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Abstract—This paper studies the random-coding union (RCU)
bound to the error probability in quasi-static fading channels.
An asymptotic expansion and a normal approximation to the
RCU bound suggest that the error probability converges to the
outage probability as 1

n
, where n is the codeword blocklength.

We particularize our results for Rayleigh fading, and compare
them with the conventional normal approximation.

I. INTRODUCTION

Delay-constrained communication over slowly varying fad-
ing channels is characterized by outages. For most fading
distributions, the channel capacity is zero, since there is an
irreducible probability of error, i.e., the probability that the
intended rate exceeds the instantaneous mutual information of
the channel [1]–[3]. In terms of rates, fundamental limits are
determined by the outage capacity, the largest achievable rate
for a fixed outage probability. The convergence to the outage
capacity was addressed in [4], [5] by studying the second-
order coding rates. These works suggest that the achievable
rates exhibit a backoff from the outage capacity that vanish
faster than 1√

n
, where n is the codeword blocklength.

In terms of error probability, the bounds reported in [1], [3]
are inadequate to study the convergence to the outage proba-
bility, since they are only asymptotically tight. We consider a
weakened version of the random-coding union (RCU) bound
[6], denoted as RCUs. We propose an asymptotic expansion
of the RCUs bound in inverse powers of the blocklength,
and a normal approximation that is a refined version of the
conventional normal approximation [5], [6]. In particular, for
a fixed rate R, we show that the RCUs can be expanded as

RCUs(n) = Pout(R) +
δ(R)

n
+O

(
1

n2

)
, (1)

where Pout(R) is the outage probability, and δ(R) is a quantity
that also depends on the rate.

II. CHANNEL MODEL

We consider the transmission of codewords of blocklength
n over a quasi-static fading channel, where the channel gain
H remains constant for the duration of the codeword and
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changes independently from codeword to codeword. The chan-
nel model is given by

Y = Hx + Z, (2)

where x = (x1, . . . , xn) is the transmitted codeword, the noise
Z is independent of H , and has n independent and identically
distributed (i.i.d.) NC(0, σ2) entries. We consider a random
channel gain H with unit variance and continuously differ-
entiable probability density function fH(h). Codewords have
an average power Es, thus the signal-to-noise ratio of (2) is
SNR = Es

σ2 . Given a channel gain h, the transition probability
during the transmission of x is factorized as Wn(y|x, h) =∏n
i=1W (yi|xi, h) where W (y|x, h) = 1

πσ2 e
− 1
σ2
|y−hx|2 . We

assume that the receiver perfectly knows the realization of H .
The communication over quasi-static fading channel at a

rate R is limited by the outage probability, defined as

Pout(R) = P [I(H) < R] (3)

where I(h) = I(X;Y |H = h) is the instantaneous mutual
information for a given channel realization. In the sequel, it
will prove convenient to express the outage probability as the
tail probability Pout(R) = P [Φout(H) < 0] of the outage
random variable Φout(h) = I(h) − R. The outage random
variable is characterized by the cumulant-generating function
κout(t) = logE

[
e−tΦout(H)

]
that can be related to the rate R

and the instantaneous mutual information I(h) through

κout(t) = tR+ logE
[
e−tI(H)

]
. (4)

III. ERROR PROBABILITY

Random-coding arguments show that the error probability
averaged over the code ensemble, denoted by Pe(n), converges
to the outage probability as n grows to infinity [1]–[3]. In this
work, we study the second term of the asymptotic expansion of
the error probability in inverse powers of n for the quasi-static
memoryless fading channel with i.i.d. input distribution.

In particular, we study the RCU upper bound to the random-
coding error probability Pe(n) reported by [6]. Applying
Markov’s inequality, we weaken the RCU bound to [7]

RCU(n) ≤ P [Φs(X;Y |H) ≤ 0] , (5)

where Φs(x;y|h) is defined for some s ≥ 0 as

Φs(x;y|h) = is(x;y|h) + logU − nR, (6)



where U is uniformly distributed in (0, 1), and is(x;y|h)
denotes the titled information density. For i.i.d. input distri-
butions, is(x;y|h) =

∑n
i=1 is(xi; yi|h) where

is(x; y|h) = log
W (y|x, h)s

E[W (y|X,h)s]
. (7)

In (7), x is distributed as PX , and X has the same dis-
tribution but is independent of y. We denote the r.h.s. of
(5) as RCUs(n). Following the footsteps of [7], the tail
probability (5) can be expressed in terms of the inverse Laplace
transformation [8] as

RCUs(n) =
1

2πj
lim
T→∞

∫ ν+jT

ν−jT

eκs(t)

t
dt, (8)

where κs(t) is the cumulant-generating function of
Φs(x;y|h), namely, κs(t) = logE

[
e−tΦs(X;Y |H)

]
. We

assume that ν is within the region of convergence of (8). At
this point, we choose s∗ = 1

1+t . Finally, for later convenience,
we write eκs∗ (t) in the following form

eκs∗ (t) =
eκ(t)

1− t
, (9)

where the term 1
1−t is the contribution of the random variable

U , and κ(t) is related to the information density (7) as

κ(t) = ntR+ logE
[(

E
[
e−tis∗ (X;Y |H)

∣∣∣H])n] . (10)

A. Asymptotic Expansion

Since we are interested in the behavior of the error probabil-
ity as n increases, we can safely make the change of variable
nt = α and integrate (8) over α, i.e.,

RCUs(n) =
1

2πj
lim
T→∞

∫ ν+jT

ν−jT

eκ(
α
n )

α
(
1− α

n

) dα. (11)

The region of convergence is ν ∈ (0, n) and κ
(
α
n

)
can be

written as

κ
(α
n

)
= αR+ logE

[(
E
[
e−

α
n is∗ (X;Y |H)

∣∣∣H])n] . (12)

As n→∞, we make the following exponential expansions(
E
[
e−

α
n is∗ (X;Y |h)

])n
= e−αI(h)+α2

2n V (h) +O

(
1

n2

)
, (13)

where I(h) and V (h) are respectively the mean and variance
of the tilted information spectrum is∗(X;Y |h) for a given
channel realization h, and O

(
1
n2

)
is a term that vanishes at

least as fast as 1
n2 uniformly in α and h. We further note(

E
[
e−

α
n is∗ (X;Y |h)

])n
= e−αI(h)

(
1 +

α2

2n
V (h)

)
+O

(
1

n2

)
.

(14)

Placing (14) into (12), and expanding the logarithm1, we
obtain that κ

(
α
n

)
can be expanded in inverse powers of the

code blocklength n as

κ
(α
n

)
= αR+ logE

[
e−αI(H)

]
+

1

n

α2E
[
e−αI(H)V (H)

]
2E
[
e−αI(H)

] +O

(
1

n2

)
. (15)

The two first terms of (16) correspond to the cumulant-
generating function of the outage random variable, given in
(4). Hence, the expansion of κ

(
α
n

)
can be expressed as

κ
(α
n

)
= κout(α) +

κ1(α)

n
+O

(
1

n2

)
, (16)

where we have defined κ1(α) as the 1
n term of (15). Using

(16) and further expanding remaining terms that depend on n
in (11), we observe that

eκ(
α
n )

α
(
1− α

n

) =
eκout(α)

α

(
1 +

κ1(α) + α

n

)
+O

(
1

n2

)
(17)

=
eκout(α)

α
+
θ(α)

n
+O

(
1

n2

)
. (18)

Before looking into the details of θ(α), we immediately
see that the first term on the right-hand side of (18) is related
to the tail probability of the outage random variable. More
precisely, plugging (18) into (11), we obtain that the RCUs
can be expanded as

RCUs(n) = Pout(R) +
δ(R)

n
+O

(
1

n2

)
, (19)

where we have defined δ(R) as the inverse Laplace trans-
formation of θ(α). The asymptotic expansion (19) suggests
that the first term of the expansion of the error probability is
indeed the outage probability, and that the second term of the
expansion is a quantity that vanishes as 1

n .
From (22), we observe that θ(α) is composed of two terms,

θ(α) = θ1(α) + θ2(α). The first term is the contribution the
pole α = n of (11), and is given by

θ1(α) = eκout(α). (20)

On the other hand, the second term is the contribution of the
expansion of κ

(
α
n

)
and is related to I(h), V (h), and R as

θ2(α) =
α

2
E
[
eα(R−I(H))V (H)

]
. (21)

Since the Laplace transformation is a linear operation, δ(R)
can also be decomposed as δ(R) = δ1(R) + δ2(R), where

δ1(R) =
1

2πj
lim
T→∞

∫ ν+jT

ν−jT
θ1(α) dα, (22)

1For two functions f(X) and g(X) of a random variable X satisfying the
Lebesgue dominated convergence theorem as n→∞,

logE
[
f(X)

(
1 +

g(X)

n

)]
= logE[f(X)]+

E[f(X)g(X)]

nE[f(X)]
+O

(
1

n2

)
.



and

δ2(R) =
1

2πj
lim
T→∞

∫ ν+jT

ν−jT
θ2(α) dα. (23)

Because θ1(α) is the moment-generating function of the out-
age random variable, δ1(R) is the probability density function
of Φout evaluated at the origin.

B. Gaussian Input over Rayleigh Fading

Under Rayleigh fading, H ∼ NC(0, 1). The channel gain
Z = |H|2 has then an exponential probability distribution
fZ(z) = e−z1 {z ≥ 0}. For Gaussian input distribution,
I(h) = log

(
1 + |h|2 SNR

)
. Hence, the outage probability

Pout(R) and the cumulant-generating function κout(t) are
respectively given by

Pout(R) = 1− exp

(
−e

R − 1

SNR

)
, (24)

and

κout(t) = tR+
1

SNR
− t log SNR + log Γ

(
1− t, 1

SNR

)
,

(25)
where Γ(a, x) =

∫∞
x
ta−1e−t dt is the upper incomplete

Gamma function As noted above, δ1(R) is the inverse Laplace
transformation of the moment-generating function of the out-
age probability random variable Φout(h). Equivalently, δ1(R)
is the probability density function of Φout(h) sampled at the
origin, i.e.,

δ1(R) =
eR

SNR
exp

(
−e

R − 1

SNR

)
. (26)

For i.i.d. Gaussian input distribution, the variance of the
information density is given by [6]

V (h) =
2|h|2 SNR

1 + |h|2 SNR
. (27)

Using I(h) and V (h) in (21), we obtain

θ2(α) =
eαR+ 1

SNR

SNRα
Γ

(
1− α, 1

SNR

)(
1 +

1

SNR
+ α

)
− eαR

SNR
.

(28)
The former expression can be written in terms of the cumulant-
generating function κout(α) as

θ2(α) = eκout(α)

(
1 +

1

SNR
+ α

)
− eαR

SNR
. (29)

Similarly to the derivation of δ1(R), the inverse Laplace
transformation of eκout(α) leads to the probability density
function of Φout(h) evaluated at the origin. Secondly, the
inverse Laplace transformation of αeκout(α) is the derivative
of the probability density function of Φout(h) evaluated at the
origin. Thirdly, eαR is the moment-generating function of a
random variable whose probability density function is a Dirac
delta at −R. Therefore, the inverse Laplace transformation of
eαR is the probability density function of such random variable
sampled at the origin, i.e., zero. Put together, we obtain

δ2(R) =
eR

SNR2 exp

(
−e

R − 1

SNR

)(
1− eR + SNR

)
. (30)

This quantity was previsouly reported in [9] for uniform over
the power sphere input distribution as δ2(R) = − 1

2f
′
Ξ(0),

where fΞ(ξ) is the continuously differentiable probability den-
sity function of the random variable Ξ = V (h)−

1
2 (R− I(h)).

Finally adding up (26) and (30), we find that under Rayleigh
fading the RCUs bound converges to the outage probability
(24) as 1

nδ(R), where

δ(R) =
eR

SNR2 exp

(
−e

R − 1

SNR

)(
1− eR + 2 SNR

)
. (31)

IV. NORMAL APPROXIMATION

We now propose an alternative approximation of the RCUs
bound. In particular, we approximate

(
1− α

n

)−1
term of (11)

as
(
1− α

n

)−1 ≈ e
α
n . Together with the relation (12) and the

exponential expansion (14), we obtain that the RCUs can be
approximated as the inverse Laplace transformation of

eκ(
α
n )

α
(
1− α

n

) ≈ 1

α
E
[
e−α[I(H)−R− 1

n ]+α2

2n V (H)
]
. (32)

This is 1
α times the moment-generating function of a Gaussian

random variable with mean I(H) − R − 1
n and variance

1
nV (H). We note that the 1

n term in the mean of this random
variable is the contribution of the pole at α = n. As a result,
we may approximate the error probability by

RCUs(n) ≈ E

Q
I(H)−R− 1

n√
V (H)
n

 . (33)

Since we can express the r.h.s. of (33) as the inverse Laplace
transformation of the r.h.s. of (32), that is a first order
expansion of (11), we use the derivations (11)–(23) to show
that the normal approximation (33) can be also expanded as
Pout(R) + 1

nδ(R) +O
(

1
n2

)
.

We note the similarity with the conventional normal approx-
imation introduced in [5], [6], given by

Pe(n) ≈ E

Q
I(H)−R√

V (H)
n

 . (34)

Since the contribution of the pole is not present, (34) will have
a different 1

n term. We express (34) in terms of κ
(
α
n

)
. More

specifically, we write (34) as

Pe(n) =
1

2πj
lim
T→∞

∫ ν+jT

ν−jT

eκ(
α
n )

α
dα, (35)

with the approximation

eκ(
α
n ) ≈ E

[
e−α[I(H)−R]+α2

2n V (H)
]
. (36)

Hence, mimicking the derivations (11)–(23) with (35) in place
of (11), we obtain that (34) can be asymptotically expanded
in inverse powers of the blocklength n as

E

Q
I(H)−R√

V (H)
n

 = Pout(R)+
δ2(R)

n
+O

(
1

n2

)
. (37)
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Fig. 1. Error probability versus blocklength for R = 2 and SNR = 38 dB.
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Fig. 2. Convergence rate versus rate R at SNR = 10 dB and n = 104.

In other words, the 1
n term of the expansion of (34) is δ2(R)

instead of δ(R). Since δ1(R) is strictly positive, we have that
δ(R) > δ2(R).

V. NUMERICAL RESULTS

We now evaluate the asymptotic expansions (19) and (37)
with the simulated normal approximations (33), (34), and the
simulated RCUs (5) for Rayleigh fading and i.i.d. Gaussian
input distribution.

In Fig. 1, we observe that the error probability converges
to the outage probability Pout(R). In this example, we have
Pout(R) = 10−3 for R = 2 and SNR = 38 dB. Comparing the
RCUs (5), the normal approximation (33), and the asymptotic
expansion (19), we observe that the normal approximation
and the asymptotic expansion are tight even for small block-
lengths. This suggests that δ(R) is a dominant term of the
error probability in quasi-static fading channels. On the other
hand, the comparison between the normal approximation (34)
and the Taylor expansion (37) shows that the conventional
normal approximation of the information density exhibits a 1

n
convergence to the outage probability proportional to δ2(R),
instead of δ(R).
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Fig. 3. Convergence rate versus SNR at R = 2 and n = 104.

To numerically evaluate the 1
n convergence to the outage

probability, we define ∆n(R) as

∆n(R) = n (Pe(n)− Pout(R)) , (38)

where Pe(n) acts as a placeholder for the approximations
of Fig. 2 and Fig. 3. Both figures numerically validate the
asymptotic expansions (19) and (37). That is, ∆n(R)→ δ(R)
for RCUs(5) and for the normal approximation (33), whereas
∆n(R) → δ2(R) for the normal approximation (34). Hence,
we focus on δ(R) and δ2(R) versus R and SNR.

We note that the speed of convergence to the outage
probability depends on the (R,SNR) pair. For a given SNR,
the rate R = log(1 + 2SNR) incurs a change of sign in δ(R).
On the other hand, by fixing the rate R, δ(R) becomes strictly
positive for SNR > 1

2 (eR − 1). We finally note that the same
arguments hold for the 1

n convergence term of the expansion
(37). Yet in this case, the zero crossings happen at a rate
R = log(1 + SNR), or equivalently SNR = eR − 1.
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