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Abstract—Hypothesis testing lower bounds to the channel
coding error probability are studied. For a family of symmetric
channels, block lengths and coding rates, the error probability of
the best code is shown to coincide with that of a binary hypothesis
test with certain parameters. The points in which they coincide,
are precisely the points at which perfect or quasi-perfect codes
exist. General conditions are given for a code to attain minimum
error probability.

I. INTRODUCTION

Consider the channel coding problem of transmitting a set of
messages over a binary symmetric channel (BSC). The sphere-
packing bound [1, Eq. (5.8.19)] establishes a lower bound on
the block error probability of a code with a given rate and
blocklength. This bound follows from counting the maximum
number of non-overlapping Hamming spheres that can be
packed in the output space. In certain cases the sphere-packing
bound is achievable. A binary code is said to be perfect if
non-overlapping Hamming spheres of radius ¢ centered on
the codewords exactly fill out the space. Perfect codes are a
subset of the class of quasi-perfect codes. A quasi-perfect code
is defined as a code in which Hamming spheres of radius ¢
centered on the codewords are non-overlapping and Hamming
spheres of radius ¢+ 1 cover the space, possibly with overlaps.
Since quasi-perfect codes attain the sphere-packing bound for
a BSC, they achieve the minimum error probability among all
the codes with the same block length and rate [1, Sec. 5.8].
However, these codes are rare. For each rate R, 0 < R < 1,
there exists a block length beyond which neither perfect nor
quasi-perfect codes exist [2], [3].

A generalization of the definition of perfect and quasi-
perfect codes beyond the Hamming space was proposed by
Hamada in [4]. Using a variation of the Fano metric, Hamada
derived a lower bound to the channel coding error probability.
This bound is achievable by perfect and quasi-perfect codes
(defined with respect to the new metric), whenever they
exist. This result applies for a class of symmetric discrete
memoryless channels.

Binary hypothesis testing has been shown instrumental in
the derivation of converse bounds (see e.g. [5], [6]), one
prominent recent example being the the meta-converse bound
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by Polyanskiy et al. [7, Th. 27]. Particularized for the BSC, the
meta-converse bound recovers the sphere-packing bound [1,
Eq. (5.8.19)] (see [7, Sec. II1.H] for details). As a result, when
perfect or quasi-perfect codes exist, the the meta-converse
bound gives the minimum error probability in the BSC.

In this work, we generalize the definitions of perfect and
quasi-perfect codes for a class of symmetric channels and
we establish a connection between hypothesis testing lower
bounds and perfect or quasi-perfect codes. The results of this
paper are general enough to recover Hamada’s condition for
achieving minimum error probability [4, Th. 3].

II. GENERALIZED QUASI-PERFECT CODES

Consider the one-shot channel coding problem, where an
equiprobable message v € {1,..., M} is to be transmitted
over a random transformation Py x, * € X and y € ) with
X and Y discrete alphabets. A channel code C is defined as the
set of M codewords C = {x1,...,x} assigned to each of
the messages. We assume that the maximum likelihood (ML)
rule is used to choose the decoded message ¥ € {1,...,M}.
The error probability is given by

€(C) =Pr[V £ V] (1)

1
=1- M%}%wa(ylx)- @

Definition 1: A discrete channel is symmetric if the rows
of the transition matrix of the channel (with inputs as rows
and outputs as columns), i. e., Py |x(:|x), are permutations of
each other.

This definition of symmetric channels coincides with that
of uniformly dispersive channels of Massey [8, Sec. 4.2]
and is less restrictive than those of Cover and Thomas [9]
and Gallager [1]. The definition in [9, Sec. 7.2] additionally
requires that the columns of the channel transition matrix be
permutations of each other, i.e., uniformly focusing according
to [8, Sec. 4.2]. The definition in [1, p. 94] requires the channel
transition matrix to be partitioned in submatrices such that
each submatrix fulfills the condition in [9, Sec. 7.2]. Relations
among these definitions are investigated in [10, Sec. VI.B].

We define S, (6) to be the set of output sequences y with a
likelihood given input x of at least 6 € [0, 1]., i. e.,

8:(0) 2 {y € V| Prix(ylz) > 0}. )



We denote the interior and the shell of S, (9), respectively, as

5:0) 2 {y € V| Pyix(yla) > 0}, )
5:200) 2 {y € V| Pyix(yla) = 0}. )

Although we are not assuming that the input and output
alphabets are identical and Py |x(y|z) (or the related Fano
metric ~ log Py|x(y|x)) do not fulfill the properties of a
mathematical distance in general, we refer to S, () as a sphere
of radius @ centered on z. For specific channels, such as the
binary symmetric channel, log Py |x (y|) is an affine function
of the Hamming distance between x and y and hence S,(0)
becomes a sphere with respect to that distance.

Proposition 1: Let Py|x (y|z) be a symmetric channel de-
fined over input and output alphabets X', ). Then, cardinalities
(or “volumes”) |S;(0)],|S2(0)],|S2(0)| are independent of .

Then, for any symmetric channel we define S(6) =
[S2(0)], Se(0) = [S2(0)], So(0) = [S2(6)|. Obviously,
S(0) = Se(0) + So(0).

Definition 2: A code is perfect if there exists 6 € [0, 1] such
that

U 80 =, 6)

zeC

where the union is disjoint. More generally, a code is quasi-
perfect if there exists § € [0, 1] such that (6) is satisfied and
the codeword-centered spheres {S2(6),z € C} are disjoint.

This definition of perfect codes coincides with that in [4,
Def. 1] when the channel fulfills the Properties 1-4 in [4].
Definition 2 applies however to any symmetric channel ac-
cording to 1 (which corresponds to Property 4 in [4]). Also,
the definition of quasi-perfect code in Definition 2 includes
both perfect and quasi-perfect codes from [4, Def. 1].

III. THE META-CONVERSE BOUND

Let H € {0,1} be the random variable associated to the
output of a binary hypothesis test discriminating between
distributions P (hypothesis 0) and () (hypothesis 1). Then,
the test can be described by the conditional distribution PFIIY'
Let 7j); denote the probability of deciding j when ¢ is the true
hypothesis. More precisely, we define

To|1 = ZQ
771‘0 = ZP

Let ag (P, Q) denote the minimum error probability mq)q
among all tests T 2 Pﬂ\Y with my|; at most j3, that is

Py (0ly), )

H|Y (1]y). ®)

inf
Timo1 <B

a3 (P,Q) £ T1|0- )

In [11], Neyman and Pearson derived the explicit form of a
(possibly randomized) test 7" achieving the optimum trade-off

(9), given by

i P(y)
1, if o) > 7,

Ply) _
p, if o) —

0, otherwise,

Tne(Oly) = (10)

where v > 0 and p € [0,1] are parameters chosen such that
Tojn = B.
Let PC denote the channel input distribution induced by the

codebookcf{zl,.. , T}, 1. e,

M Z 1{z =zn},

where 1{-} denotes the indicator function.

It has been shown in [12, Th. 1] that the exact error
probability €(C) in (2) can be expressed as the best type-0 error
probability of an induced binary hypothesis test discriminating
between the original distribution P)C( x Py x and an alternative
product distribution P§ x Qy with type-1-error equal to 4,
ie.,

€(C)

P§(a (11)

:max{aﬁ (P)(’; X PY‘X,P)C( X Qy)}

Y

12)

The right hand side of Eq. (12) is precisely the meta-
converse bound [7, Th. 26] after optimization over the auxil-
iary distribution QQy. By choosing the auxiliary output distri-
bution Qy (y) = |¥|~* and minimizing over all distributions
defined over the input alphabet X, identity (12) can be
weakened to obtain

€(C) > inf {a

i 1 (Px x Py|x, Px XQY)}-
X

13)

For the class of symmetric channels considered in Defi-
nition 1, we resort to the Neyman-Pearson lemma to find
an alternative expression for right-hand side of (13). This
expression will be then shown to coincide with the exact error
probability €(C) when C is a quasi-perfect code according to
Definition 2.

IV. OPTIMAL CODE STRUCTURE
We particularize the Neyman-Pearson test (10) with P «
Px x Py|X and Q + Px x Qy,
ity € S3(0),
Tae(Holz,y) = qp,  if y € SZ(0),
0, otherwise,

—_

(14)

where 6 = +|Y|~! and p € [0, 1] are parameters that allow to
balance 7o and mg|;. We proceed to analyze the two error

types.
Substituting (14) in (7) we obtain

o1 = ZPX (y)Tne(Holz, y) (15)
or P (|8;<9>\+p!s;<e>y) (16)
=|y|-1( Su(0) +pS.(0) ). an



Given the constraint on 7|, imposed by (13), and the struc-
ture of the Neyman-Pearson test the parameters p, 6 € [0, 1]

are chosen such that o1 = M’ i.e.,
1Y
.(0 o(0) = —. 18
5u(0) + pSa(6) = 5 (18)
Substituting (14) in (8) we obtain
o =1 - ZPX z) Py x (y|z)Tne(Holz, y) (19)
=1-> Px(z ( > Pyx(ylz)
T yeS2(0)
+p Z PYIX(Z/|33)>- (20)
yeS2(0)
For an arbitrary z, let Py |x(yi|z), i = 1,...,|Y], de-

note the output likelihoods indexed in decreasing order.
Given the symmetry condition in Definition 1, the vector
(Py|x(y1]®), ..., Py|x(yjy||z)) does not depend on the spe-
cific value of . Then, for any x, we define 1; = Py x (yilz),
1 =1,...,]|Y|, and rewrite (20) as

56(6)

Se(0)
mo=1- (Z bi+p Z wﬁs.(e)) @1)

Using (18) and (21), it follows that the lower bound (13)
can be rewritten as

S ()

Se(0)
) >1- (Z vitp Y, zms.(e)), (22)
i=1 =1

where p, 0 € [0, 1] are such that S, (0) + pS,(0) = I—M‘

The next result shows that for a quasi-perfect code C, (22)
holds with equality. That is, when they exist, quasi-perfect
codes attain the minimum error probability.

Theorem 1: Let Py|x be a symmetric channel according to
Definition 1 and let C be a quasi-perfect code according to
Definition 2. Then,

So(6)

Se(0)
=1- (Z i+ p Z ¢z+5.(9) (23)

where p, 6 € [0, 1] are such that S (6) + pS.(0) = %

Proof: Before showing that (23) holds with equality for
arbitrary quasi-perfect codes, we include the (simpler) proof
for the particular case of perfect codes.

a) Perfect codes: Consider a perfect code C according
to Definition 2. Then, the spheres S,(f) centered at the
codewords are disjoint and their union covers the output space,
thus, we have that M S(6) = |)|. These spheres are precisely
the ML decision regions for each of the codewords. Then, the
error probability (2) can be written as

1 M
G(C) =1- M Z Z PY|X(y|xm)'

m=1y€Sz,, (0)

(24)

For symmetric channels, the set { Py |x (ylzm) |y € S, (6)}
does not depend on the specific codeword z,,. This set
coincides with {91, ...,1g(g)}, which are, by definition, the
S(0) largest elements in {11, ...,y }. Then, we rewrite (24)

as
1 M S(0)
=157 2D i (25)
m=1 i=1
S(6)
(26)

=1- Zw
=1

Since M S(0) = |Y|, according to (18), we must have p = 1,
and (26) coincides with the right-hand side of (23).

b) Quasi-perfect codes: Consider now a quasi-perfect
code C according to Definition 2. The spheres S (6) centered
at the codewords are disjoint. However, in general, the sets
S2(0) centered at each of the codewords do overlap. These
overlaps correspond to ML decoding ties, and can be resolved
arbitrarily without affecting the error probability.

Let {P,,}, m = 1,..., M, be any partition of the output
space such that P,, C S, (0), m = 1,...,M. Let P°, &

|Pm NSy ()| Following similar steps as in (25), we obtain
| M (5.0
eC)=1- Vi P ; Vi + Zl/hw (0) 27
Se(0) M Py
=1- Z i+ Z > Yirs.o) (28)
m=1i=1

Since the total number of sequences in the output space is |)|,
then it must hold that M .S, (0) —|—Zn]\f:1 P? = |Y|. Using (18)
we obtain

(29)

M
=7 2 P

m=1
From the definition of Sg , it follows that ; = 6 for
Se(0) +1 < i < Se() + So(0). Since by definition,

P2 < S,(0), we have that

M Py, M
- Z Z%w.w Z Py, (30)
m=1 =1 m:l
= 0pS.(0) (3D
S (0)
=p > Yirs.(o) (32)
i=1

where (31) follows from (29). As a result, the right-hand side
of (23) and (28) coincide. [ |

Eq. (12) shows that the meta-converse bound, after opti-
mization over the auxiliary distribution @)y, coincides with
the exact error probability ¢(C) of any code C (see [12]
for details). Theorem 1 shows that, for certain symmetric
channels, the relaxation (13) also coincides with the minimum
error probability for quasi-perfect codes, whenever they exist.
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Fig. 1. Lower bounds to the minimum error probability bounds for the BSC
with parameters § = 0.1, M = 4.
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Fig. 2. Lower bounds to the minimum error probability bounds for the BSC
with parameters § = 0.1, M = 3.

Theorem 1 recovers [4, Th. 3] in the same generality. The
hypothesis testing approach reported in this work is conceptu-
ally different to that in [4] and allows further extensions. For
example, in this work we have restricted ourselves Qy = Qy,
although different )y are obviously possible.

Example: BSC

Figures 1 and 2 depict the minimal error probability for the
transmission of M messages over n channel uses of a BSC
with cross-over probability § = 0.1. We plot the exact error
probability (2) and the meta-converse bound (12) computed for
the best code [13], compared with the lower bound in (13).

From Fig. 1 we can see that the three curves coincide for
M =4 and n = 2,3,4,5,6,8. According to Theorem 1, a
quasi-perfect code can be built for these values of n as follows.
The output sequences belonging to the decision regions of each
of the codewords must have the [27] or | 27| largest likeli-
hoods in {1, }. For instance, for M = 4 and n = 4, this implies
that the decision regions must include 1 output sequence at
Hamming distance 0 to the closest codeword, and 3 output

sequences at distance 1. This distance spectrum is achievable,

for example, by the code C = {0000, 0001, 1110, 1111}, that
therefore attains the smallest error probability. Note that this
code is not optimum in terms of minimum distance (see [13,
Sec. IV] for details).

Similarly, Fig. 2 shows the three curves for M = 3. We
can see that they coincide for M = 3 and n = 2,3,5. For
n = 4 the decision regions of a quasi-perfect code should
include 1 output sequence at Hamming distance 0 of the
corresponding codeword, 4 output sequences at distance 1, and
at most 1 output sequence at distance 2. However, there exists
no configuration of the codewords such that three of these
sets are packed in the output space. Therefore, there exists a
strictly positive gap between (12) and (13) and the bound in
(13) is not achievable.

Example: BEC

Since the binary erasure channel (BEC) is symmetric, quasi-
perfect codes according to Definition 2 attain the minimum
error probability. Unfortunately, these codes might not exist in
general. To see this, consider a BEC with erasure probability
0<d< % For any input € X", the all-erasures sequence
is the least probable of the 2™ output sequences with non-zero
probability. Therefore, for values of 6 such that S(6) < 27,
the all-erasures sequence does not belong to any set Sz (6),
x € X™. Since for any perfect code S(6) = “M (see (13)),
even moderate values of M imply that (6) does not hold, and
neither perfect nor quasi-perfect codes exist.
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