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Abstract—This paper studies the outage performance of block-
fading channels with imperfect channel state information at the
receiver (CSIR). Using mismatched decoding error exponents, we
prove the achievability of the generalised outage probability, the
probability that the generalised mutual information is less than
the rate. Then, using nearest neighbour decoding, we study the
generalised outage probability in the limit of large signal-to-noise
ratio (SNR). In particular, we study the SNR exponents and we
show that the SNR exponent is given by the SNR exponent of the
perfect CSIR case times the minimum of one and the channel
estimation error SNR exponent.

I. INTRODUCTION

Reliable communication over wireless channels is particu-

larly challenging due to fading, i.e., the fluctuations in the

received signal strength due to mobility and multiple path

propagation [1]. The severity of fading depends on several

factors such as the geography and the topography of scattering

environment, mobile velocity, carrier frequency and transmit-

ted signal bandwidth.

The design of efficient communication strategies largely de-

pends on the nature of the signal and the targeted application.

In particular, for applications where large delays are tolerable,

the channel is considered to be ergodic and long interleaved

codes of rate not exceeding the channel capacity can be used

[2], [3]. On the other hand, for applications with stringent

delay constraints long interleavers cannot be assumed, and the

channel is considered non-ergodic. The block-fading channel

[2]–[4] is a useful channel model for such slowly-varying

scenarios, where a codeword spans only a finite number of

degrees of freedom, or channel blocks. Frequency hopping

schemes (e.g. Global System for Mobile Communications

(GSM) and the Enhanced Data GSM Environment (EDGE))

and Orthogonal-Frequency Division Multiplexing (OFDM)

can be accurately modelled as block-fading channels.

Reliable communication over block-fading channels has

traditionally been studied under the assumption of perfect

channel state information at the receiver (CSIR) [2], [4]–[8].

The block-fading channel is not information stable [9] and

therefore it has zero channel capacity. Based on error exponent

considerations, Malkämaki and Leib [6] showed that the out-

age probability, i.e., the probability that the mutual information
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is smaller than the target transmission rate [2], [4], is the

natural fundamental limit of the channel. References [5]–[7]

showed that optimal codes for the block-fading channel should

be maximum-distance separable (MDS) on a blockwise basis,

i.e., achieving the Singleton bound on the blockwise Hamming

distance of the code with equality. They also proposed families

of blockwise MDS codes based on convolutional and Reed-

Solomon codes. Following the footsteps of [10], reference [7]

proved that the outage probability as a function of the signal-

to-noise ratio (SNR) decays linearly in a log-log scale with a

slope given by the so called outage diversity or SNR exponent.

This SNR exponent is precisely given by the Singleton bound

[7] when codes constructed over discrete signal constellations

are used; instead, Gaussian codebooks achieve the maximum

diversity offered by the channel.

The perfect CSIR assumption implies that the channel esti-

mator provides the receiver with a perfectly accurate channel

estimate used for decoding. In this case, nearest neighbour

decoding, which is used in most common wireless decoders,

is optimal for minimising the word error probability under

the assumption that all codewords are equally likely (i.e. a

maximum-likelihood rule) [11]. In practice, however, most

channel estimators incur channel estimation errors, making

nearest neighbour decoding inherently suboptimal as there

exists decoder with better error minimisation [12]. The natural

question arising from the above discussion is the impact of this

suboptimality on performance as compared to the perfect CSIR

condition. In this paper, we study nearest neighbour decoding

in block-fading channels with imperfect CSIR. We follow a

mismatched decoding approach [13]–[16] to this problem and

study the error probability of the random coding ensemble

with error exponents [14], [17]. In particular, by using similar

arguments to those used in [6], we prove the achievability of

the generalised outage probability, i.e., the probability that the

generalised mutual information (GMI) [13]–[16] is less than

the target transmission rate. We furthermore study the SNR

exponents or generalised outage diversity and find that the

generalised outage diversity with imperfect CSIR is given by

the simple formula

dicsir = min(1, de) × dcsir (1)



where dcsir is the perfect CSIR outage exponent and de

is the channel estimation error diversity. Interestingly, this

relationship holds for both Gaussian-input and discrete-input

codebooks. Moreover, this result validates the use of perfect-

CSIR code designs and provides guidelines for designing

channel estimators that maximise the achievable diversity.

The rest of the paper is organised as follows. Section II

introduces the channel, imperfect CSIR and fading models.

Section III reviews basic material on error exponents for the

block-fading channel. Section IV shows the achievability of

the generalised outage probability using mismatched decoding

arguments. Section V presents our large-SNR analysis of

the generalised outage probability and gives a sketch of the

proof of (1). Section VI discusses the main findings, shows

numerical evidence and provides important remarks. Finally,

Section VII summarises the important points of the paper.

II. SYSTEM MODEL

Consider transmission over a block-fading channel with B

blocks corrupted by additive white Gaussian noise (AWGN)

and affected by an i.i.d. flat-fading coefficient, hb ∈ C, b =
1, . . . , B. The input-output relationship of the channel is

yb = hb

√
snr xb + zb, b = 1, . . . , B (2)

where yb,xb,zb ∈ C
L are the received, transmitted and noise

signal vectors corresponding to block b, and L denotes the

block length. We assume that the entries of zb are i.i.d. zero-

mean unit-variance complex circularly symmetric Gaussians.

We consider coded modulation schemes M ⊂ C
N of

rate R and length N = BL, whose codewords are defined

as x =
[
xT

1 , · · · ,xB
T
]T ∈ XBL, where X denotes the

signal constellation. The codewords are assumed to satisfy the

average input power constraint 1
BL

E[|X|2] ≤ 1.
At the receiver side, in order to minimise the word error

probability, the decoder requires perfect channel knowledge.

Practical systems employ channel estimators that yield accu-

rate yet imperfect channel estimates. We model the channel

estimate as

ĥb = hb + eb, b = 1, . . . , B (3)

where ĥb ∈ C and eb ∈ C are the noisy channel estimate

and the channel estimation error, respectively. In particular, eb

is assumed to have an i.i.d. Gaussian distribution with zero

mean and variance σ2
e . We further assume that σ2

e = snr
−de

with de > 0, i.e. the CSIR noise variance is decreasing

with SNR. This model is widely used in pilot-based channel

estimation employing maximum-likelihood (ML) or minimum

mean-squared error (MMSE) estimators for which the error

variance is proportional to the reciprocal of pilot SNR [18].

We consider a nearest neighbour decoder, which uses the

imperfect channel estimate as if it were perfect, i.e., it calcu-

lates the following metric

QY |X,Ĥ(y|x, ĥb) =
1

π
e−|y−ĥb

√
snrx|2 . (4)

Let γb , |hb|2, γ̂b , |ĥb|2, ξb , |eb|2 be the channel,

channel estimate and channel estimation power gains cor-

responding to block b = 1, . . . , B. Following the footsteps

of [10], we define the corresponding SNR normalised gains

αb = − log γb

log snr
, α̂b = − log γ̂b

log snr
, θb = − log ξb

log snr
. We then

define the vectors h = [h1, . . . , hB ]T , ĥ = [ĥ1, . . . , ĥB ]T ,
γ = [γ1, . . . , γB ]T , γ̂ = [γ̂1, . . . , γ̂B ]T , ξ = [ξ1, . . . , ξB ]T and

α = [α1, . . . , αB ]T , α̂ = [α̂1, . . . , α̂B ]T ,θ = [θ1, . . . , θB ]T .

We consider a general family of fading distributions for

which the p.d.f. of the normalised fading gain αb is given by

pα(αb)
.
= exp (−ς αb log snr) , for αb ≥ 0 (5)

for large SNR, where
.
= is the exponential equality [10] and

ς is the channel related parameter which characterises the

diversity associated to a single fading coefficient, i.e., the

large-SNR slope of the error probability. This generalisation

subsumes a number of important fading distributions such as

Rayleigh (ς = 1), Rician with parameter K
(

ς ≈ (K+1)2

2K+1

)

and

Nakagami-m (ς = m) [8] for RF wireless, and lognormal-

Rice, I-K (ς = 1
2 ) or gamma-gamma (ς = 1

2 min(a, b) where

a, b are the parameters of the individual gamma distributions)

for optical wireless [19].

III. PRELIMINARIES

It has been shown in [6] that the error probability for the

ensemble of random codes of rate R − ǫ and a fixed channel

realisation h, input distribution PX(x) and perfect CSIR is

given by

P̄e(h) ≤ 2−NEr(R−ǫ,h) (6)

where

Er(R − ǫ,h) = sup
0≤ρ≤1

1

B

B∑

b=1

E0(ρ, hb) − ρ(R − ǫ) (7)

is the error exponent for channel realisation h and

E0 (ρ, hb)

= − log2 E

[(

E

[
PY |X,H(Y |X ′, hb)

PY |X,H(Y |X,hb)

∣
∣
∣
∣
X,Y

] 1
1+ρ

)ρ]

(8)

is the Gallager function for a given fading realisation hb [11].

Note that the inner expectation is taken over X ′, while the

outer expectation is taken over X,Y for a fixed H = hb. Then,

the average error probability for the ensemble of random codes

is

P̄e ≤ inf
ǫ>0

E

[

2−NEr(R−ǫ,H)
]

. (9)

Basic error exponent results show that Er(R−ǫ,h) is positive
only when R− ǫ < I(h), where I(h) is the input-output mu-

tual information, and zero otherwise. The instantaneous mutual

information for block-fading channels is easily expressed as

I(h) =
1

B

B∑

b=1

Iawgn(snrγb) (10)



where Iawgn(η) is the mutual information of an AWGN

channel with SNR η. Then, for large N we obtain that

P̄e ≤ inf
ǫ>0

Pr{I(h) ≤ R − ǫ} = Pr{I(h) < R} , Pout(R)

(11)

which is the information outage probability [4]. This result

shows the achievability of the outage probability [6]. Further-

more, using Arimoto’s converse [20] it is possible to show that

the outage probability is the lowest possible error probability

of any coding scheme [6]. The above results introduce the

outage probability as the natural fundamental limit for block-

fading channels.

IV. GENERALISED OUTAGE PROBABILITY

We now turn our attention to the mismatched decoding case,

i.e., when the decoder has only available the channel estimate

ĥ. In this situation, the decoder treats the channel estimate ĥ as

if it was the true channel. By following the same steps outlined

in Section III, we can upperbound the error probability of the

ensemble of random codes as [14], [17]

P̄e(ĥ) ≤ 2−NEQ
r (R−ǫ,ĥ) (12)

where now the mismatched decoding error exponent is

EQ
r (R − ǫ, ĥ) = sup

s≥0
0≤ρ≤1

1

B

B∑

b=1

E
Q
0 (s, ρ, ĥb) − ρ(R − ǫ) (13)

and

E
Q
0 (s, ρ, ĥb)

= − log2 E





(

E

[
QY |X,Ĥ(Y |X ′, ĥb)

QY |X,Ĥ(Y |X, ĥb)

∣
∣
∣
∣
∣
X,Y

]s)ρ


 (14)

is the generalised Gallager function for a given fading realisa-

tion hb and its estimate ĥb [14] (a full derivation is included in

[17]). Using Hölder’s inequality it can be easily verified that

E
Q
0 (s, ρ, hb) is a concave function of ρ for 0 ≤ ρ ≤ 1. The

maximum slope of E
Q
0 (s, ρ, hb) with respect to ρ occurs at

ρ = 0. The maximisation over s results in a maximum slope

equal to the GMI [13], [14]

Igmi(ĥ) =
1

B

B∑

b=1

I
gmi

b (ĥb) (15)

where

I
gmi

b (ĥb) = sup
s>0

E



log2

Qs

Y |X,Ĥ
(Y |X, ĥb)

E

[

Qs

Y |X,Ĥ
(Y |X ′, ĥb)

∣
∣
∣Y
]



 .(16)

The above analysis shows that the exponent EQ
r (R, ĥ) is

only positive whenever R − ǫ < Igmi(ĥ), and zero otherwise,

proving the achievability of Igmi(ĥ). Then, the average error

probability over the ensemble of random codes is then

P̄e ≤ inf
ǫ>0

E

[

2−NEQ
r (R−ǫ,Ĥ)

]

, (17)

which, for large N becomes

P̄e ≤ inf
ǫ>0

Pr{Igmi(ĥ) ≤ R − ǫ}

= Pr{Igmi(ĥ) < R} , Pg-out(R), (18)

the generalised outage probability. The above analysis shows

the achievability of Pg-out(R). Unfortunately, there are no

generally tight converse results for mismatched decoding [13]

which implies that one might be able to find codes whose

error probability for large N might be lower than Pg-out(R).
However, as shown in [15], [21], there is a converse for the

GMI with i.i.d. codebooks, i.e., the no rate larger than the

GMI can be transmitted with vanishing error probability for

i.i.d. codebooks. Hence, the generalised outage probability

is the fundamental limit for i.i.d. codebooks. Furthermore,

due to the data-processing inequality for error exponents, i.e.,

EQ
r (R − ǫ, ĥ) ≤ Er(R − ǫ,h) [14], [17], we obtain that

Igmi(ĥ) ≤ I(h) [13], and hence Pg-out(R) ≥ Pout(R).

V. SNR EXPONENTS

We now characterise the behaviour of the generalised outage

probability. In particular, we study the generalised outage

diversity, defined as the asymptotic slope of the generalised

outage probability in curve on a log-log scale for large SNR.

This definition can be viewed as the extension of the SNR

exponent definition for perfect CSIR case [10]. Define the

perfect and imperfect CSIR SNR exponents as

dcsir , lim
snr→∞

− log Pout(R)

log snr

, (19)

dicsir , lim
snr→∞

− log Pg-out(R)

log snr

. (20)

From the relationship between mutual information and GMI

outlined above we easily obtain that dicsir ≤ dcsir. We have the

following result.

Theorem 1: Consider the channel, imperfect CSIR and fad-

ing models described by (2), (3) and (5), respectively. The

generalised outage diversity using nearest neighour decoding

(4) with imperfect CSIR is given by

dicsir = min(1, de) × dcsir (21)

where

dcsir =

{
ς B for Gaussian inputs

ς dB(R) for discrete inputs,
(22)

is the perfect CSIR outage diversity and

dB(R) = 1 +

⌊

B

(

1 − R

log2 |X |

)⌋

(23)

is the Singleton bound, achieved by random codes.

Proof: We here give a sketch of the proof of the above

result. We follow standard steps to derive the outage diversity.

Firstly, the generalised outage probability is derived by taking

into consideration the fading distribution and the channel

estimation error. Secondly, the asymptotic behaviour in the

limit of large SNR of that outage is characterised and the



set of SNR normalised fading values that yield a generalised

outage is derived. Thirdly, large deviation analysis is used to

derive the generalised outage diversity.

Let O be the large SNR generalised outage set. Since γ and

ξ are independent, the generalised outage probability can be

obtained by integrating over the outage set the product p.d.f.s

of γ and ξ or equivalently α and θ.

Pg-out(R) =

∫

O
pα(α)pθ(θ)dαdθ. (24)

The asymptotic behaviour of the distribution of α is given in

(5). The channel estimation error power ξ follows an expo-

nential distribution with the parameter snr
de . After changing

the variable to θ, the asymptotic p.d.f of θ is given by

pθ(θb)
.
= snr

de−θb for θ ≥ de. (25)

Taking this into account, the generalised outage probability

can be shown to be

Pg-out(R)

.
=

∫

O∩{α�0,θ�de}

fading
︷ ︸︸ ︷

snr
−ς

PB
b=1

αb

estimation error
︷ ︸︸ ︷

snr

PB
b=1

(de−θb) dαdθ

(26)

where � denotes componentwise inequality. Note the separate

effect that the fading distribution and the channel estimation

error have on the exponent. Then, by inserting (26) to (20)

and applying Varadhan’s lemma [22] we obtain

dicsir = inf
O∩{α�0,θ�de}

{

ς

B∑

b=1

αb +

B∑

b=1

(θb − de)

}

(27)

The large-SNR generalised outage set denoted by O depends

on the required data rate R and the input probability distribu-

tion PX(x). To determine O, the GMI is evaluated for large

SNR. It seems that from (27), the SNR exponent dicsir does not

depend on the phases of h and ĥ. However, it can be shown

that these phases affect the generalised outage set O. These

details are omitted because of space limitation.

VI. DISCUSSION

The model used for deriving the generalised outage diversity

highlights the essential aspects of the wireless communications

system design. The results as outlined in Theorem 1 show

diversity order achieved by nearest neighbour decoding in the

absence of perfect CSIR. The following remarks are in order:

1) The results show the role of channel estimation error

SNR exponent de for determining the generalised outage

exponent. By having channel estimators with de ≥ 1, we
are essentially able to achieve the same SNR exponent

of the perfect CSIR case for the same setup. If de < 1,
the SNR exponent achieved scales linearly with de and

approaching zero for de ↓ 0. Fig. 1 illustrates this effect

in a discrete-input block-fading channel with B = 4 and

ς = 1 (Rayleigh fading).
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Fig. 1. Generalised outage SNR exponent for discrete-input block-fading
channel, B = 4, ς = 1 (Rayleigh fading).

2) The term min(1, de) comes out naturally from the rela-

tionship between the mutual information and the GMI. It

highlights the importance of having channel estimators

that can achieve error diversity de ≥ 1. This ensures that
the limiting term in Pg-out(R), i.e. θ � de ≥ 1, does not
decay exponentially to zero. In the limit of large SNR,

the error level is most likely to be much less than the

reciprocal of the SNR level. This is consistent with the

results of [16].

3) The role of error diversity de is governed by the channel

estimation model. With ML estimator, it can be shown

that de is proportional to the pilot power [18]. Larger

pilot power implies larger de. Hence, the price for

obtaining high diversity is in the power of pilot which

does not contain any information data. Nevertheless,

with bounding condition min(1, de) we may design the

pilot power so that de = 1 to obtain the highest possible

diversity.

4) The outage diversity proven by Theorem 1 is valid for

general fading models described by (5).

Figs. 2 and 3 illustrate the generalised outage probability

for Gaussian and binary phase-shift keying (BPSK) inputs,

respectively, over a block-fading channel. The following pa-

rameters are specified: B = 4, Rayleigh fading and R = 2
bits/channel use for Gaussian input and B = 2, Rayleigh

fading and R = 0.5 bits/channel use for BPSK input. Various

values of the channel estimation error diversity de are used

for comparison with the perfect CSIR outage probability. As

predicted by Theorem 1, the slope becomes steeper with

increasing de, eventually becoming parallel to the perfect

CSIR outage curve for de ≥ 1.

VII. CONCLUSIONS

We have studied the generalised outage probability for

nearest neighbour decoding with imperfect CSIR. In particular,
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Fig. 2. Generalised outage probability Pg-out(R) as a function of snr for
Gaussian-input block-fading channel, B = 4, ς = 1 (Rayleigh fading) and
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Fig. 3. Generalised outage probability Pg-out(R) as a function of snr for
BPSK-input block-fading channel, B = 2, ς = 1 (Rayleigh fading) and
R = 0.5 bits/channel use.

following the footsteps of [6], we have proved the achievability

of the generalised outage probability using error exponents for

mismatched decoding. Due to the data-processing inequality

for error exponents and mismatched decoders, the generalised

outage probability is larger than the outage probability of the

perfect CSIR case. We have further analysed the generalised

outage probability in the large-SNR regime and we have de-

rived the SNR exponents for both Gaussian and discrete inputs.

We have shown that for both inputs, the SNR exponent is given

by the perfect CSIR SNR exponent scaled by the minimum of

channel estimation error diversity and one. Therefore, in order

to achieve the highest possible SNR exponent, the channel

estimator scheme should be designed in such a way so as to

make the estimation error diversity equal to or larger than one.
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