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Abstract—This paper studies expurgated random-coding
bounds and exponents for channels with maximum-metric de-
coding. A simple non-asymptotic bound is shown to attain an
exponent which coincides with that of Csiszár and Körner
for discrete memoryless channels, while remaining valid for
continuous alphabets. Using an alternative approach based on
statistical-mechanical methods, an exponent for more general
channels and decoding metrics is given.

I. INTRODUCTION

Achievable performance bounds for channel coding are
typically obtained by analyzing the average error probability
of an ensemble of codebooks with independently generated
codewords. At low rates, the error probability of the best code
in the ensemble can be significantly smaller than the average.
In such cases, better performance bounds are obtained by
considering an ensemble in which a subset of the randomly
generated codewords are expurgated from the codebook.

The main approaches to obtaining expurgated bounds and
exponents are those of Gallager [1, Sec. 5.7] and Csiszár-
Körner-Marton [2, Ex. 10.18] [3]. Gallager’s approach is based
on simple inequalities such as Markov’s inequality, and has
the advantage of being simple and applicable to channels with
continuous alphabets. On the other hand, the techniques of
[2], [3] are based on the method of types, and are applicable
to channels with input constraints. While the exponents of
[1]–[3] all coincide after optimizing the input distribution, the
exponents of [2], [3] can be higher than that of [1] for a given
input distribution [4].

In this paper, we provide techniques that attain the best of
each of the above approaches. Our main contributions are as
follows:

1) We give the precise connection between the exponents of
[1]–[3] using Lagrange duality [5], as well as generaliz-
ing the exponents of [1], [2] to the setting of mismatched
decoding [3], [6].

2) We show that variations of Gallager’s techniques can
be used to obtain a simple non-asymptotic bound which
recovers the exponent of [2], [3], as well as a general-
ization to the case of continuous alphabets.
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3) We present an alternative analysis technique based on
statistical-mechanical methods (e.g. see [7], [8]), and use
it to derive an achievable exponent for general channels
and metrics (e.g. channels with memory).

Due to space constraints, full proofs of the main results are
omitted; details can be found in [4].

A. Notation

We use bold symbols for vectors (e.g. x), and denote the
corresponding i-th entry using a subscript (e.g. xi). The set
of all empirical distributions (i.e. types [2, Ch. 2]) on a given
alphabet, say X , is denoted by Pn(X ). For a given type Q ∈
Pn(X ), the type class Tn(Q) is defined to be the set of all
sequences in Xn with type Q. For two positive sequences fn
and gn, we write fn

.
= gn if limn→∞

1
n log fn

gn
= 0, and we

write fn ≤̇ gn if lim supn→∞
1
n log fn

gn
≤ 0, and analogously

for ≥̇. All logarithms have base e, and all rates are in units
of nats. We define [c]+ = max{0, c}, and denote the indicator
function by 11{·}.

B. System Setup

We consider block coding over a memoryless channel
Wn(y|x) ,

∏n
i=1W (yi|xi) with alphabets X and Y . The

encoder takes as input a message m uniformly distributed on
the set {1, . . . ,M}, and transmits the corresponding codeword
x(m) of length n. Given y, the decoder forms the estimate

m̂ = arg max
j∈{1,...,M}

qn(x(j),y), (1)

where qn(x,y) ,
∏n
i=1 q(xi, yi) for some non-negative

function q(x, y). When q(x, y) = W (y|x), (1) is the optimal
maximum-likelihood (ML) decoding rule. For other decoding
metrics, this setting is that of mismatched decoding [3], [6],
which is relevant when ML decoding is not feasible.

Except where stated otherwise, we assume that the code-
words are unconstrained. However, in some cases we will
consider input constraints of the form

1

n

n∑
i=1

c(xi) ≤ Γ, (2)

where c(·) is referred to as a cost function, and Γ is a constant.



C. Expurgated Exponents and Duality

We will primarily be interested in the following exponent,
which was derived in [3] for the case of finite alphabets:1

Ecc
ex(Q,R) , min

PXXY ∈T
cc(Q)

IP (X;X)≤R

D(PXXY ‖Q×Q×W )−R, (3)

where

T cc(Q) ,
{
PXXY : PX = Q,PX = Q,

EP [log q(X,Y )] ≥ EP [log q(X,Y )]
}

(4)

and Q is an arbitrary input distribution. The following theorem
links this exponent with those given in [1], [2].

Theorem 1. For any input distribution Q and rate R, we have

Ecc
ex(Q,R) = sup

s≥0
min

PXX :PX=Q,PX=Q,

IP (X;X)≤R

EP [ds(X,X)] + IP (X;X)−R (5)
= sup

ρ≥1
Ecc

x (Q, ρ)− ρR, (6)

where

ds(x, x) , − log
∑
y

W (y|x)

(
q(x, y)

q(x, y)

)s
(7)

Ecc
x (Q, ρ) , sup

s≥0,a(·)

− ρ
∑
x

Q(x) log
∑
x

Q(x)
ea(x)

ea(x)
e−ds(x,x)/ρ. (8)

The right-hand side of (5) can be considered a generalization
of the exponent in [2] to the setting of mismatched decoding;
the exponent for ML decoding is recovered by setting s = 1

2 .
Theorem 1 shows that the exponents of [2] and [3] are
equivalent even when Q is fixed; the equivalence for the
optimal Q is well-known [3].

The right-hand side of (8) resembles Gallager’s Ex function,
which can be extended to the mismatched setting to obtain

Eiid
ex (Q,R) , sup

ρ≥1
Eiid

x (Q, ρ)− ρR, (9)

where

Eiid
x (Q, ρ) , sup

s≥0
−ρ log

∑
x,x

Q(x)Q(x)e−ds(x,x)/ρ. (10)

We immediately see that Ecc
ex ≥ Eiid

ex . While equality holds
under the optimal Q for ML decoding [3], the inequality can
be strict for a suboptimal Q and/or a suboptimal decoding rule.

In this paper, we seek alternative derivations of the stronger
exponent Ecc

ex which are not sensitive to the assumption of
finite alphabets, and which remain valid for channels with
input constraints.

1The notation Q×Q×W denotes the distribution Q(x)Q(x)W (y|x).

II. ANALYSIS USING FINITE-LENGTH BOUNDS

Let pe,m(C) denote the error probability for a given code-
book C given that the m-th codeword was sent, and let pe(C) ,
maxm pe,m(C). We fix an arbitrary codeword distribution PX

and define

(X,Y ,X) ∼ PX(x)Wn(y|x)PX(x). (11)

Stated in a general form, Gallager’s analysis proves the exis-
tence of a codebook C of size M > M ′ η

1+η such that

f
(
pe(C)

)
≤ (1 + η)E

[
f(pe,m(C))

]
(12)

for any η ≥ 0 and non-negative function f(·), where C is a
random codebook with M ′ codewords drawn independently
from the distribution PX . In particular, we obtain

pe(C) ≤
(

2E
[
pe,m(C)1/ρ

])ρ
(13)

by choosing η = 1 and f(·) = (·)1/ρ, where C contains 2M−1
codewords. The following non-asymptotic bound follows from
(13) using the union bound and the inequality(∑

i

ai

)1/ρ
≤
∑
i

a
1/ρ
i (ρ ≥ 1). (14)

Theorem 2. For any pair (n,M) and codeword distribution
PX , there exists a codebook C with M codewords of length
n whose maximal error probability satisfies

pe(C) ≤ inf
ρ≥1(

4(M − 1)E
[
P
[
qn(X,Y ) ≥ qn(X,Y )

∣∣∣X,X
]1/ρ])ρ

.

(15)

The bound in (15) extends immediately to general channels
and metrics (e.g. channels with memory), and can be con-
sidered an analog of the random-coding union (RCU) bound
given by Polyanskiy et al. [9]. In the remainder of the section,
we present the resulting exponents for various ensembles in
the memoryless case.

i.i.d. ensemble: Choosing the i.i.d. distribution

PX(x) =

n∏
i=1

Q(xi), (16)

we can use Markov’s inequality to weaken (15) and obtain
the exponent Eiid

ex (Q,R). This approach does not rely on the
alphabets being finite, but it is unsuitable for input-constrained
channels, since in all non-trivial cases there is a non-zero
probability of violating the constraint.

Constant-composition ensemble: Suppose that |X | and |Y|
are finite, and consider the constant-composition codeword
distribution

PX(x) =
1

|Tn(Qn)|
11
{
x ∈ Tn(Qn)

}
, (17)

where Qn is a type with the same support as Q such that
|Qn(x) − Q(x)| ≤ 1

n for all x. By expanding (15) in terms



of types and applying standard properties [2, Ch. 10], we can
derive the exponent

sup
ρ≥1

min
PXXY ∈T cc(Q)

D(PXXY ‖PXX ×W ) + ρ
(
IP (X;X)−R

)
.

(18)
Using the minimax theorem [10], we recover Ecc

ex in the form
given in (3). This provides a simple alternative proof to the
one given in [3] based on graph decomposition techniques.

Cost-constrained ensemble: In the case of continuous al-
phabets and input constraints (see (2)), we can derive Ecc

ex

using the cost-constrained codeword distribution

PX(x) =
1

µn

n∏
i=1

Q(xi)11
{
x ∈ Dn

}
, (19)

where

Dn ,

{
x :

1

n

n∑
i=1

c(xi) ≤ Γ,∣∣∣∣ 1n
n∑
i=1

al(xi)− φl
∣∣∣∣ ≤ δ

n
, l = 1, . . . , L

}
, (20)

and where δ is a positive constant, {al(·)}Ll=1 are arbitrary
auxiliary cost functions with means φl , EQ[al(X)], and µn
is a normalizing constant.

One can show that µn
.
= 1 provided that EQ[c(X)] ≤ Γ.

EQ[c(X)2] <∞ and EQ[al(X)2] <∞ for l = 1, · · · , L [11].
Assuming these conditions are satisfied, we can analyze (15)
similarly to the case of random coding without expurgation
[11] to obtain the exponent

Ecost
ex (Q,R, {al}) , sup

ρ≥1
Ecost

x (Q, ρ, {al})− ρR, (21)

where2

Ecost
x (Q,R, {al}) , sup

s≥0,{rl},{rl}

− ρ log
∑
x,x

Q(x)Q(x)
e
∑L

l=1 rl(al(x)−φl)

e
∑L

l=1 rl(al(x)−φl)
e−ds(x,y)/ρ, (22)

and the constants {rl} and {rl} are arbitrary. Roughly speak-
ing, the additional factor in (22) compared to (10) is obtained
using the fact that the empirical mean of each auxiliary cost
is close to the true mean.

Finally, we claim that (22) reduces to (8) when L = 2
and a1(·), a2(·) are optimized. This is easily shown by setting
rl = rl = 1 for l = 1, 2, choosing a2(·) such that Jensen’s
inequality holds with equality when

∑
xQ(x) is taken outside

the logarithm, and using the definition of φl to write

−
∑
x

Q(x) log
e−φ1

ea2(x)−φ2
= −

∑
x

Q(x) log e−a1(x). (23)

In summary, this derivation shows that, under mild technical
assumptions, (6) is an achievable exponent even in the case
of infinite or continuous alphabets, provided that Q satisfies
EQ[c(X)] ≤ Γ in accordance with (2).

2In the case of continuous alphabets, the summations should be replaced
by integrals.

III. ANALYSIS USING ENUMERATOR FUNCTIONS

In this section, we present an alternative method for deriving
expurgated exponents which is based on statistical-mechanical
methods (e.g. see [7], [8]). In [4], we provide two variations of
this approach depending on whether the alphabets are discrete
or continuous. We begin here by discussing the discrete case.

Applying the union bound to (13), we obtain

pe ≤

(
2E
[( ∑

m 6=m

P
[
qn(X(m),Y )

qn(X(m),Y )
≥ 1

∣∣∣C])1/ρ])ρ
,

(24)
where

{
X(j)

}2M−1
j=1

∼
∏M
j=1 PX(x(j)) are the random code-

words in C. For any codeword distribution PX(x) depending
only on the type of x, we can perform an exponentially
tight analysis of (24) using type enumerators [7]. For the
constant-composition ensemble (see (17)), we obtain Ecc

ex in
the form given in (3). Although the exponent is the same as
that obtained via Theorem 2, the type enumerator approach
guarantees exponential tightness starting from an earlier step.

On the other hand, for the i.i.d. ensemble (see (16)), we
show in [4] that (24) yields an exponent which is strictly higher
in general than that obtained via Theorem 2. It follows that
the inequality in (14) is not exponentially tight in general, thus
motivating the more refined analysis of (24).

In the remainder of the section, we consider a more general
approach which remains applicable in the continuous case. We
assume that each codeword must satisfy (2), and that

lim
γ→∞

1

γ
log log

1

π(γ)
= 0, (25)

where

π(γ) , min
(x,x) : c(x)≤γ,c(x)≤γ

P[Yx ∈ E(x, x)] (26)

E(x, x) ,
{
y : q(x, y) ≥ q(x, y)

}
, (27)

and in (26) we define Yx ∼ W (·|x). This assumption is mild
and generally easily to verify. For example, for the power-
constrained additive white Gaussian noise channel with ML
decoding, π(·) only decays exponentially in γ, whereas (25)
allows for nearly double-exponential rates of decay. See [4]
for further discussion and examples.

The following theorem follows by applying (12) with a
function of the form f(·) = fn(·) = log(·) + cn, where cn
is chosen such that fn(pe,m) is non-negative for all values of
pe,m which can occur when (25) holds.

Theorem 3. Fix R > 0 and consider a sequence of codebooks
Cn containing M ′n = bexp(nR)c codewords which are gen-
erated independently according to PX . Under the assumption
in (25), there exists a sequence of codebooks Cn with Mn

codewords such that

lim
n→∞

1

n
logMn = R (28)



and

pe(Cn) ≤̇ exp
(
E[log pe,m(Cn)]

)
(29)

≤ exp
(
ρE
[

logE
[
pe,m(Cn)1/ρ

∣∣X(m)
]])

, (30)

where (30) holds for any ρ > 0.

Equation (30) can be thought of as improving on (13) to
the fact that the expectation with respect to the transmitted
codeword is outside the logarithm.

Applying the union bound and Markov’s inequality to (30),
we conclude that there exists a sequence of codebooks Cn of
rate approaching R such that

pe(Cn) ≤̇ exp
(
E
[

logAn(R, ρ,X(m))
])
, (31)

where

An(R, ρ,X(m))

, E

[( ∑
m 6=m

e−d
n
s (X

(m),X(m))

)1/ρ ∣∣∣∣X(m)

]ρ
(32)

and dns (x,x) ,
∑n
i=1 ds(xi, xi). We fix δ > 0 and write∑

m6=m

e−d
n
s (x,X

(m)) ≤
∞∑
k=0

e−nkδNm(k,x), (33)

where

Nm(k,x) ,
∑
m 6=m

11
{
nkδ ≤ dns (x,X(m)) < n(k + 1)δ

}
.

(34)
The key observation which permits the subsequent analysis is
that the maximum value of k for which Nm(k,x) 6= 0 grows
subexponentially in n; this can easily be verified using the
assumption in (25). Applying this observation to (32) multiple
times, we obtain

An(R, ρ,x) ≤̇ max
k≥0

(
E
[
Nm(k,x)1/ρ

])ρ
e−nkδ. (35)

We can further upper bound this expression by removing the
lower inequality in the indicator function in (34). Letting
R(D,x) be any continuous function such that P

[
dns (x,X) <

nD] ≤̇ e−nR(D,x) uniformly in x, it follows by treating the
cases R(D,x) ≤ R and R(D,x) > R separately that

An(R, ρ,x) ≤̇ e−nmin{E1(R,ρ,δ,x),E2(R,δ,x)}, (36)

where

E1(R, ρ, δ,x) , min
k :R((k+1)δ,x)≥R

kδ + ρ
(
R((k + 1)δ,x)−R

)
(37)

E2(R, δ,x) , min
k :R((k+1)δ,x)≤R

kδ +R((k + 1)δ,x)−R.

(38)

Finally, we obtain the following by taking δ → 0 and ρ→∞.

Theorem 4. Under the assumption in (25), the exponent

Eex(R) , E
[

inf
D :R(D,X)≤R

D +R(D,X)−R
]

(39)

is achievable for any continuous function R(D,x) such that
P
[
dns (x,X) < nD] ≤̇ e−nR(D,x) uniformly in x.

After a suitable modification of the definition of dns (x,x),
(39) extends immediately to general channels and metrics.
The ability to simplify the exponent (e.g. to a single-letter
expression) depends on the form of R(D,x), which in turn
depends strongly on the codeword distribution PX . In some
cases, PX can be chosen in such a way that R(D,x) is the
same for all x with PX(x) > 0, thus greatly simplifying (39).

Consider the cost-constrained ensemble given in (19) with
L = 1, and assume analogously to Section III that EQ[c(X)] ≤
Γ, E[c(X)2] < ∞ and E[a1(X)2] < ∞. Using standard
Chernoff-type bounding techniques, we obtain

R(D,x) = sup
t≥0,r

rφ1 − tD −
1

n

n∑
i=1

θ(xi, r, t), (40)

where
θ(x, r, t) , logEQ

[
era1(X)−tds(x,X)

]
. (41)

Substituting (40) into (39) and performing some manipula-
tions, we obtain Ecc

ex in the form given in (6), with the
summations replaced by integrals where necessary. In contrast
to Section III, we only require L = 1 instead of L = 2.
However, this comes at the price of requiring (25) to hold.
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