (8) we obtain

$$
\begin{align*}
& \pi_{1 \mid 0}=1-\sum_{x, y} P_{X}(x) P_{Y \mid X}(y \mid x) T_{\mathrm{NP}}\left(\mathcal{H}_{0} \mid x, y\right) \tag{19}\\
& =1-\sum_{x} P_{X}(x)\left(\sum_{y \in \mathcal{S}_{\dot{x}}^{\circ}(\theta)} P_{Y \mid X}(y \mid x)\right. \\
& \left.\quad+p \sum_{y \in \mathcal{S}_{x}^{\circ}(\theta)} P_{Y \mid X}(y \mid x)\right) . \tag{20}
\end{align*}
$$

For an arbitrary x, let $P_{Y \mid X}\left(y_{i} \mid x\right), i=1, \ldots,|\mathcal{Y}|$, denote the output likelihoods indexed in decreasing order. Given the symmetry condition in Definition 1, the vector $\left(P_{Y \mid X}\left(y_{1} \mid x\right), \ldots, P_{Y \mid X}\left(y_{|\mathcal{Y}|} \mid x\right)\right)$ does not depend on the specific value of x. Then, for any x, we define $\psi_{i} \triangleq P_{Y \mid X}\left(y_{i} \mid x\right)$, $i=1, \ldots,|\mathcal{Y}|$, and rewrite (20) as

$$
\begin{equation*}
\pi_{1 \mid 0}=1-\left(\sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i}+p \sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i+S_{\bullet}(\theta)}\right) \tag{21}
\end{equation*}
$$

Using (18) and (21), it follows that the lower bound (13) can be rewritten as

$$
\begin{equation*}
\epsilon(\mathcal{C}) \geq 1-\left(\sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i}+p \sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i+S_{\bullet}(\theta)}\right) \tag{22}
\end{equation*}
$$

where $p, \theta \in[0,1]$ are such that $S_{\bullet}(\theta)+p S_{\circ}(\theta)=\frac{|\mathcal{Y}|}{M}$.
The next result shows that for a quasi-perfect code \mathcal{C}, (22) holds with equality. That is, when they exist, quasi-perfect codes attain the minimum error probability.

Theorem 1: Let $P_{Y \mid X}$ be a symmetric channel according to Definition 1 and let \mathcal{C} be a quasi-perfect code according to Definition 2. Then,

$$
\begin{equation*}
\epsilon(\mathcal{C})=1-\left(\sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i}+p \sum_{i=1}^{S_{\circ}(\theta)} \psi_{i+S_{\bullet}(\theta)}\right) \tag{23}
\end{equation*}
$$

where $p, \theta \in[0,1]$ are such that $S_{\bullet}(\theta)+p S_{\circ}(\theta)=\frac{|\mathcal{Y}|}{M}$.
Proof: Before showing that (23) holds with equality for arbitrary quasi-perfect codes, we include the (simpler) proof for the particular case of perfect codes.
a) Perfect codes: Consider a perfect code \mathcal{C} according to Definition 2. Then, the spheres $\mathcal{S}_{x}(\theta)$ centered at the codewords are disjoint and their union covers the output space, thus, we have that $M S(\theta)=|\mathcal{Y}|$. These spheres are precisely the ML decision regions for each of the codewords. Then, the error probability (2) can be written as

$$
\begin{equation*}
\epsilon(\mathcal{C})=1-\frac{1}{M} \sum_{m=1}^{M} \sum_{y \in \mathcal{S}_{x_{m}}(\theta)} P_{Y \mid X}\left(y \mid x_{m}\right) . \tag{24}
\end{equation*}
$$

For symmetric channels, the set $\left\{P_{Y \mid X}\left(y \mid x_{m}\right) \mid y \in \mathcal{S}_{x_{m}}(\theta)\right\}$ does not depend on the specific codeword x_{m}. This set coincides with $\left\{\psi_{1}, \ldots, \psi_{S(\theta)}\right\}$, which are, by definition, the $S(\theta)$ largest elements in $\left\{\psi_{1}, \ldots, \psi_{|\mathcal{Y}|}\right\}$. Then, we rewrite (24) as

$$
\begin{align*}
\epsilon(\mathcal{C}) & =1-\frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{S(\theta)} \psi_{i} \tag{25}\\
& =1-\sum_{i=1}^{S(\theta)} \psi_{i} . \tag{26}
\end{align*}
$$

Since $M S(\theta)=|\mathcal{Y}|$, according to (18), we must have $p=1$, and (26) coincides with the right-hand side of (23).
b) Quasi-perfect codes: Consider now a quasi-perfect code \mathcal{C} according to Definition 2. The spheres $\mathcal{S}_{x}^{\bullet}(\theta)$ centered at the codewords are disjoint. However, in general, the sets $\mathcal{S}_{x}^{\circ}(\theta)$ centered at each of the codewords do overlap. These overlaps correspond to ML decoding ties, and can be resolved arbitrarily without affecting the error probability.

Let $\left\{\mathcal{P}_{m}\right\}, m=1, \ldots, M$, be any partition of the output space such that $\mathcal{P}_{m} \subseteq \mathcal{S}_{x_{m}}(\theta), m=1, \ldots, M$. Let $P_{m}^{\circ} \triangleq$ $\left|\mathcal{P}_{m} \cap \mathcal{S}_{x_{m}}^{\circ}(\theta)\right|$. Following similar steps as in (25), we obtain

$$
\begin{align*}
\epsilon(\mathcal{C}) & =1-\frac{1}{M} \sum_{m=1}^{M}\left(\sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i}+\sum_{i=1}^{P_{m}^{\circ}} \psi_{i+S_{\bullet}(\theta)}\right) \tag{27}\\
& =1-\left(\sum_{i=1}^{S_{\bullet}(\theta)} \psi_{i}+\frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{P_{m}^{\circ}} \psi_{i+S_{\bullet}(\theta)}\right) . \tag{28}
\end{align*}
$$

Since the total number of sequences in the output space is $|\mathcal{Y}|$, then it must hold that $M S_{\bullet}(\theta)+\sum_{m=1}^{M} P_{m}^{\circ}=|\mathcal{Y}|$. Using (18) we obtain

$$
\begin{equation*}
p S_{\circ}(\theta)=\frac{1}{M} \sum_{m=1}^{M} P_{m}^{\circ} \tag{29}
\end{equation*}
$$

From the definition of $\mathcal{S}_{x_{m}}^{\circ}$, it follows that $\psi_{i}=\theta$ for $S_{\bullet}(\theta)+1 \leq i \leq S_{\bullet}(\theta)+S_{\circ}(\theta)$. Since by definition, $P_{m}^{\circ} \leq S_{\circ}(\theta)$, we have that

$$
\begin{align*}
\frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{P_{m}^{\circ}} \psi_{i+S_{\bullet}(\theta)} & =\frac{\theta}{M} \sum_{m=1}^{M} P_{m}^{\circ} \tag{30}\\
& =\theta p S_{\circ}(\theta) \tag{31}\\
& =p \sum_{i=1}^{S_{\circ}(\theta)} \psi_{i+S_{\bullet}(\theta)} \tag{32}
\end{align*}
$$

where (31) follows from (29). As a result, the right-hand side of (23) and (28) coincide.
Eq. (12) shows that the meta-converse bound, after optimization over the auxiliary distribution Q_{Y}, coincides with the exact error probability $\epsilon(\mathcal{C})$ of any code \mathcal{C} (see [12] for details). Theorem 1 shows that, for certain symmetric channels, the relaxation (13) also coincides with the minimum error probability for quasi-perfect codes, whenever they exist.

Fig. 1. Lower bounds to the minimum error probability bounds for the BSC with parameters $\delta=0.1, M=4$.

Fig. 2. Lower bounds to the minimum error probability bounds for the BSC with parameters $\delta=0.1, M=3$.

Theorem 1 recovers [4, Th. 3] in the same generality. The hypothesis testing approach reported in this work is conceptually different to that in [4] and allows further extensions. For example, in this work we have restricted ourselves $Q_{Y}=\bar{Q}_{Y}$, although different Q_{Y} are obviously possible.

Example: BSC

Figures 1 and 2 depict the minimal error probability for the transmission of M messages over n channel uses of a BSC with cross-over probability $\delta=0.1$. We plot the exact error probability (2) and the meta-converse bound (12) computed for the best code [13], compared with the lower bound in (13).
From Fig. 1 we can see that the three curves coincide for $M=4$ and $n=2,3,4,5,6,8$. According to Theorem 1, a quasi-perfect code can be built for these values of n as follows. The output sequences belonging to the decision regions of each of the codewords must have the $\left\lceil\frac{2^{n}}{M}\right\rceil$ or $\left\lfloor\frac{2^{n}}{M}\right\rfloor$ largest likelihoods in $\left\{\psi_{i}\right\}$. For instance, for $M=4$ and $n=4$, this implies that the decision regions must include 1 output sequence at Hamming distance 0 to the closest codeword, and 3 output sequences at distance 1 . This distance spectrum is achievable,
for example, by the code $\mathcal{C}=\{0000,0001,1110,1111\}$, that therefore attains the smallest error probability. Note that this code is not optimum in terms of minimum distance (see [13, Sec. IV] for details).
Similarly, Fig. 2 shows the three curves for $M=3$. We can see that they coincide for $M=3$ and $n=2,3,5$. For $n=4$ the decision regions of a quasi-perfect code should include 1 output sequence at Hamming distance 0 of the corresponding codeword, 4 output sequences at distance 1 , and at most 1 output sequence at distance 2 . However, there exists no configuration of the codewords such that three of these sets are packed in the output space. Therefore, there exists a strictly positive gap between (12) and (13) and the bound in (13) is not achievable.

Example: BEC

Since the binary erasure channel (BEC) is symmetric, quasiperfect codes according to Definition 2 attain the minimum error probability. Unfortunately, these codes might not exist in general. To see this, consider a BEC with erasure probability $0<\delta<\frac{1}{2}$. For any input $\boldsymbol{x} \in \mathcal{X}^{n}$, the all-erasures sequence is the least probable of the 2^{n} output sequences with non-zero probability. Therefore, for values of θ such that $S(\theta)<2^{n}$, the all-erasures sequence does not belong to any set $\mathcal{S}_{\boldsymbol{x}}(\theta)$, $\boldsymbol{x} \in \mathcal{X}^{n}$. Since for any perfect code $S(\theta) \approx \frac{3^{n}}{M}$ (see (18)), even moderate values of M imply that (6) does not hold, and neither perfect nor quasi-perfect codes exist.

References

[1] R. G. Gallager, Information Theory and Reliable Communication. New York: John Wiley \& Sons, Inc., 1968.
[2] C. Shannon, R. Gallager, and E. Berlekamp, "Lower bounds to error probability for coding on discrete memoryless channels. II," Information and Control, vol. 10, no. 5, pp. $522-552,1967$.
[3] T. Baicheva, I. Bouyukliev, S. Dodunekov, and V. Fack, "Binary and ternary linear quasi-perfect codes with small dimensions," IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4335-4339, Sept 2008.
[4] M. Hamada, "A sufficient condition for a code to achieve the minimum decoding error probability-generalization of perfect and quasi-perfect codes," IEICE Trans. on Fund. of Electronics, Comm. and Comp. Sciences, vol. E83-A, no. 10, pp. 1870-1877, Oct. 2000.
[5] C. Shannon, R. Gallager, and E. Berlekamp, "Lower bounds to error probability for coding on discrete memoryless channels. I," Information and Control, vol. 10, no. 1, pp. $65-103,1967$.
[6] R. E. Blahut, "Hypothesis testing and information theory," IEEE Trans. Inf. Theory, vol. IT-20, no. 4, pp. 405-417, 1974.
[7] Y. Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307-2359, 2010.
[8] J. L. Massey. (1998) Applied Digital Information Theory I, Lecture Notes. [Online]. Available: http://www.isi.ee.ethz.ch/research.html
[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. NJ: Wiley-Interscience, 2006.
[10] Y. Polyanskiy, "Saddle point in the minimax converse for channel coding," IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2576-2595, May 2013.
[11] J. Neyman and E. S. Pearson, "On the problem of the most efficient tests of statistical hypotheses," Phil. Trans. R. Soc. Lond. A, vol. 231, no. 694-706, p. 289, 1933.
[12] G. Vazquez-Vilar, A. Tauste Campo, A. Guillén i Fàbregas, and A. Martinez, "Bayesian M-ary hypothesis testing: The meta-converse and Verdú-Han bounds are tight," preprint arXiv:1411.3292v2, 2015.
[13] P.-N. Chen, H.-Y. Lin, and S. Moser, "Optimal ultrasmall block-codes for binary discrete memoryless channels," IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7346-7378, Nov 2013.

