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Abstract—We investigate the effects of imperfect channel
knowledge and feedback in incremental-redundancy automatic-
repeat request (INR-ARQ) coding systems over multiple-input
multiple-output (MIMO) block-fading channels. We propose an
ARQ decoder based on nearest neighbour decoding and evaluate
the corresponding achievable rates. We then derive the optimal
code diversity assuming that the feedback channel is modelled
as a binary symmetric channel. Our main results show that
the feedback link reliability must improve with the forward
(transmission) signal-to-noise ratio (SNR) for the code to exploit
the diversity offered by ARQ scheme. We also identify the
conditions for achieving full diversity and for ARQ not helping
in improving the system’s diversity.

I. INTRODUCTION

Incremental-redundancy automatic-repeat request (INR-

ARQ) is a rate-adaptive technique that allows to increase the

reliability of transmission over inherently unreliable channels

like slowly-varying wireless channels [1]. This paper considers

INR-ARQ over multiple-input multiple-output (MIMO) block-

fading channels. The block-fading channel accurately models

slowly-varying fading, and INR-ARQ is naturally suited to

improve its performance. In a block-fading setup, coding

schemes cannot achieve an arbitrarily small error probability

since the outage probability, the probability that the channel

is unable to support the desired data rate, limits the optimal

error probability [2]. INR-ARQ scheme improves the error

probability by retransmitting parts of the incorrectly decoded

message until the message is correctly decoded or until the

maximum transmission delay has been reached.

The code diversity performance of INR-ARQ over block-

fading channels has been studied in a number of works. A

notable result was the optimal rate-diversity-delay trade-off,

firstly studied in [3] for Gaussian inputs under quasi-static

fading channels and later in [4] for both Gaussian and discrete

inputs under block-fading channels. Common assumptions

of previous works are perfect channel state information at

the receiver (CSIR) and perfect ARQ feedback [1], [3]–[5].

In practical implementations, unfortunately, these idealistic

assumptions are difficult to guarantee.

This paper studies precisely the impact of imperfect CSIR

and feedback on the diversity performance of INR-ARQ

coding systems. In particular, we consider noisy CSIR and

a simple binary symmetric channel (BSC) model for the

feedback link. We analyse the performance of random coding

schemes constructed over Gaussian and discrete signal con-

stellations. We approach the problem by proposing an ARQ

decoder based on nearest neighbour decoding that behaves

as a typical-set threshold decoder up to round (L − 1) and

as a maximum-metric decoder at L-th round. We then study

the corresponding error probability. This error probability

is fundamentally characterised using the generalised mutual

information (GMI) [6], [7] for i.i.d. codebooks in the limit

of large code length. We then derive the optimal signal-to-

noise ratio (SNR) exponents. In particular, we show that the

feedback link reliability must improve with the transmit SNR

for the code to exploit the diversity offered by ARQ. We also

identify the two extremes of imperfect feedback: the one that

guarantees full diversity and the one that shows the inability

of ARQ to improve the diversity performance.

Notation: X , x, and X denote random scalar, vector and

matrix variables. x, x, and X denote scalar, vector and matrix.

II. SYSTEM MODEL

A. Channel Model

We consider an INR-ARQ coding scheme over a MIMO

block-fading channel with L rounds and B fading blocks per

round. The input-output relationship of the channel at ARQ

round ℓ is

Yℓ =

√

snr

nt
HℓXℓ + Zℓ, ℓ = 1, . . . , L (1)

where Yℓ,Zℓ ∈ C
Bnr×T and Xℓ ∈ XBnt×T are the received,

noise and transmitted signal matrices; nt, nr, T and X
denote the number of transmit antennas, the number of receive

antennas, the channel block length and the signal constel-

lation, respectively. We assume that the entries of Hℓ and

Zℓ are i.i.d. complex circularly symmetric Gaussian random

variables with zero mean and unit variance. The fading matrix,

Hℓ ∈ C
Bnr×Bnt , is defined by

Hℓ , diag (Hℓ,1, . . . ,Hℓ,B) (2)

where Hℓ,b ∈ C
nr×nt is the fading matrix for round ℓ and

block b. We further assume that the fading process Hℓ follows

the short-term static model for which the matrices Hℓ,b are

i.i.d. from block to block and from round to round [3]. We
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write the channel outputs accumulated up to round ℓ as follows

Yℓ̄ =

√

snr

nt
Hℓ̄Xℓ̄ + Zℓ̄ (3)

where (noting that (·)′ is non-conjugate transpose)

Yℓ̄ = [Y ′
1 , . . . ,Y ′

ℓ ]
′
, Xℓ̄ = [X ′

1, . . . ,X
′
ℓ]
′

(4)

Zℓ̄ = [Z′
1, . . . ,Z

′
ℓ]
′
, Hℓ̄ = diag (H1, . . . ,Hℓ) . (5)

The receiver employs a channel estimation scheme yielding

accurate yet imperfect channel estimates

Ĥℓ = Hℓ + Eℓ, ℓ = 1, . . . , L (6)

where Ĥℓ , diag
(

Ĥℓ,1, . . . , Ĥℓ,B

)

, Ĥℓ,b ∈ C
nr×nt and

Eℓ , diag (Eℓ,1, . . . ,Eℓ,B) , Eℓ,b ∈ C
nr×nt are the noisy

channel estimate and the channel estimation error, respectively.

In particular, the entries of Eℓ,b are modelled as i.i.d. Gaussian

random variables with zero mean and variance equal to

σ2
e = snr−de , with de > 0. (7)

This model is widely used in pilot-based channel estimation

for which the error variance is proportional to the reciprocal

of the pilot SNR [8], [9]. We further incorporate the param-

eter de, denoting the channel estimation error diversity. The

accumulated matrices Ĥℓ̄ and Eℓ̄ are written as

Ĥℓ̄ = diag
(

Ĥ1, . . . , Ĥℓ

)

, Eℓ̄ = diag (E1, . . . ,Eℓ) . (8)

B. Encoder

A message m ∈ {1, . . . , 2BTR1} is mapped into a codeword

of the code C with rate RL , R1

L
, where R1 = 1

BT
log2 |C| is

the coding rate for the first ARQ round. The resulting code-

word is divided into LB coding blocks, Xℓ,b ∈ Xnt×T . Each

symbol is drawn i.i.d. from an input signal set; here we focus

on Gaussian and discrete inputs. The codewords are assumed

to satisfy the average unit energy 1
BT

E
[

‖Xℓ‖2
F

]

≤ nt.

The transmission is started by sending the first ARQ round.

Then, the transmitter receives through a feedback channel

a one-bit positive acknowledgement or negative acknowl-

edgement. If the positive acknowledgement is received, the

transmitter understands that the message has been successfully

delivered and starts the transmission of the next message.

Instead, if the negative acknowledgement is received, the

transmitter sends the next ARQ round corresponding to the

current message. This process continues until the positive

acknowledgement is received or until the maximum number

of rounds has been reached.

C. Decoder

For rounds ℓ = 1, . . . , L − 1, the ARQ scheme requires a

decoder with error detection capability. In practice, this can

be accomplished using parity check bits or by using advanced

stopping criteria in iterative decoders. For perfect CSIR case,

an ARQ decoder structure has been proposed in [1], [3]

composed of typical-set decoding for rounds ℓ = 1, . . . , L−1
and maximum-likelihood decoding for the last round. In the

case of imperfect CSIR, we cannot use that decoder and hence

we consider a decoder with the following metric

Q(Xℓ̄(m),Yℓ̄|Hℓ̄,Eℓ̄) = e
−‖Yℓ̄−

√
snr

nt
Ĥℓ̄Xℓ̄(m)‖2

F . (9)

For rounds ℓ = 1, . . . , L − 1, we use a modified threshold

decoder of [10, Lemma 6.9]. Consider the following typical-

set with any s ≥ 0 and δ > 0

Tδ(ℓ) =

{

Xℓ̄(m) ∈ Xnt×ℓBT ,Yℓ̄ ∈ C
nr×ℓBT : (10)

Qs(Xℓ̄(m),Yℓ̄|Hℓ̄,Eℓ̄)

E
[

Qs(X′
ℓ̄
,Yℓ̄|Hℓ̄,Eℓ̄)|Yℓ̄ = Yℓ̄

] ≥ |C|
δ

}

where X′
ℓ̄

and Yℓ̄ are random matrices with same dimension

as Xℓ̄ and Yℓ̄, respectively. Let φ(·) be the threshold decoder

based on this typical set. Conditioned on fixed channel and

estimation error realisations: Hℓ̄ and Eℓ̄, the decoder outputs

the following

• φ(Yℓ̄) = m̂, m̂ ∈ {1, . . . , 2BTR1} if Xℓ̄(m̂) is the

unique jointly typical sequence with Yℓ̄ in Tδ(ℓ). Positive

acknowledgement is then generated by the receiver.

• φ(Yℓ̄) = 0, otherwise. Negative acknowledgement is then

generated by the receiver.

At the last round L, the decoder outputs the message m̂ with

m̂ = arg max
m∈{1,...2BT R1}

Q(XL̄(m),YL̄|HL̄,EL̄). (11)

D. Feedback Channel

We model the feedback channel as a BSC with crossover

probability pfb. The motivation behind this model is that

the acknowledgement signal sent by the receiver may be

interpreted incorrectly by the transmitter due to the unreliable

medium. We assume that the crossover probability is such that

pfb = min
{

p0,
p0

snrdfb

}

(12)

where 0 ≤ p0 ≤ 1
2 and dfb is the feedback diversity. This

models a feedback channel whose quality increases with the

forward link SNR. The perfect feedback assumption [3], [4],

[11] is a special case of this BSC feedback with pfb = 0
(p0 = 0 or dfb → ∞ for snr > 1). The acknowledgement

signal generated by the receiver and decoded by the transmitter

are denoted by ACKr and ACKt, respectively; 0 and 1 denote

the negative and positive acknowledgements, respectively.

III. INFORMATION-THEORETIC PRELIMINARIES

The generalised mutual information (GMI) is the largest rate

for reliable communication using long i.i.d. codebooks when

the decoder is mismatched [12]–[14]. At ARQ round ℓ, the

accumulated GMI is shown to be [15]

I
gmi

ℓ̄
= sup

s≥0

1

B

ℓ
∑

l=1

B
∑

b=1

I
gmi
l,b (snr,Hl,b, Ĥl,b, s) (13)

where

I
gmi
l,b (snr,Hl,b, Ĥl,b, s) = (14)

E

[

log2

Qs(x, y|Hl,b,El,b)

E [Qs(x′, y|Hl,b,El,b)| y,Hl,b,El,b]

∣

∣

∣

∣

Hl,b,El,b

]

.



and x, x′ and y are random column complex-vectors with nt,

nt and nr elements, respectively. Due to the imperfect CSIR

and the mismatched metric (9), the accumulated GMI plays

the role of the accumulated mutual information [4], [11] to

characterise the communication outages in the block-fading

channel. At ARQ round ℓ, the effective coding rate becomes

Rℓ = R1

ℓ
and the generalised outage probability at round ℓ

[15], which quantifies the communication outage after ℓ-th

round, is given as

P ℓ
gout(R1) , Pr

{

1

ℓ
I
gmi

ℓ̄
<

R1

ℓ

}

= Pr{Igmi

ℓ̄
< R1}. (15)

Consider an ARQ round ℓ, ℓ ∈ {1, . . . , L − 1}. We can

write the whole error event ξℓ as the union of the detected

error event Dℓ and undetected error event Dc
ℓ . The correct

decoding event is subsequently denoted as ξc
ℓ . Using similar

steps to [10, Lemma 6.9], the average error probability can be

upper-bounded as

Pr{Eℓ|Hℓ̄,Eℓ̄} ≤ 2−ℓBTγ + (16)

inf
s≥0

Pr

{

1

ℓBT
log2

Qs(X,Y|Hℓ̄,Eℓ̄)

E [Qs(X′,Y|Hℓ̄,Eℓ̄)|Y]
<

R1

ℓ
+ γ

}

for any γ > 0 where X and X′ are random matrices of the

same dimension as Xℓ̄ and Y is a random matrix of the same

dimension as Yℓ̄. On the other hand, the converse shows that

for ǫ > 0 and sufficiently large T , the error probability of

random codes with i.i.d. codebooks is lower-bounded by [14]

Pr{ξℓ|Hℓ̄,Eℓ̄} ≥ 1 − e−e
−ℓBT( 1

ℓ
I
gmi

ℓ̄
+ǫ−

R1
ℓ )+e

−ℓBT( 1
ℓ

I
gmi

ℓ̄
+ǫ)

.

(17)

At round ℓ, if the accumulated GMI, I
gmi

ℓ̄
is greater than

data rate, R1, the achievability result implies that the error

probability vanishes for sufficiently large T . Conversely, if

the accumulated GMI is less than data rate, then the converse

result implies that the error probability for i.i.d. codes with

large block length tends to one. Using similar arguments as in

[1, Appendix A] and [10, Lemma 6.9], the undetected error

probability can be upper-bounded as [16]

Pr{Dc
ℓ} < 2−ℓBTγ . (18)

This implies that we are able to detect errors with high

probability as long as T is sufficiently large.

At round L, the decoder selects the message whose code-

word maximises (9). As shown in [15], this maximum metric

decoder has similar achievability and converse properties as

the typical-set decoder for ℓ = 1, . . . , L − 1 described in

the preceding paragraph as the block length tends to infinity,

T → ∞.

IV. IMPERFECT FEEDBACK

The imperfect feedback affects the ARQ system perfor-

mance, and in particular, throughput, latency and diversity.

The performance is characterised by the error events. As in

the perfect CSIR case [3], [4], the average error probability

with imperfect CSIR and perfect feedback (pfb = 0) can be

expressed as

Pe = PNN
L +

L−1
∑

ℓ=1

Pr{Dc
ℓ} (19)

where PNN
L is the probability of decoding error using a nearest

neighbour decoder (9) at round L. With imperfect feedback,

however, there are additional error events that need to be

accounted for. In particular, the additional errors come from

the event that the receiver detects an error and sends the

negative acknowledgement, ACKr = 0, but the transmitter

interprets it as ACKt = 1. Thus, (19) becomes

Pe = PNN
L + (20)
L−1
∑

ℓ=1

(

Pr{ACKtℓ = 1,Dℓ} + Pr{ACKtℓ = 1,Dc
ℓ}

)

= PNN
L +

L−1
∑

ℓ=1

pfb Pr{Dℓ} +

L−1
∑

ℓ=1

(1 − pfb) Pr{Dc
ℓ}. (21)

If ACKr = 1 signal is mistakenly interpreted as ACKt = 0 by

the transmitter, then the error probability does not improve.

However, the extra transmitted rounds increase the latency and

lower the throughput. Due to space limitation, we omit latency

and throughput results in this paper (see [16] for details).
In the limit of large block length, the error events are

typically dominated by the outage events [3], [4], for which

only the last round outage events contribute to the overall

outage events whenever the feedback is perfect. With imperfect

feedback, however, the outage events happening for rounds

less than L may contribute to the overall outage events. Using

(16) and (18), we can show the achievability of the generalised

outage probability, defined as

Pgout(R1) , PL
gout(R1) +

L−1
∑

ℓ=1

pfbP ℓ
gout(R1). (22)

V. GENERALISED OUTAGE DIVERSITY

The high SNR behaviour of the generalised outage proba-

bility of the INR-ARQ coding system under consideration is

characterised by the generalised outage diversity.
Definition 1 (Generalised outage diversity at round ℓ):

Generalised outage diversity or generalised outage SNR

exponent for ARQ round ℓ is defined as

dℓ , −
log P ℓ

gout(R1)

log snr
. (23)

The rate-diversity-delay trade-off for ARQ scheme with

perfect CSIR and perfect feedback is outlined as follows.
Lemma 1 (Perfect CSIR, Perfect Feedback, [3]–[5]):

Consider a MIMO Rayleigh block-fading channel (1) with

perfect CSIR and perfect feedback (pfb = 0). The optimal

rate-diversity-delay trade-off is given by the SNR exponents

darq = dL
csir

=

{

LBntnr for Gaussian inputs,

nr

(

1 +
⌊

LB
(

nt − R1

LM

)⌋)

for discrete inputs,

(24)



where M , log2 |X |. Furthermore, random codes with Gaus-

sian and discrete signal sets achieve those SNR exponents.

In the case of imperfect CSIR and imperfect BSC feedback,

we have the following results.

Theorem 1 (Imperfect CSIR, Imperfect Feedback):

Consider a MIMO Rayleigh block-fading channel (1), with

imperfect CSIR (6) and imperfect feedback (12). Then, the

optimal SNR exponents are given by

darq = min
(

dL
icsir, dfb + d1

icsir

)

(25)

where for ℓ = 1, . . . , L

dℓ
icsir = min(1, de) × dℓ

csir, (26)

dℓ
csir =

{

ℓBntnr for Gaussian inputs,

nr

(

1 +
⌊

ℓB
(

nt − R1

ℓM

)⌋)

for discrete inputs,

(27)

are the diversities for imperfect CSIR and perfect CSIR

associated with round ℓ, respectively. The achievability of darq

is shown using random coding.

Proof: The proof is based on the error probability ex-

pression in (21). The converse proof follows from the GMI

converse for i.i.d. codebooks. For every ARQ round ℓ, ℓ =
1, . . . , L, the average error probability can be lower-bounded

as [15]

Pr{Eℓ} ≥ P ℓ
gout(R). (28)

Note that the error probability of the threshold decoder (10)

can never be smaller than using the maximum metric decoding

of (9). This is so because whenever the threshold detector

accepts the message, the output is identical to that of maximum

metric decoding. Thus, we can lower-bound the error proba-

bility of each round using the generalised outage probability

of that round. From union error events, we have relationship

Pr{Eℓ} = Pr{Dℓ} + Pr{Dc
ℓ}. (29)

For the converse, we assume perfect error detection; thus,

Pr{Dc
ℓ} = 0. Following these, we can bound (21) as

Pe = PNN
L +

L−1
∑

ℓ=1

pfb Pr{Eℓ} (30)

≥ PL
gout(R) +

L−1
∑

ℓ=1

pfbP ℓ
gout(R) (31)

.
= snr−dL

icsir + snr−dfb

L−1
∑

ℓ=1

snr−dℓ

icsir . (32)

The slowest decaying slope in the sum for the last equation

is given by d1
icsir. Using the techniques in [15] we obtain that

the optimal SNR exponent is upper-bounded by (25).

The achievability for round ℓ = 1, . . . , L − 1 is proven by

using random coding ensembles of i.i.d. inputs, letting T → ∞
and averaging the right-hand side of (16) over all fading and

channel estimation error realisations. The achievability for the

last round is proven in [15].

An immediate consequence of Theorem 1 yields the

imperfect-CSIR perfect-feedback case.

Corollary 1 (Imperfect CSIR, Perfect Feedback): With

perfect feedback, the ARQ system diversity is given by

darq = dL
icsir. (33)

Proof: Set pfb to zero (dfb → ∞) in Theorem 1.

The performance of ARQ systems is therefore determined

by the feedback diversity dfb. The full ARQ diversity is

obtained with de ≥ 1 and dfb → ∞. The first requirement

of de ≥ 1 is highlighted in the results of [15]. On the other

hand, the second requirement is seen from Corollary 1. Note

that the second requirement can be relaxed as long as we have

dL
icsir ≤ dfb + d1

icsir. (34)

Thus, the minimum dfb to achieve the full ARQ diversity is

d⋆
fb = dL

icsir − d1
icsir. (35)

As L increases, the minimum dfb required to achieve the full

diversity is higher. Thus, d⋆
fb is an increasing function of L.

Therefore, the ARQ diversity gain is achievable with high-

diversity feedback links. Perfect feedback is just a special case

of high diversity with dfb → ∞. In practice, however, link

reliability depends on the transmission scheme used and on

the available resources such as bandwidth and power.

As the feedback diversity gets lower, ARQ may not improve

the overall system diversity. In fact, for zero feedback-diversity

we have the following result.

Corollary 2 (Fixed crossover probability, pfb): In the case

of fixed crossover probability independent of snr, the ARQ

system diversity is given by

darq = d1
icsir. (36)

Proof: Set dfb = 0 in Theorem 1.

Corollary 2 suggests that with fixed crossover probability

independent of snr, ARQ is useless in terms of diversity

improvement when compared to the non-ARQ case.

VI. NUMERICAL RESULTS AND DISCUSSION

Fig. 1 shows the results for the generalised outage proba-

bility for Gaussian inputs. In particular, we choose a reliable

channel estimator with de = 1 and evaluate the different

outage curves for different BSC feedbacks. ARQ scheme is

useless to improve the diversity if the crossover probability

is fixed. It has large SNR slope which is same as those

conventional transmission without ARQ (L = 1). This implies

that any BSC feedback must improve with the forward SNR.

We have shown in the curve that as long as dfb satisfies (35),

then the full ARQ diversity is achievable. Otherwise, the slope

is given by the sum of the feedback diversity and the ARQ

diversity for the first round.

Fig. 2 shows clearly the diversity penalty due to imperfect

feedback for discrete inputs. With dfb = 0, the system is

unable to utilise the benefits of ARQ in improving diversity.

As dfb increases the diversity performance improves. High

feedback diversity is required to fully utilise the ARQ scheme,

especially when L is large. For a given dfb, the full ARQ

diversity is typically achieved when R1 is sufficiently large.
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The analysis on simple BSC feedback gives insights on

other forms of feedback. The diversity performance is closely

associated with pfb, particularly due to transmitter’s failure

to decode the correct negative acknowledgement. Thus, the

diversity results are applicable for feedback in the form of

binary erasure channel (BEC) with erasure probability pfb

and of Z-channel with flip probability pfb. The results also

provide some insights on the imperfect feedback due to fading.

For example, if the reverse SNR does not improve with the

forward SNR, then it has the same phenomenon as when

pfb is an SNR-independent constant because the probability

of the transmitter’s failure to decode the correct negative

acknowledgement is fixed. If the reverse SNR improves with

the forward SNR, then the ARQ scheme may gain some

diversity and the gain is indicated by dfb which is determined

by the fading type and the transmission scheme used to

transmit the acknowledgement signals.

VII. CONCLUSIONS

We have analysed the performance of INR-ARQ over

MIMO block-fading channels with imperfect CSIR and BSC

feedback. Specifically, we have characterised the diversity

penalty caused by imperfect feedback. Our results suggest that

the feedback SNR must improve with the forward SNR in

order for ARQ to be able to exploit the available diversity;

otherwise INR-ARQ is not able to improve the diversity. In

particular, we derive the condition for which full ARQ diver-

sity may be exploited. We also learn that in order to achieve the

full diversity, the required feedback transmission must provide

an additional diversity which is linearly increasing with the

maximum number of ARQ rounds.
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