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Abstract—Hypothesis testing lower bounds to the channel
coding error probability are studied. For a family of symmetric
channels, block lengths and coding rates, the error probability of
the best code is shown to coincide with that of a binary hypothesis
test with certain parameters. The points in which they coincide,
are precisely the points at which perfect or quasi-perfect codes
exist. General conditions are given for a code to attain minimum
error probability.

I. INTRODUCTION

Consider the channel coding problem of transmitting a set of
messages over a binary symmetric channel (BSC). The sphere-
packing bound [1, Eq. (5.8.19)] establishes a lower bound on
the block error probability of a code with a given rate and
blocklength. This bound follows from counting the maximum
number of non-overlapping Hamming spheres that can be
packed in the output space. In certain cases the sphere-packing
bound is achievable. A binary code is said to be perfect if
non-overlapping Hamming spheres of radius t centered on
the codewords exactly fill out the space. Perfect codes are a
subset of the class of quasi-perfect codes. A quasi-perfect code
is defined as a code in which Hamming spheres of radius t
centered on the codewords are non-overlapping and Hamming
spheres of radius t+1 cover the space, possibly with overlaps.
Since quasi-perfect codes attain the sphere-packing bound for
a BSC, they achieve the minimum error probability among all
the codes with the same block length and rate [1, Sec. 5.8].
However, these codes are rare. For each rate R, 0 < R < 1,
there exists a block length beyond which neither perfect nor
quasi-perfect codes exist [2], [3].

A generalization of the definition of perfect and quasi-
perfect codes beyond the Hamming space was proposed by
Hamada in [4]. Using a variation of the Fano metric, Hamada
derived a lower bound to the channel coding error probability.
This bound is achievable by perfect and quasi-perfect codes
(defined with respect to the new metric), whenever they
exist. This result applies for a class of symmetric discrete
memoryless channels.

Binary hypothesis testing has been shown instrumental in
the derivation of converse bounds (see e.g. [5], [6]), one
prominent recent example being the the meta-converse bound
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by Polyanskiy et al. [7, Th. 27]. Particularized for the BSC, the
meta-converse bound recovers the sphere-packing bound [1,
Eq. (5.8.19)] (see [7, Sec. III.H] for details). As a result, when
perfect or quasi-perfect codes exist, the the meta-converse
bound gives the minimum error probability in the BSC.

In this work, we generalize the definitions of perfect and
quasi-perfect codes for a class of symmetric channels and
we establish a connection between hypothesis testing lower
bounds and perfect or quasi-perfect codes. The results of this
paper are general enough to recover Hamada’s condition for
achieving minimum error probability [4, Th. 3].

II. GENERALIZED QUASI-PERFECT CODES

Consider the one-shot channel coding problem, where an
equiprobable message v ∈ {1, . . . ,M} is to be transmitted
over a random transformation PY |X , x ∈ X and y ∈ Y with
X and Y discrete alphabets. A channel code C is defined as the
set of M codewords C = {x1, . . . , xM} assigned to each of
the messages. We assume that the maximum likelihood (ML)
rule is used to choose the decoded message v̂ ∈ {1, . . . ,M}.
The error probability is given by

ε(C) = Pr[V̂ 6= V ] (1)

= 1− 1

M

∑
y

max
x∈C

PY |X(y|x). (2)

Definition 1: A discrete channel is symmetric if the rows
of the transition matrix of the channel (with inputs as rows
and outputs as columns), i. e., PY |X(·|x), are permutations of
each other.

This definition of symmetric channels coincides with that
of uniformly dispersive channels of Massey [8, Sec. 4.2]
and is less restrictive than those of Cover and Thomas [9]
and Gallager [1]. The definition in [9, Sec. 7.2] additionally
requires that the columns of the channel transition matrix be
permutations of each other, i.e., uniformly focusing according
to [8, Sec. 4.2]. The definition in [1, p. 94] requires the channel
transition matrix to be partitioned in submatrices such that
each submatrix fulfills the condition in [9, Sec. 7.2]. Relations
among these definitions are investigated in [10, Sec. VI.B].

We define Sx(θ) to be the set of output sequences y with a
likelihood given input x of at least θ ∈ [0, 1]., i. e.,

Sx(θ) ,
{
y ∈ Y

∣∣PY |X(y|x) ≥ θ
}
. (3)



We denote the interior and the shell of Sx(θ), respectively, as

S•x(θ) ,
{
y ∈ Y

∣∣PY |X(y|x) > θ
}
, (4)

S◦x(θ) ,
{
y ∈ Y

∣∣PY |X(y|x) = θ
}
. (5)

Although we are not assuming that the input and output
alphabets are identical and PY |X(y|x) (or the related Fano
metric ∼ logPY |X(y|x)) do not fulfill the properties of a
mathematical distance in general, we refer to Sx(θ) as a sphere
of radius θ centered on x. For specific channels, such as the
binary symmetric channel, logPY |X(y|x) is an affine function
of the Hamming distance between x and y and hence Sx(θ)
becomes a sphere with respect to that distance.

Proposition 1: Let PY |X(y|x) be a symmetric channel de-
fined over input and output alphabets X ,Y . Then, cardinalities
(or “volumes”) |Sx(θ)|, |S•x(θ)|, |S◦x(θ)| are independent of x.

Then, for any symmetric channel, we define S(θ) ,
|Sx(θ)|, S•(θ) , |S•x(θ)|, S◦(θ) , |S◦x(θ)|. Obviously,
S(θ) = S•(θ) + S◦(θ).

Definition 2: A code is perfect if there exists θ ∈ [0, 1] such
that ⋃

x∈C
Sx(θ) = Y, (6)

where the union is disjoint. More generally, a code is quasi-
perfect if there exists θ ∈ [0, 1] such that (6) is satisfied and
the codeword-centered spheres {S•x(θ), x ∈ C} are disjoint.

This definition of perfect codes coincides with that in [4,
Def. 1] when the channel fulfills the Properties 1-4 in [4].
Definition 2 applies however to any symmetric channel ac-
cording to 1 (which corresponds to Property 4 in [4]). Also,
the definition of quasi-perfect code in Definition 2 includes
both perfect and quasi-perfect codes from [4, Def. 1].

III. THE META-CONVERSE BOUND

Let Ĥ ∈ {0, 1} be the random variable associated to the
output of a binary hypothesis test discriminating between
distributions P (hypothesis 0) and Q (hypothesis 1). Then,
the test can be described by the conditional distribution PĤ|Y .
Let πj|i denote the probability of deciding j when i is the true
hypothesis. More precisely, we define

π0|1 ,
∑
y

Q(y)PĤ|Y (0|y), (7)

π1|0 ,
∑
y

P (y)PĤ|Y (1|y). (8)

Let αβ
(
P,Q

)
denote the minimum error probability π1|0

among all tests T , PĤ|Y with π0|1 at most β, that is

αβ
(
P,Q

)
, inf
T :π0|1≤β

π1|0. (9)

In [11], Neyman and Pearson derived the explicit form of a
(possibly randomized) test T achieving the optimum trade-off

(9), given by

TNP(0|y) =


1, if P (y)

Q(y) > γ,

p, if P (y)
Q(y) = γ,

0, otherwise,

(10)

where γ ≥ 0 and p ∈ [0, 1] are parameters chosen such that
π0|1 = β.

Let P CX denote the channel input distribution induced by the
codebook C = {x1, . . . , xM}, i. e.,

P CX(x) ,
1

M

M∑
m=1

1{x = xm}, (11)

where 1{·} denotes the indicator function.
It has been shown in [12, Th. 1] that the exact error

probability ε(C) in (2) can be expressed as the best type-0 error
probability of an induced binary hypothesis test discriminating
between the original distribution P CX×PY |X and an alternative
product distribution P CX ×QY with type-1-error equal to 1

M ,
i. e.,

ε(C) = max
QY

{
α 1

M

(
P CX × PY |X , P CX ×QY

)}
. (12)

The right hand side of Eq. (12) is precisely the meta-
converse bound [7, Th. 26] after optimization over the auxil-
iary distribution QY . By choosing the auxiliary output distri-
bution Q̄Y (y) = |Y|−1 and minimizing over all distributions
defined over the input alphabet X , identity (12) can be
weakened to obtain

ε(C) ≥ inf
PX

{
α 1

M

(
PX × PY |X , PX × Q̄Y

)}
. (13)

For the class of symmetric channels considered in Defi-
nition 1, we resort to the Neyman-Pearson lemma to find
an alternative expression for right-hand side of (13). This
expression will be then shown to coincide with the exact error
probability ε(C) when C is a quasi-perfect code according to
Definition 2.

IV. OPTIMAL CODE STRUCTURE

We particularize the Neyman-Pearson test (10) with P ←
PX × PY |X and Q← PX × Q̄Y ,

TNP(H0|x, y) =


1, if y ∈ S•x(θ),

p, if y ∈ S◦x(θ),

0, otherwise,
(14)

where θ = γ|Y|−1 and p ∈ [0, 1] are parameters that allow to
balance π1|0 and π0|1. We proceed to analyze the two error
types.

Substituting (14) in (7) we obtain

π0|1 =
∑
x,y

PX(x)Q̄Y (y)TNP(H0|x, y) (15)

= |Y|−1
∑
x

PX(x)
(∣∣S•x(θ)

∣∣+ p
∣∣S◦x(θ)

∣∣) (16)

= |Y|−1
(
S•(θ) + pS◦(θ)

)
. (17)



Given the constraint on π0|1 imposed by (13), and the struc-
ture of the Neyman-Pearson test, the parameters p, θ ∈ [0, 1]
are chosen such that π0|1 = 1

M , i.e.,

S•(θ) + pS◦(θ) =
|Y|
M

. (18)

Substituting (14) in (8) we obtain

π1|0 = 1−
∑
x,y

PX(x)PY |X(y|x)TNP(H0|x, y) (19)

= 1−
∑
x

PX(x)

( ∑
y∈S•x(θ)

PY |X(y|x)

+ p
∑

y∈S◦x(θ)

PY |X(y|x)

)
. (20)

For an arbitrary x, let PY |X(yi|x), i = 1, . . . , |Y|, de-
note the output likelihoods indexed in decreasing order.
Given the symmetry condition in Definition 1, the vector(
PY |X(y1|x), . . . , PY |X(y|Y||x)

)
does not depend on the spe-

cific value of x. Then, for any x, we define ψi , PY |X(yi|x),
i = 1, . . . , |Y|, and rewrite (20) as

π1|0 = 1−

(
S•(θ)∑
i=1

ψi + p

S◦(θ)∑
i=1

ψi+S•(θ)

)
. (21)

Using (18) and (21), it follows that the lower bound (13)
can be rewritten as

ε(C) ≥ 1−

(
S•(θ)∑
i=1

ψi + p

S◦(θ)∑
i=1

ψi+S•(θ)

)
, (22)

where p, θ ∈ [0, 1] are such that S•(θ) + pS◦(θ) = |Y|
M .

The next result shows that for a quasi-perfect code C, (22)
holds with equality. That is, when they exist, quasi-perfect
codes attain the minimum error probability.

Theorem 1: Let PY |X be a symmetric channel according to
Definition 1 and let C be a quasi-perfect code according to
Definition 2. Then,

ε(C) = 1−

(
S•(θ)∑
i=1

ψi + p

S◦(θ)∑
i=1

ψi+S•(θ)

)
, (23)

where p, θ ∈ [0, 1] are such that S•(θ) + pS◦(θ) = |Y|
M .

Proof: Before showing that (23) holds with equality for
arbitrary quasi-perfect codes, we include the (simpler) proof
for the particular case of perfect codes.

a) Perfect codes: Consider a perfect code C according
to Definition 2. Then, the spheres Sx(θ) centered at the
codewords are disjoint and their union covers the output space,
thus, we have that MS(θ) = |Y|. These spheres are precisely
the ML decision regions for each of the codewords. Then, the
error probability (2) can be written as

ε(C) = 1− 1

M

M∑
m=1

∑
y∈Sxm (θ)

PY |X(y|xm). (24)

For symmetric channels, the set
{
PY |X(y|xm)

∣∣ y ∈ Sxm
(θ)
}

does not depend on the specific codeword xm. This set
coincides with {ψ1, . . . , ψS(θ)}, which are, by definition, the
S(θ) largest elements in {ψ1, . . . , ψ|Y|}. Then, we rewrite (24)
as

ε(C) = 1− 1

M

M∑
m=1

S(θ)∑
i=1

ψi (25)

= 1−
S(θ)∑
i=1

ψi. (26)

Since MS(θ) = |Y|, according to (18), we must have p = 1,
and (26) coincides with the right-hand side of (23).

b) Quasi-perfect codes: Consider now a quasi-perfect
code C according to Definition 2. The spheres S•x(θ) centered
at the codewords are disjoint. However, in general, the sets
S◦x(θ) centered at each of the codewords do overlap. These
overlaps correspond to ML decoding ties, and can be resolved
arbitrarily without affecting the error probability.

Let {Pm}, m = 1, . . . ,M , be any partition of the output
space such that Pm ⊆ Sxm

(θ), m = 1, . . . ,M . Let P ◦m ,
|Pm ∩ S◦xm

(θ)|. Following similar steps as in (25), we obtain

ε(C) = 1− 1

M

M∑
m=1

S•(θ)∑
i=1

ψi +

P◦m∑
i=1

ψi+S•(θ)

 (27)

= 1−

S•(θ)∑
i=1

ψi +
1

M

M∑
m=1

P◦m∑
i=1

ψi+S•(θ)

 . (28)

Since the total number of sequences in the output space is |Y|,
then it must hold that MS•(θ)+

∑M
m=1 P

◦
m = |Y|. Using (18)

we obtain

pS◦(θ) =
1

M

M∑
m=1

P ◦m. (29)

From the definition of S◦xm
, it follows that ψi = θ for

S•(θ) + 1 ≤ i ≤ S•(θ) + S◦(θ). Since by definition,
P ◦m ≤ S◦(θ), we have that

1

M

M∑
m=1

P◦m∑
i=1

ψi+S•(θ) =
θ

M

M∑
m=1

P ◦m (30)

= θpS◦(θ) (31)

= p

S◦(θ)∑
i=1

ψi+S•(θ), (32)

where (31) follows from (29). As a result, the right-hand side
of (23) and (28) coincide.

Eq. (12) shows that the meta-converse bound, after opti-
mization over the auxiliary distribution QY , coincides with
the exact error probability ε(C) of any code C (see [12]
for details). Theorem 1 shows that, for certain symmetric
channels, the relaxation (13) also coincides with the minimum
error probability for quasi-perfect codes, whenever they exist.
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Fig. 1. Lower bounds to the minimum error probability bounds for the BSC
with parameters δ = 0.1, M = 4.
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Fig. 2. Lower bounds to the minimum error probability bounds for the BSC
with parameters δ = 0.1, M = 3.

Theorem 1 recovers [4, Th. 3] in the same generality. The
hypothesis testing approach reported in this work is conceptu-
ally different to that in [4] and allows further extensions. For
example, in this work we have restricted ourselves QY = Q̄Y ,
although different QY are obviously possible.

Example: BSC
Figures 1 and 2 depict the minimal error probability for the

transmission of M messages over n channel uses of a BSC
with cross-over probability δ = 0.1. We plot the exact error
probability (2) and the meta-converse bound (12) computed for
the best code [13], compared with the lower bound in (13).

From Fig. 1 we can see that the three curves coincide for
M = 4 and n = 2, 3, 4, 5, 6, 8. According to Theorem 1, a
quasi-perfect code can be built for these values of n as follows.
The output sequences belonging to the decision regions of each
of the codewords must have the

⌈
2n

M

⌉
or
⌊
2n

M

⌋
largest likeli-

hoods in {ψi}. For instance, for M = 4 and n = 4, this implies
that the decision regions must include 1 output sequence at
Hamming distance 0 to the closest codeword, and 3 output
sequences at distance 1. This distance spectrum is achievable,

for example, by the code C = {0000, 0001, 1110, 1111}, that
therefore attains the smallest error probability. Note that this
code is not optimum in terms of minimum distance (see [13,
Sec. IV] for details).

Similarly, Fig. 2 shows the three curves for M = 3. We
can see that they coincide for M = 3 and n = 2, 3, 5. For
n = 4 the decision regions of a quasi-perfect code should
include 1 output sequence at Hamming distance 0 of the
corresponding codeword, 4 output sequences at distance 1, and
at most 1 output sequence at distance 2. However, there exists
no configuration of the codewords such that three of these
sets are packed in the output space. Therefore, there exists a
strictly positive gap between (12) and (13) and the bound in
(13) is not achievable.

Example: BEC
Since the binary erasure channel (BEC) is symmetric, quasi-

perfect codes according to Definition 2 attain the minimum
error probability. Unfortunately, these codes might not exist in
general. To see this, consider a BEC with erasure probability
0 < δ < 1

2 . For any input x ∈ Xn, the all-erasures sequence
is the least probable of the 2n output sequences with non-zero
probability. Therefore, for values of θ such that S(θ) < 2n,
the all-erasures sequence does not belong to any set Sx(θ),
x ∈ Xn. Since for any perfect code S(θ) ≈ 3n

M (see (18)),
even moderate values of M imply that (6) does not hold, and
neither perfect nor quasi-perfect codes exist.
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tinez, “Bayesian M-ary hypothesis testing: The meta-converse and
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