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Abstract—This paper studies the error exponent of i.i.d.
randomly generated codes used for transmission over discrete
memoryless channels with maximum likelihood decoding. Specif-
ically, this paper shows that the error exponent of a code, defined
as the negative normalized logarithm of the probability of error,
converges in probability to the typical error exponent. For high
rates, the result is a consequence of the fact that the random-
coding error exponent and the sphere-packing error exponent
coincide. For low rates, instead, the proof of convergence is based
on the fact that the union bound accurately characterizes the
probability of error.

I. INTRODUCTION

In [1], Shannon used the i.i.d. random-coding ensemble to
show that for discrete memoryless channels (DMC) there exist
codes whose probability of error vanishes for rates below the
channel capacity. For the same rate regime, Fano [2] charac-
terized the exponential decay of the error probability defining
the error exponent as the negative normalized logarithm of the
ensemble-average error probability. In [3], Gallager derived the
error exponent for DMC in a simpler way while improving at
low rates using the idea of expurgation. A lower bound on
the error probability in DMC, called sphere-packing bound,
was first introduced in [4], and Nakiboglu [5] recently de-
rived sphere-packing bounds for some stationary memoryless
channels using Augustin’s method. The corresponding sphere-
packing exponent is shown to coincide with the random-coding
exponent for rates higher than a certain critical rate.

Barg and Forney [6] derived the typical random-coding error
exponent (TRC) for the random-coding ensemble over the
binary symmetric channel. Upper and lower bounds on the
TRC for fixed-constant composition codes and general discrete
memoryless channels were provided in [7]. For the same type
of codes and channels, Merhav [8] determined the exact TRC
error exponent for a wide class of stochastic decoders called
generalized likelihood decoder (GLD), maximum-likelihood
being a particular case. Merhav derived the TRC exponent for
spherical codes over colored Gaussian channels [9] and for
random convolutional code ensembles [10]. The error expo-
nent of a random fixed-composition code with GLD is known
to converge in probability to the TRC [11], a convergence that
is non-symmetric: the lower tail decays exponentially while
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the upper tail decays doubly-exponentially. The latter was first
established for a limited range of rates in [12]. For pairwise-
independent ensembles and arbitrary channels, Cocco et al.
[13] showed that the probability that the exponent of a given
code in the ensemble is smaller than a lower bound on the
TRC exponent is vanishingly small. The interest in the TRC
exponent lies in the fact that is the largest exponent that can
be achieved for a given ensemble. This is in contrast with the
expurgated exponent, as codes that attain it no longer belong
to a pairwise independent ensemble [3], [14].

II. PRELIMILARIES

We consider the problem of transmitting information reli-
ably over a DMC with transition probability W and respective
finite input and output alphabets X and Y . In particular, we
study the transmission of Mn equiprobable messages using
a code cn with codewords x1,x2, · · · ,xMn

, xi ∈ Xn,
∀i = 1, . . . ,Mn. The error probability of such code is

Pe(cn) =
1

Mn

Mn∑
i=1

P
[⋃
j 6=i

{xi → xj}
]
, (1)

where {xi → xj} is the pairwise error event under maximum
likelihood decoding, i.e., the event of deciding in favor of
codeword xj when codeword xi was transmitted. The error
exponent of cn is defined as

En(cn) = −
1

n
logPe(cn). (2)

Let R = limn→∞
1
n logMn be the rate of the code in

bits per channel use. An error exponent E(R) is achievable
when there exists a sequence of codes {cn}∞n=1 such that
lim infn→∞En(cn) ≥ E(R).

We next consider the i.i.d. random-coding ensemble, the
set of codes Cn whose codewords X1,X2, · · · ,XMn

are
pairwise-independently generated with a single-letter input
distribution Q. Similarly to random variables, Cn denotes a
random code, and cn denotes a specific code in the ensem-
ble. The random-coding error exponent Erce(R) as originally
derived by Fano and Gallager is defined as

Erce(R) = lim
n→∞

− 1

n
logE[Pe(Cn)], (3)

where the expectation is taken over the code ensemble [3].
Observe that (3) suggests that Erce(R) is the asymptotic
exponent of the ensemble-average probability of error. Instead,



the typical random-coding exponent is defined as the limiting
expected error exponent over the ensemble, that is,

Etrc(R) = lim
n→∞

− 1

n
E
[
logPe(Cn)

]
. (4)

III. MAIN RESULT

We next state our main result using the notion of con-
vergence in probability. A sequence of random variables
{An}∞n=1 converges to A in probability, denoted as An

p−−→A
if for all δ > 0, limn→∞ P[|An − A| > δ] = 0 [15,
Sec. 2.2]. The following result states the concentration of the
error exponent En(Cn) to the TRC exponent Etrc(R) for rates
below the channel capacity C.

Theorem 1. For a general DMC channel, for all rates R such
that 0 ≤ R ≤ C, it holds that

En(Cn)
p−−→Etrc(R). (5)

Before proceeding with some details of the proof, we dis-
cuss some of the implications of the above result. Theorem 1
not only proves the achievability of the TRC exponent, but also
shows that the probability of finding a code in the ensemble
with higher or lower exponent than the TRC exponent tends to
zero. The above concentration property gives more information
about the error exponent behavior of the ensemble than the
traditional derivation of the random coding error exponent,
which computes the exponent of the expected error probabiltiy.
This way, the TRC emerges as the most likely error exponent
in the random-coding ensemble as the block length n tends
to infinity —if one wishes to improve the error exponent, one
must improve the ensemble. The work in [11] shows such
a concentration property by separately studying the the tails
of the distribution of En(Cn) for the constant composition
ensemble and DMCs. It shows an interesting asymmetry:
the probability P[En(Cn) < Etrc(R)] decays exponentially,
while P[En(Cn) > Etrc(R)] decays double-exponentially.
This implies that, beyond the concentration property, it is
significantly more difficult to find a code in the ensemble with
exponent higher than Etrc(R). This asymmetry is difficult to
obtain from the proof of Theorem 1, as one would need to
study separately the two tails, as done in [11].

As we shall see, the proof of Theorem 1 requires different
techniques for the rate regimes 0 ≤ R < Rcrit(Q) and
Rcrit(Q) ≤ R ≤ C, where Rcrit(Q) is the critical rate in [3,
Eq. (36)], that is the rate above which the sphere packing
exponent Esp(R) coincides with the random-coding exponent
Erce(R) [16, Sec. 5.8]. Thus, in this rate region, we can expect
that Etrc(R) = Erce(R).

IV. PROOF OF THEOREM 1
In standard concentration inequalities, sequences of ran-

dom variables are usually assumed to be independent, group-
independent, or dependent on each other according to known
structures [17]. Here, we are dealing with the concentration
of the probability of error Pe(Cn) in (1). This expression
is a sum of dependent random variables where each term
in the sum contains all random vectors {X1,X2, · · · ,XM}

and channel noise. Thus, this expression does not belong to
the aforementioned structures that enable the use of standard
concentration inequalities. While Pe(Cn) can be considered
as a function of independent random variables, this function
is only in implicit form. It is therefore not simple to obtain
accurate bounds on the variance, or even show that these
bounds on the variance tend to zero, by directly using the
standard concentration inequalities such as the Efron-Stein
inequality [18]. In this paper, we develop an easier way of
upper bounding the variance, which makes use of various
existing results.

For the range of rate Rcrit(Q) ≤ R ≤ C, the proof is based
on Levy’s continuity theorem [19] and benefits from the fact
that in this rate regime, the following equalities hold

Esp(R) = Erce(R) = Etrc(R). (6)

In particular, we consider the moment-generating function
of the negative error exponent, given by

φ(λ) = E
[
2λ

log Pe(Cn)
n

]
. (7)

Using the sphere-packing bound [4] to the error probability
in (7), we obtain that

φ(λ) ≥ 2−λEsp(R). (8)

Similarly, since Pe(cn)λ/n is a concave function for the range
0 ≤ λ ≤ n, Jensen’s inequality implies that

φ(λ) ≤ 2−λErce(R). (9)

Hence, using (6), we obtain that φ(λ) converges to the
moment-generating function of the constant −Etrc(R).

The rest of the paper is devoted to the proof of the main
result for the range of rates 0 ≤ R < Rcrit(Q). We first need
some definitions and lemmas. For this range, the proof uses
the union bound to the error probability (1), that is

Pe(cn) ≤ P ub
e (cn), (10)

where P ub
e (cn) is given by

P ub
e (cn) =

1

Mn

Mn∑
i=1

∑
j 6=i

P[xi → xj ], (11)

and we define its finite-length error exponent as

Eub
n (cn) = −

1

n
logP ub

e (cn). (12)

Under i.i.d. random coding, the pairwise error probabilities
P[Xi → Xj ], with, i 6= j are pairwise-independent random
variables. Hence, the union bound P ub

e (Cn) in (11) is a
sum of Mn pairwise-independent random variables, where
concentration properties are expected to hold [11]. Let Eub

trc(R)
be the union-bound TRC exponent of (11), that is

Eub
trc(R) = lim

n→∞
− 1

n
E
[
logP ub

e (Cn)
]
. (13)

The next result shows that the probability that the union-
bound exponent (12) deviates from the union-bound TRC
exponent (13) vanishes as n→∞.



Lemma 2. For all rate R such that 0 ≤ R < Rcrit(Q), any
ε > 0 and for some κ > 0, it holds that

P
[
P ub
e (Cn) >

1

2
2−n(E

ub
trc(R)−ε)

]
+ P

[
P ub
e (Cn) < 2−n(E

ub
trc(R)+ε)

]
≤ 1

n1+κ
. (14)

It then remains to relate the convergence in probability of
the original error exponent (2) to that of the union bound (12).
To do so, we use the following Lemma that is based on Caen’s
inequality [20].

Lemma 3. For all rate R such that 0 < R < Rcrit(Q) and
for some δ(R) > 0, it holds that

0 ≤ E[P ub
e (Cn)]

E[Pe(Cn)]
− 1 ≤ 2−n

(
δ(R)+Eub

trc(R)−Erce(R)
)
. (15)

We are now equipped to prove Theorem 1 by observing that
for any ε > 0, the convergence in probability of En(Cn) to
Etrc(R) can be written and upper bounded as

P
[
|En(Cn)− Etrc(R)| > 3ε

]
≤ P

[∣∣En(Cn)− Eub
n (Cn)

∣∣ > ε
]

︸ ︷︷ ︸
αn

+ P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
logP ub

e (Cn)
]) ∣∣∣∣ > ε

]
︸ ︷︷ ︸

βn

+ P
[∣∣∣∣ (− 1

n
E
[
logP ub

e (Cn)
])
− Etrc(R)

∣∣∣∣ > ε

]
︸ ︷︷ ︸

γn

. (16)

We next show that the terms αn, βn and γn in (16) tend to
zero as n→∞, implying the concentration result in (5).

A. First term of (16)

The term αn quantifies the deviation of the error exponent
of the error probability (2) with that of the union bound (11).
By the symmetry of the i.i.d. random-coding ensemble, for
any pair of codewords Xi and Xj with i 6= j we have that

E
[
P[Xi →Xj ]

]
= E

[
P[X1 →X2]

]
. (17)

Similarly, for any triplet of codewords Xi, Xj and Xk with
j, k 6= i and j 6= k, it holds that

E
[
P
[
{Xi →Xj} ∩ {Xi →Xk}

]]
= E

[
P
[
{X1 →X2} ∩ {X1 →X3}

]]
. (18)

In both (17) and (18), the expectations are calculated with
respect to the i.i.d. ensemble codeword distribution Qn(x) =∏n
k=1Q(xk), where Q(x) is the single-letter input distribu-

tion. We next provide separate convergence of αn for R = 0

and for 0 < R < Rcrit(Q). For the simple case of R = 0, we
first observe that the union bound (11) can be bounded as

P ub
e (cn) =

1

Mn

Mn∑
i=1

∑
j 6=i

P[xi → xj ] (19)

≤ (Mn − 1)max
i 6=j

P[xi → xj ], (20)

while the probability of error (1) can be lower bounded by

Pe(cn) =
1

Mn

Mn∑
i=1

P
[⋃
j 6=i

{xi → xj}
]

(21)

≥ 1

Mn
max
i6=j

P[xi → xj ]. (22)

From (20) and (22), we have that the first term in the
r.h.s. of (16), after some algebra, satisfies

αn = P
[
P ub
e (Cn) > 2nεPe(Cn)

]
(23)

≤ P
[
(Mn − 1)max

i 6=j
P[Xi →Xj ]

> 2nε
1

Mn
max
i6=j

P[Xi →Xj ]

]
(24)

= P
[
(Mn − 1) > 2nε

1

Mn

]
. (25)

Since Mn is any sub-exponential sequence in n, the probability
in (25) vanishes as n→∞ for ε > 0.

We now consider the case of 0 < R < Rcrit(Q). We define
the sequence an as

an = 2−n(E
ub
trc(R)+ ε

2 ). (26)

Then, the first term in the r.h.s. of (16) can be written, after
some algebra, as

αn = P
[
P ub
e (Cn)− an

− 2nε
(
Pe(Cn)− an

)
> (2nε − 1)an

]
(27)

≤ P
[
P ub
e (Cn)− an >

1

2
(2nε − 1)an

]
+ P

[
− 2nε

(
Pe(Cn)− an

)
>

1

2
(2nε − 1)an

]
, (28)

where (28) follows from the fact that for any three random
variables A, B and C, the tail probability P[A + B > 2C]
satisfies P[A + B > 2C] ≤ P[A > C] + P[B > C]. We next
bound the two terms in the r.h.s. of (28) using the definition
of an in (26). For the first term, we have

P
[
P ub
e (Cn)− an >

1

2
(2nε − 1)an

]
= P

[
P ub
e (Cn) >

1

2
(2nε + 1)an

]
(29)

= P
[
P ub
e (Cn) >

1

2
(2nε + 1)2−n(E

ub
trc(R)+ ε

2 )

]
(30)

≤ P
[
P ub
e (Cn) >

1

2
2−n(E

ub
trc(R)− ε

2 )

]
, (31)



whereas for the second term we have

P
[
− 2nε

(
Pe(Cn)− an

)
>

1

2
(2nε − 1)an

]
= P

[
2nε
(
P ub
e (Cn)− Pe(Cn)

)
− 2nε

(
P ub
e (Cn)− an

)
>

1

2
(2nε − 1)an

]
(32)

≤ P
[
2nε
(
P ub
e (Cn)− Pe(Cn)

)
>

1

4
(2nε − 1)an

]
+ P

[
− 2nε

(
P ub
e (Cn)− an

)
>

1

4
(2nε − 1)an

]
. (33)

We proceed by bounding the second term of (33) as

P
[
− 2nε

(
P ub
e (Cn)− an

)
>

1

4
(2nε − 1)an

]
= P

[
P ub
e (Cn) <

(
1− 1

4

(
2nε − 1

2nε

))
an

]
(34)

≤ P
[
P ub
e (Cn) < 2−n(E

ub
trc(R)+ ε

2 )

]
, (35)

while the first term of (33) can be bounded1 as

P
[
2nε
(
P ub
e (Cn)− Pe(Cn)

)
>

1

4
(2nε − 1)an

]
.
≤ a−1n E[P ub

e (Cn)− Pe(Cn)] (36)

= 2(E
ub
trc(R)+ ε

2 )nE[P ub
e (Cn)− Pe(Cn)], (37)

where (36) follows from the union bound in (10) and Markov’s
inequality, and (37) follows from the definition of an in (26).
Next, from Lemma 3, we have the exponential upper bound

E[P ub
e (Cn)− Pe(Cn)]

= E[Pe(Cn)]
(
E[P ub

e (Cn)]
E[Pe(Cn)]

− 1

)
(38)

.
≤ 2−nErce(R)2−n

(
δ(R)+Eub

trc(R)−Erce(R)
)
. (39)

Using (39) back in (37) and simplifying the result, we obtain

P
[
2nε
(
P ub
e (Cn)− Pe(Cn)

)
>
an
4
(2nε − 1)

]
.
≤ 2−n

(
δ(R)− ε

2

)
.

(40)

Hence, from (33), (35), and (40), we have that the second term
of (28) is upper bounded as

P
[
− 2nε

(
Pe(Cn)− an

)
>

1

2
(2nε − 1)an

]
.
≤ P

[
P ub
e (Cn) < 2−n(E

ub
trc(R)+ ε

2 )

]
+ 2−n

(
δ(R)− ε

2

)
. (41)

Finally, combining (31) and (41) in (28) and using Lemma 2,
we obtain that the first term of (16) satisfies

αn
.
≤ 1

n1+κ
+ 2−n

(
δ(R)− ε

2

)
(42)

1We write an
.
≤ bn for two positive sequences {an}n≥1 and {bn}n≥1

such that 1
n
log an

bn
≤ 0.

Since αn in (16) is non-increasing with ε, it holds that
limn→∞ αn = 0 and therefore that En(Cn)

p−−→Etrc(R).
Using the Borel-Cantelli lemma with (42) and the dominated
covergence theorem [21], we obtain that the TRC error ex-
ponent is the same as the estimate obtained from the union
bound, i.e., Etrc(R) = Eub

trc(R).

B. Second term of (16)

Using Chebyshev’s inequality, we have

βn ≤
σ2
n

ε2
, (43)

where σ2
n is the variance of the random variable Eub

n (Cn).
Using (11)–(12), we have that

σ2
n =

1

n2
E
[(
− log(Mn − 1)− log

(
P ub
e (Cn)
Mn − 1

))2]
−
(
E
[
− logP ub

e (Cn)
]

n

)2

(44)

=
1

n2
E
[(
− log(Mn − 1)− log ξn

− log

(
P ub
e (Cn)

(Mn − 1)ξn

))2]
−
(
E
[
− logP ub

e (Cn)
]

n

)2
,

(45)

where in (45) we introduced the variable ξn defined as

ξn = 2−n(E
ub
trc(R)+R). (46)

Using (45) and the definition (13), we obtain that (43) satisfies

lim sup
n→∞

βn ≤ lim sup
n→∞

1

ε2
E
[(
Eub

trc(R)

− 1

n
log

(
P ub
e (Cn)

(Mn − 1)ξn

))2]
− Eub

trc(R)
2

ε2
.

(47)

Expanding squares, we further obtain

lim sup
n→∞

βn ≤
1

ε2

{
Eub

trc(R)
2 − 2Eub

trc(R)

× lim inf
n→∞

E
[
1

n
log

(
P ub
e (Cn)

(Mn − 1)ξn

)]
+ lim sup

n→∞
E
[(

1

n
log

(
P ub
e (Cn)

(Mn − 1)ξn

))2]}
− (Eub

trc(R)
2)

ε2
. (48)

By using the bounded convergence theorem and the continuous
mapping theorem [21], we can show that the expectation terms
in (48) vanish as n→∞, that is

E
[
1

n
log

(
P ub
e (Cn)

(Mn − 1)ξn

)]
→ 0, (49)

E
[(

1

n
log

(
P ub
e (Cn)

(Mn − 1)ξn

))2]
→ 0. (50)

From (48), (49), and (50), we conclude that limn→∞ βn = 0
for any arbitrary ε > 0.



C. Third term of (16)

The analysis of the first term of (16), in Section IV-A im-
plies that Eub

trc(R) = Etrc(R). Therefore, the third term of (16)
also vanishes for any ε > 0 because − 1

nE
[
logP ub

e (Cn)
]
→

Eub
trc(R).
In conclusion, as anticipated, the three terms of (16) tend to

zero as n→∞, showing (5) for rates below the critical rate.
Together with (6)–(9), we proved Theorem 1, the convergence
in probability of the error exponent of codes in the ensemble
to the typical random-coding error exponent.
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