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Abstract—In this paper, an achievable error exponent for the
multiple-access channel with two independent sources is derived.
For each user, the source messages are partitioned into two
classes and codebooks are generated by drawing codewords
from an input distribution depending on the class index of the
source message. The partitioning thresholds that maximize the
achievable exponent are given by the solution of a system of
equations. We also derive both lower and upper bounds for the
achievable exponent in terms of Gallager’s source and channel
functions. Finally, a numerical example shows that using the
proposed ensemble gives a noticeable gain in terms of exponent
with respect to independent identically distributed codebooks.

I. INTRODUCTION

For point-to-point communication, many studies show that
joint source-channel coding might achieve a better error expo-
nent than separate source-channel coding [1]–[4]. One strategy
for joint source-channel coding is to assign source messages
to disjoint classes, and to use codewords generated according
to a distribution that depends on the class index. This random-
coding ensemble achieves the sphere-packing exponent in
those cases where it is tight [4].

Recent studies [5], [6] extended the same idea to the
multiple-access channel (MAC) using a random-coding en-
semble with independent message-dependent distributed code-
books. In [6], the joint source-channel coding problem over
a MAC with correlated sources was considered, where code-
words are generated by a symbol-wise conditional probability
distribution that depends both on the instantaneous source
symbol and on the empirical distribution of the source se-
quence. The achievable exponent derived in [6] was presented
in the primal domain, i.e., as a multi-dimensional optimization
problem over distributions that is generally difficult to analyze.

We study a simplified version of the problem posed in
[6] in the dual domain, i.e., as a lower dimensional problem
over parameters in terms of Gallager functions. We consider
a two-user MAC with independent sources. For each user,
source messages are assigned to two classes, and codewords
are independently generated according to a distribution that
depends on the class index of the source message. For such
random-coding ensemble, we derive an achievable exponent in
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the dual domain, and show that this exponent is greater than
that achieved using only one input distribution for each user.

II. SYSTEM MODEL

A. Definitions and Notation

We consider two independent sources characterized by
probability distributions PU1

, PU2
on alphabets U1 and U2,

respectively. We use bold font to denote a sequence, such
as the source sequences u1 ∈ Un1 and u2 ∈ Un2 , and
underlined font to represent a pair of quantities for users 1
and 2, such as

¯
γ = (γ1, γ2),

¯
u = (u1, u2),

¯
u = (u1,u2) or

P
¯
U (

¯
u) = PU1,U2(u1, u2).

For user ν = 1, 2, the source message uν is mapped onto
codeword xν(uν), which also has length n and is drawn from
the codebook Cν = {xν(uν) ∈ Xnν : uν ∈ Unν }. Both termi-
nals send the codewords over a discrete memoryless multiple-
access channel with transition probability W (y|x1, x2), input
alphabets X1 and X2, and output alphabet Y .

Given the received sequence y, the decoder estimates the
transmitted pair of messages

¯
u based on the maximum a

posteriori criterion, i.e.,

¯
û = arg max

¯
u∈Un1 ×Un2

Pn
¯
U (

¯
u)Wn

(
y|x1(u1),x2(u2)

)
. (1)

An error occurs if
¯
û 6=

¯
u. Using the convention that scalar

random variables are denoted by capital letters, and capital
bold font letters denote random vectors, the error probability
for a given pair of codebooks (C1, C2) is given by

εn(C1, C2) , P
[
(Û1, Û2) 6= (U1,U2)

]
. (2)

The pair of sources (U1, U2) is transmissible over the chan-
nel if there exists a sequence of pairs of codebooks (C1

n, C2
n)

such that limn→∞ εn(C1
n, C2

n) = 0. An exponent E(P
¯
U ,W ) is

achievable if there exists a sequence of codebooks such that

lim inf
n→∞

− 1

n
log εn(C1

n, C2
n) ≥ E(P

¯
U ,W ). (3)

In order to show the existence of such sequences of
codebooks, we use random-coding arguments, i.e., we find a
sequence of ensembles whose error probability averaged over
the ensemble, denoted as ε̄n, tends to zero.



B. Message-Dependent Random Coding

For user ν = 1, 2, we fix a threshold 0 ≤ γν ≤ 1 to partition
the source-message set Unν into two classes A1

ν and A2
ν defined

as

A1
ν =

{
uν ∈ Unν : PnUν (uν) ≥ γnν

}
, (4)

A2
ν =

{
uν ∈ Unν : PnUν (uν) < γnν

}
. (5)

For every message uν ∈ Aiν , we randomly generate a
codeword xν(uν) according to the probability distribution
Qν,i(xν) =

∏n
`=1Qν,i(xν,`), where Qν,i, for i = 1, 2, is a

probability distribution that depends on the class of uν .
We use the symbol τ ∈ {{1}, {2}, {1, 2}} to denote the

error event type of the error probability (2), i.e., respectively
(û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2) and (û1, û2) 6=
(u1,u2). We denote the complement of τ as τ c among the
subsets of {1, 2}. For example, τ c = {2} for τ = {1} and
τ c = ∅ for τ = {1, 2}. In order to simplify some expressions,
it will prove convenient to adopt the following notational
convention for an arbitrary variable u

uτ =


∅ τ = ∅
u1 τ = {1}
u2 τ = {2}

¯
u τ = {1, 2}.

(6)

For types of error τ = {1} and τ = {2}, we denote WQτc,i
as a point-to-point channel with input and output alphabets
Xτ and Xτc × Y , respectively, and transition probability
W (y|x1, x2)Qτc,i(xτc). For τ = {1, 2}, the input distribution
Qτ,iτ is the product distribution Q1,i1(x1)Q2,i2(x2) over the
alphabet X1 ×X2, and WQτc,i = W .

C. Single User Communication

For point to point communication, using i.i.d random coding
to transmit a discrete memoryless source PU , u ∈ U over
the discrete memoryless channel W with input and output
alphabets X and Y , leads to Gallager’s source and channel
functions [1]

Es(ρ, PU ) = log

(∑
u

PU (u)
1

1+ρ

)1+ρ

, (7)

E0(ρ,Q,W ) = − log
∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ

, (8)

where Q denotes the input distribution.
In [4], message-dependent random coding was studied for

single-user communication using a threshold γ ∈ [0, 1] to
partition the source messages into two classes. The derivation
of the achievable exponent in [4] involves the following source
exponent functions [4, Lemma 1]

Es,1(ρ, PU , γ) ={
Es(ρ, PU ) 1

1+ρ ≥
1

1+ργ
,

Es(ργ , PU ) + E′s(ργ)(ρ− ργ) 1
1+ρ <

1
1+ργ

,
(9)

and

Es,2(ρ, PU , γ) ={
Es(ρ, PU ) 1

1+ρ <
1

1+ργ
,

Es(ργ , PU ) + E′s(ργ)(ρ− ργ) 1
1+ρ ≥

1
1+ργ

.
(10)

In (9) and (10), the parameter ργ is the solution of the implicit
equation ∑

u PU (u)
1

1+ρ logPU (u)∑
u PU (u)

1
1+ρ

= log(γ), (11)

when minu PU (u) ≤ γ ≤ maxu PU (u) is satisfied. We
observe that Es,1(ρ, ·) follows the Gallager Es(ρ, ·) function
for an interval of ρ, while it is the straight line tangent to
Es(ρ, ·) beyond that interval, and similarly for Es,2(ρ, ·).

When γ ∈ [0,minu PU (u)), we have that ργ = −1− and
hence Es,1(ρ, ·) = Es(ρ, ·) and Es,2(ρ, ·) = −∞. Otherwise,
when γ ∈ (maxu PU (u), 1], we have that ργ = −1+ and
hence Es,1(ρ, ·) = −∞ and Es,2(ρ, ·) = Es(ρ, ·). In our
analysis, it suffices to consider γ = 0 or γ = 1 to represent
the cases where Es,1(ρ, ·) or Es,2(ρ, ·) are infinity. For such
cases, we have

Es,1(ρ, PU , 0) = Es(ρ, PU ), Es,2(ρ, PU , 0) = −∞, (12)
Es,1(ρ, PU , 1) = −∞, Es,2(ρ, PU , 1) = Es(ρ, PU ).

(13)

III. MAIN RESULTS

We now derive an achievable exponent for the MAC with
independent sources using the random-coding ensemble intro-
duced in Sec. II-B in terms of the exponent functions defined
in (7)–(10). We also derive simpler lower and upper bounds to
the achievable exponent in Sec. III-A and III-B, respectively.

Proposition 1. For the two-user MAC with transition proba-
bility W , source probability distributions P

¯
U and class distri-

butions {Qν,1, Qν,2} with user index ν = 1, 2, an achievable
exponent E(P

¯
U ,W ) is given by

E(P
¯
U ,W ) =

max
γ1,γ2∈[0,1]

min
τ∈{{1},{2},{1,2}}

min
iτ ,iτc=1,2

Fτ,iτ ,iτc (γ1, γ2), (14)

where

Fτ,iτ ,iτc (γ1, γ2) = max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )

−Es,iτ (ρ, PUτ , γτ )− Es,iτc (0, PUτc , γτc). (15)

In (15), the functions E0(·), Es,1(·) and Es,2(·) are re-
spectively given by (8), (9) and (10), and we define
Es,i{1,2}(ρ, P

¯
U ,

¯
γ) = Es,i1(ρ, PU1

, γ1) + Es,i2(ρ, PU2
, γ2).

Proof: See [7, Appendix A].
We remark that the optimal assignment of input distributions

to source classes is considered in (14). Since we considered
two source-message classes A1

ν , A2
ν and two input distribu-

tions Qν,1, Qν,2 for each user ν = 1, 2, there are four possible
assignments.



The derived achievable exponent (14) contains a maxi-
mization over γ1 and γ2, the thresholds that determine how
source messages are partitioned into classes. Rearranging the
minimizations over τ , iτ and iτc , defining fi1,i2(γ1, γ2) as

fi1,i2(γ1, γ2) = min
τ∈{{1},{2},{1,2}}

Fτ,iτ ,iτc (γ1, γ2), (16)

where Fτ,iτ ,iτc (γ1, γ2) is given in (15), the achievable expo-
nent (14) can be written as

E(P
¯
U ,W ) = max

γ1,γ2∈[0,1]
min

i1,i2=1,2
fi1,i2(γ1, γ2). (17)

We note that regardless the values of i2, f1,i2(
¯
γ) is non-

decreasing with respect to γ1 and f2,i2(
¯
γ) is non-increasing

with respect to γ1. Similarly, regardless the values of i1,
fi1,1(

¯
γ) is non-decreasing with respect to γ2 and fi1,2(

¯
γ) is

non-increasing with respect to γ2. As a result, we derive a
system of equations to compute the optimal thresholds γ?1 and
γ?2 .

Proposition 2. The optimal γ?1 and γ?2 maximizing (14) satisfy min
i2=1,2

f1,i2(γ?1 , γ
?
2 ) = min

i2=1,2
f2,i2(γ?1 , γ

?
2 ),

min
i1=1,2

fi1,1(γ?1 , γ
?
2 ) = min

i1=1,2
fi1,2(γ?1 , γ

?
2 ).

(18)

When (18) has no solutions, then γ?ν ∈ {0, 1}. In particular,
if f1,i2(0, γ2) > f2,i2(0, γ2) then γ?1 = 0, otherwise γ?1 = 1;
and if fi1,1(γ1, 0) > fi1,2(γ1, 0), we have γ?2 = 0, otherwise
γ?2 = 1.

Proof: See [7, Appendix B]..
We note that the optimal γ?1 and γ?2 are the points where the

minimum of all non-decreasing functions with respect to γν
are equal with the minimum of all non-increasing functions
with respect to γν , for both ν = 1, 2. Even though γ?1 and γ?2
can be computed through equation (18), the final expression
of the achievable exponent (14) is still coupled with γ?1 and
γ?2 . In the sequel, we alternatively study both lower and an
upper bounds that do not depend on γ1 and γ2.

A. A Lower Bound for the Achievable Exponent

In order to find a lower bound for the achievable exponent
presented in (14), we use properties (12) and (13). Firstly,
we maximize over γν ∈ {0, 1} rather than γν ∈ [0, 1], for
ν = 1, 2, to lower bound (14). Let d(γ1, γ2) be

d(γ1, γ2) = min
i1,i2

fi1,i2(γ1, γ2). (19)

Then,

E(P
¯
U ,W ) = max

γ1,γ2∈[0,1]
d(γ1, γ2) ≥ max

γ1,γ2∈{0,1}
d(γ1, γ2).

(20)
On the other hand,

max
γ1,γ2∈{0,1}

d(γ1, γ2) = max{d(0, 0), d(0, 1), d(1, 0), d(1, 1)}.

(21)

Taking into account properties (12) and (13), we note that
fi1,i2(γ1, γ2), for γ1, γ2 ∈ {0, 1}, is either infinity, or the
Gallager’s source-channel exponent, i.e.,

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es(ρ, PUτ ). (22)

For example, fi1,i2(0, 1) equals equation (22) for
i1 = 1 and i2 = 2, and fi1,i2(0, 1) = ∞ for the
rest of combinations of i1 and i2. Thus, d(0, 1) =
minτ maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,iτc ) − Es(ρ, PUτ )
for i1 = 1 and i2 = 2. Similarly, d(1, 0) =
minτ maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,iτc ) − Es(ρ, PUτ )
for i1 = 2 and i2 = 1, and so on. Hence, we obtain the
following lower bound

E(P
¯
U ,W ) ≥ EL(P

¯
U ,W ), (23)

where

EL(P
¯
U ,W ) = max

i1∈{1,2}
max

i2∈{1,2}
min

τ∈{{1},{2},{1,2}}
FL
τ,iτ ,iτc

,

(24)

with

FL
τ,iτ ,iτc

= max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es(ρ, PUτ ).

(25)
We note that for τ = {1} and τ = {2}, FL

τ,iτ ,iτc
in (25)

is the error exponent of the point-to-point channel WQτc,iτc
for an i.i.d. random-coding ensemble with distribution Qτ,i.
For τ = {1, 2}, we have WQτc,iτc = W and Es(ρ, PUτ ) =
Es(ρ, PU1

) + Es(ρ, PU2
), so that (25) is the error exponent

of the point-to-point channel W for an i.i.d. random-coding
ensemble with distribution Q1,i1Q2,i2 . Hence, the lower bound
(24) selects the best assignment of input distributions over all
four combinations through i1 and i2.

B. An Upper Bound for the Achievable Exponent

Now, we derive an upper bound for (14) inspired by
the tools used in [4] for single user communication. Let
E0(ρ,Q,W ) = maxQ∈QE0(ρ,Q,W ), where Q is a set of
distributions. We denote Ē0(ρ,Q,W ) as the concave hull
of E0(ρ,Q,W ), defined as the point-wise supremum over
all convex combinations of any two values of the function
E0(ρ,Q,W ), i.e.,

Ē0(ρ,Q,W ) ,

sup
ρ1,ρ2,θ∈[0,1] :
θρ1+(1−θ)ρ2=ρ

{
θE0(ρ1,Q,W ) + (1− θ)E0(ρ2,Q,W )

}
.

(26)

In [4], it is proved that joint source-channel random cod-
ing where source messages are assigned to different classes
and codewords are generated according to a distribution that
depends on the class index of source message, achieves the
following exponent

max
ρ∈[0,1]

Ē0(ρ,Q,W )− Es(ρ, PU ), (27)



which coincides with the sphere-packing exponent [2, Lemma
2] whenever it is tight.

For the MAC with independent sources, we use the max-
min inequality [8] to upper-bound (14) by swapping the
maximization over γ1,γ2 with the minimization over τ . Then,
for a given τ , we use Lemma 2 in [7, Appendix C] to obtain
the following result.

Proposition 3. The achievable exponent (14) is upper
bounded as

E(P
¯
U ,W ) ≤ EU(P

¯
U ,W ), (28)

where

EU(P
¯
U ,W ) = min

τ∈{{1},{2},{1,2}}
FU
τ , (29)

where

FU
τ = max

iτc=1,2
max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )

−Es(ρ, PUτ ). (30)

We recall that for τ = {1, 2}, we have {Qτ,1, Qτ,2} =
{Q1,1, Q2,1, Q1,2, Q2,2} and Es(ρ, PUτ ) = Es(ρ, PU1

) +
Es(ρ, PU2

).

Proof: [7, Appendix C].
From equation (29), we observe that the upper bound is the

minimum of three terms depending on τ ∈ {{1}, {2}, {1, 2}}.
For τ ∈ {{1}, {2}}, we know that the message of user τ c is
decoded correctly so that user τ is virtually sent either over
channel WQτc,1 or WQτc,2. Hence, the objective function
of (29) is the single-user exponent for source PUτ and point-
to-point channel WQτc,iτc where codewords are generated
according to two assigned input distributions {Qτ,1, Qτ,2}
depending on class index of source messages. As a result,
we note that the maximization over iτc = 1, 2 is equivalent to
choose the best channel (either WQτc,1 or WQτc,2) in terms
of error exponent.

C. Numerical Example

Here we provide a numerical example comparing the
achievable exponent, the lower bound and the upper bound
given in (14), (24) and (29), respectively. We consider two
independent discrete memoryless sources with alphabet Uν =
{1, 2} for ν = 1, 2 where PU1

(1) = 0.028 and PU2
(1) =

0.01155. We also consider a discrete memoryless multiple-
access channel with X1 = X2 = {1, 2, . . . , 6} and |Y| = 4.
The transition probability of this channel, denoted as W , is
given by

W =


W1

W2

W3

W4

W5

W6

 , (31)

Table I
VALUES OF Fτ,iτ ,iτc (γ

?
1 , γ

?
2 ) IN (15) WITH OPTIMAL THRESHOLDS

γ?1 = 0.8159 γ?2 = 0.7057, FOR TYPES OF ERROR τ , AND USER CLASSES
iτ AND iτc .

(i1, i2)
(1,1) (2,1) (1,2) (2,2)

τ = {1} 0.2566 0.1721 0.1057 0.1103
τ = {2} 0.2597 0.1057 0.2526 0.2087
τ = {1, 2} 0.1057 0.1073 0.1127 0.1180

where

W1 =


1− 3k1 k1 k1 k1

k1 1− 3k1 k1 k1

k1 k1 1− 3k1 k1

k1 k1 k1 1− 3k1

0.5− k20.5− k2 k2 k2

k2 k2 0.5− k20.5− k2

 , (32)

for k1 = 0.056 and k2 = 0.01. W2 and W3 are 6×4 matrices
whose rows are all the copy of 5th and 6th row of matrix W1,
respectively. Let the m-th row of matrix W1 is denoted by
W1(m). W4, W5 and W6 are respectively given by

W4 =


W1(2)
W1(3)
W1(4)
W1(1)
W1(6)
W1(5)

 W5 =


W1(3)
W1(4)
W1(1)
W1(2)
W1(5)
W1(6)

 W6 =


W1(4)
W1(1)
W1(2)
W1(3)
W1(6)
W1(5)

 .

(33)

We observe that W is a 36× 4 matrix where the transition
probability W (y|x1, x2) is placed at the row x1 + 6(x2 − 1)
of matrix W , for (x1, x2) ∈ {1, 2, ..., 6} × {1, 2, ..., 6}.
Recalling that each source has two classes and that four
input distributions generate codewords, there are four possi-
ble assignments of input distributions to classes. Among all
possible permutations, we select the one that gives the highest
exponent. Here, for user ν = 1, 2, we consider the set of input
distributions

{
[0 0 0 0 0.5 0.5], [0.25 0.25 0.25 0.25 0 0]

}
.

For the channel given in (31), the optimal assignment is

Qν,1 = [0 0 0 0 0.5 0.5], (34)
Qν,2 = [0.25 0.25 0.25 0.25 0 0], (35)

for both ν = 1, 2. Since we consider two input distributions
for each user, the function maxρ∈[0,1] E0(ρ,Qτ,iτ ,WQτc,iτc )
is not concave in ρ [4]. For this example, from (18), we
numerically compute the optimal γ?1 and γ?2 maximizing (14)
leading to γ?1 = 0.8159 and γ?2 = 0.7057.

Tables I, II and III respectively show the objective functions
Fτ,iτ ,iτc (γ1, γ2), FL

τ,iτ ,iτc
, and FU

τ given in (15), (25) and
(30), involved in the derivation of the achievable exponent
(14), lower bound (24) and upper bound (29). The shaded
elements in Tables I and III respectively are the exponent
and the upper bound. Additionally, the shaded elements in
Table II are the i.i.d. exponent for different input distributions



Table II
VALUES OF FL

τ,iτ ,iτc
IN (25) FOR TYPES OF ERROR τ , AND INPUT

DISTRIBUTION Q1,i1 , Q2,i2 .

Q1,1,Q2,1 Q1,2,Q2,1 Q1,1,Q2,2 Q1,2,Q2,2

τ = {1} 0.1723 0.1721 0.0251 0.0342
τ = {2} 0.2526 0.0989 0.2526 0.2019
τ = {1, 2} 0.0900 0.1073 0.0900 0.0984

Table III
VALUES OF FU

τ IN (30) FOR TYPES OF ERROR τ .

τ = {1} τ = {2} τ = {1, 2}

0.1734 0.2526 0.1073

assignments. Solving equations (14), (24), (29) using the
partial optimizations in Tables I, II and III, we respectively
obtain

E(P
¯
U ,W ) = 0.1057, (36)

EL(P
¯
U ,W ) = 0.0989, (37)

EU(P
¯
U ,W ) = 0.1073. (38)

We observe that the percentage difference between
the achievable exponent E(P

¯
U ,W ) and the lower bound

EL(P
¯
U ,W ) is 6.875%. For a given set of two distributions

for each user, the lower bound EL(P
¯
U ,W ) corresponds to the

i.i.d. random-coding error exponent when each user uses only
one input distribution. In [4], a similar comparison is made
for point-to-point communication where the exponent achieved
by an ensemble with two distributions is 0.75% higher than
the one achieved by the i.i.d. ensemble. Hence, our example
illustrates that using message-dependent random coding with
two class distributions may lead to higher error exponent gain
in the MAC than in point-to-point communication, compared
to i.i.d. random coding.
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