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Abstract— We show how to build full-diversity product codes
under both iterative encoding and decoding over non-ergodic
channels, in presence of block erasure and block fading. The
concept of a rootcheck or a root subcode is introduced by
generalizing the same principle recently invented for low-density
parity-check codes. We also describe some channel related
graphical properties of the new family of product codes, a family
referred to as root product codes.

I. I NTRODUCTION

Product codes are powerful compound codes with rich
and elegant graphical and algebraic structures. Their error
and erasure correcting capabilities in both bursty and non-
bursty modes have been extensively studied in the two decades
following their invention by Elias [8]. One of the simplest
methods for combining two codes is to form their direct prod-
uct, see [13], Chap. 18. Besides its nice algebraic properties
[4][12][13], a product code has a graphical representationthat
can lead to even more powerful generalizations under both
iterative encoding and decoding [20]. The interest in product
codes has been propelled by their excellent performance under
iterative decoding on classical ergodic Gaussian channels[16].
Several studies have been carried out on decoding product
codes [1][9][15], analyzing their asymptotic and low error
rate performance [7][17][18], unveiling more properties of
their weight distribution [21], proposing design criteriaand
analyzing their erasure rate in the presence of ergodic i.i.d
erasures [2][22], and describing the convergence of their
iterative decoding [19].

In this paper, erasures and fadings encountered during
transmission are not independent from one binary digit to
another, they occur in blocks and are constant within a block,
see e.g. [3], Chap. 4. The exact channel model will be given in
sectionIII . Given a data transmission channel withnc internal
states, wherenc is referred to as the channel diversity order,
an error-correcting code achieves ad-diversity order after
decoding, e.g. on a BSC channel with transition probability
p, when the error rate at the decoder output can be written
in the formPe ∝ pd. The code isfull diversity if d = nc. In
the absence of unit-rate linear precoding before transmission
[10] (e.g. a unitary transformation), theblock fading Singleton
bound[11], [14] states thatd ≤ ⌊nc(1 − Rc)⌋ + 1 for a rate
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Rc code. A code achieving the Singleton bound is said to
bemaximum distance separable(MDS). An MDS code is not
necessarily full diversity, but a full-diversity code is necessarily
MDS with coding rateRc ≤ 1/nc.

Properties and methods for designing full-diversity product
codes are studied in this paper. Our study is restricted to
bi-dimensional binary product codes. Some similarities exist
between our product codes and array codes such as the dual
of B-codes [23]. Both families are MDS, but array codes are
not full-diversity and they are designed for channels with a
relatively large diversity (nc = 5, 6 or more) while our codes
are meant for channels with limited diversity (nc =2 or 3).
We start with a small example that summarizes the design
problem and the principal ideas.

II. PROBLEM ILLUSTRATION

We illustrate the problem studied in this paper by setting
block erasures on a simple product code. Consider the product
codeC of the single parity codes of lengths3 and4. The code
C can be viewed as the set of3× 4-matrices whose rows and
columns are all of even weight : it is of length12, dimension
6 (rateR = 1/2). Note that for complexity reasons, we only
allow ourselves row and column operations both for encoding
and for decoding.
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Fig. 1. Four different channel interleaving of code symbols. In the context
of non-ergodic channels, the 4 configurations define 4 different product codes.

The matrix structure of codewords ofC is shown on Figure1.
Half the boxes (bit positions) are colored in white and the other
half in red. Assume all bits of one color are erased. Is the code
C capable of finding them with only the residual color ?



Four different colorings of the product code are given in
Figure 1. In practice, they are equivalent to four different
channel interleavers (also known as multiplexers) appliedon
code symbols. Consider the product code defined by Figure
1(a). If all red bits are erased, the decoding of the first two
rows followed by the decoding of the 4 columns will fill
the erasures. Unfortunately, if white bits are all erased, any
number of row-column decoding iterations will never retrieve
the erased values. Hence, in the terminology of communication
theory, we would say that code1(a) is not full diversity. The
reader can check that1(b) and1(c) are not full-diversity codes.
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Fig. 2. The full-diversity product code defined in Figure1(d). Privileged bits
are indicated by a pattern.

The product code defined in Figure1(d) is full diversity.
Indeed, if all red bits (similarly if all white bits) are erased,
the decoder is capable of filling their values after 3 decoding
iterations (row→ column→ row). The first bit (in red) on
the first row is privileged because all other bits belonging to
the same row are of the opposite color. A privileged bit, if
erased, can be recovered in one decoding iteration. Figure2
depicts code 1(d) with privileged bits indicated by a pattern.
Those bits are said to be connected to arootcheck.

The standard location of information bits is the upper left
2 × 3 corner. The position of information bits can be moved
to those connected to rootchecks. The new full-diversity code
is referred to as a root product code. It has the following
properties:

• It is full diversity on both block erasure and block fading
channels.

• Full diversity is achieved after one decoding iteration.
Indeed, erased information bits are recovered in one
decoding iteration (two iterations if we account for row
and column decoding, since some bits are recovered
via their horizontal rootcheck, others via their vertical
rootcheck).

• Its rate meets the block fading Singleton bound.

What about larger product codes, for example can we build a
root product code[16, 11]⊗2 ? If all symmetries are taken into
account, the number of configurations to examine exhaustively
is about2160. We will use the rootcheck concept to design
full-diversity product codes

III. CHANNEL MODEL AND NOTATION

Linear binary coding for non-ergodic channels is consid-
ered. The channel state is assumed to be invariant for some
time period, finite or infinite. Given the channel stateα, an
inputx = ±1 and an outputy = αx+η, the channel transition

probability is

p(y|x, α) ∝ exp

(

−|y − αx|2
2σ2

)

,

whereσ2 is the variance of the additive white Gaussian noise
η. Two cases are considered:

1) The non-ergodic Rayleigh fading channel where the
fading coefficientα belongs toR

+, with probability
density function2αe−α

2

. We should emphasize that
maximal diversity is still achieved in presence of other
types of fading distribution, as in coding for MIMO
channels [6] where a channel state is assigned a high
order Nakagami distribution.

2) The block erasure channel where the fading coefficient
α belongs to{0, +∞}.

α1 α2

N

2

N

2

codeword of length N bits

α1 α1 α2 α2

Fig. 3. Data transmission channel with 2 states.

Within a codeword of lengthN bits, it is assumed thatα
takesnc independent values. Also, the fading instances are
supposed to be independent from one codeword to another.
For simplicity, we consider the casenc = 2 channel states
per codeword, as illustrated in Figure3. Code construction
and analysis is generally straightforward fornc ≥ 3. Channel
coding is made via a rate-R product codeC[N, K]. The code
C is built from a rate-r constituentC0[n, k], also referred to as
a subcode of the product code. Thus, we haveC = C0 ⊗ C0,
N = n2, K = k2, andR = r2.

The channel diversity order is given by the number of inde-
pendent channel states. The Tx/Rx diversity order, controlled
by the system designer on the transmit and receive sides, is
the number of independent replicas of the same information.
At high signal-to-noise ratioγ = 1

σ2 ≫ 1, on a block fading
channel of diversity orderd = nc, the word error rate behavior
should be

Pe ∝ γ−d. (1)

On a block erasure channel of diversity orderd = nc, for a
given block erasure probability equal toǫ, the word error rate
behavior should be

Pe = ǫd. (2)

An error-correcting code whose error rate satisfies (1) and (2)
after decoding is a full-diversity channel code. Accordingto
the block fading Singleton bound, the coding rateR of a full-
diversity code is upper-bounded by:

Rmax =
1

nc

≥ R. (3)

The two following propositions are essential in the design
of coding for non-ergodic channels. Their proofs are simple
and are left to the reader. For any code structure, under



ML decoding, full diversity on block erasure channels is a
necessary condition for full diversity on non-ergodic Rayleigh
fading channels. This can be stated as follows

Proposition 1: Consider a linear binary codeC[N, K]. If
C is full diversity on a block erasure channel then it is full
diversity on a block fading channel under ML decoding.

As described in the next section, the special root structure
for any compound code achieves full diversity under iterative
decoding. In this paper, we are concerned with product codes
only. Other full-diversity codes such as Turbo, LDPC, and
GLD/Tanner codes have been constructed by the authors, see
[5] and references therein.

Proposition 2: Consider a linear binary codeC[N, K] with
a root structure (LDPC, Product, GLD, etc). Under iterative
decoding, the code is full diversity on both block erasure and
block Rayleigh fading channels.

IV. ROOT CHECKNODES FORL INEAR CODES

A rootcheck is a special type of checknode suitable for
designing codes on graphs matched to iterative decoding when
transmitted over block fading and block erasure channels. In
Tanner’s terminology [20], the constituent of a product code
will also be called asubcode, or a subcode node. In our
practical examples, we mainly focus on subcodes defined from
the famous family of linear binary BCH codes [4][13].

Definition 3: A rootcheck is a subcode node with all roots
colored in one color and all leaves colored in the opposite
color.

�
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�

Φ

Up to n − k root vertices on state 1

Φ: BCH constituent C0[n, k]

All leaves undergo state 2

6 n − k

> k

Fig. 4. Structure of a rootcheck for a 2-state channel.

The definition of a rootcheck is illustrated by Figure4.
The version of the constituentC0 defined by a parity-check
matrix H0 and used in a rootcheck must satisfy the following
constraint: Then − k root vertices are assigned ton − k
independent columns ofH0. The simplest convention is to
write the parity-check matrix in systematic form,H0 =
[In−k | P0], and assign the firstn−k columns to root bitnodes.
At the subcode level, we have the following equivalent of
Proposition 2 for the erasure channel :

Proposition 4: A rootcheckC0[n, k, d] guarantees full di-
versity to all its roots under block erasures.

Proof: If root bits are erased then recompute their value
from leaf bits usingH0.

For the block fading channel we have :
Proposition 5: A rootcheckC0[n, k, d] guarantees full di-

versity to all its roots under block fading.
Proof: Local optimal probabilistic decoding is given by

APP (b) ∝
∑

c∈C0|b
p(y|c), (4)

whereb is a root. The sub-optimal log-map decoder considers
the dominant likelihoods forb = 0 and b = 1. Its log-ratio
message is

Λ = ‖y − αx̄‖2 − ‖y − αx‖2 = 2Y + ν, (5)

Y = α2
1

n−k
∑

i=1

(xi−x̄i) + α2
2

n
∑

i=n−k+1

(xi−x̄i) = ω1α
2
1+ω2α

2
2.

(6)
At high SNR, we haveω1 ≥ 1 andω2 ≥ 1. The exact values
for ωi depend on the weight distribution ofC0. The 4th order
χ2 distribution ofY guarantees the double diversity.

V. FULL -DIVERSITY PRODUCT CODES

The primary role of a full-diversity code is to ensure the
highest diversity order for its information symbols. Such a
protection is less important for parity-check symbols. Hence,
the following definition :

Definition 6: A root product code is a product code where
all informationbits are covered by rootchecks, i.e., all informa-
tion bits are rootbits belonging to a row or a column rootcheck.

From Propositions4 & 5 and the above definition, we
deduce that a root product code is full diversity under iterative
decoding on both block fading and erasure channels. The
maximal diversity order is reached after one decoding iteration
when parallel scheduling is applied, or after two decoding
iterations if serial row-column scheduling is performed.

The information rate should not be sacrificed on behalf
of diversity. Thus, fornc = 2, we should avoid rate1/3
codes which are capable of attaining a 3rd order diversity. The
product code will be devised according to specific properties.

Design Property 7:The design coding rate satisfies the
following inequalities:

1

3
< R ≤ 1

2
, or equivalently

√
3

3
< r ≤

√
2

2
.

row subcodes column subcodes

subcodes

subcodes

bit on fading 2

rootbit on fading 2rootbit on fading 1

bit on fading 1 n

2

n

2
− (n − k)

(n − k)

n

2

n

2
− (n − k)

n

2

n

2

n

2

n

2

(n − k)

V1 V2E

Fig. 5. Compact graph of a full-diversity product code with 2supernodes on
each side. Arrows are pointing to rootchecks of the corresponding bit. Graph
notations defined in this figure will be used in the sequel. This representation
is modified later in order to yield a graph-encodable productcode as shown
for example in Figure6 for r = 2

3
.

A product codeC[N, K] = C0[n, k]⊗2 is graphically
represented by a complete bipartite graph(V1, V2, E), where
V1 is the set of row subcodes,V2 is the set of column subcodes,
and E is the set of all bits. The vertices ofV1 and V2 are



completely connected. We also have|V1| = |V2| = n vertices
and |E| = n2 edges. By convention, row subcodes are drawn
on the left and column subcodes on the right. Since we are
considering non-ergodic channels with 2 states,V1 andV2 are
split into two supernodes each containingn

2
subcodes. This

compact graph representation is depicted in Figure5. Bits are
associated to edges linking row subcodes to column subcodes.
Arrows in Figure5 point to rootchecks of the corresponding
bits.

Let us first focus on the upper supernode ofV1. All rows
have been assumed to be rootchecks, each of them containing
n − k roots as indicated on the edges undergoing fadingα1.
Because the graph is complete, the number of edges linking a
row supernode and a column supernode must be equal ton

2
.

Hence, there aren
2
− (n − k) bits with stateα2 linking the

two upper supernodes andn
2

bits linking diagonally opposed
supernodes fromV1 to V2, as clearly indicated in Figure5.
The graph structure in the lower supernodes is symmetric to
that of upper ones. The graph construction is still valid forodd
n and for asymmetric product codes but it should be slightly
modified accordingly.

Notice that n

2
− (n − k) is a non-negative integer since

1

2
<

√
3

3
< r. Finally, the number of rootbitsKr is

Kr = 2 × n

2
×

(

(n − k) +
n

2
− (n − k)

)

≥ k2 = K,

becauseR ≤ 1

2
. We conclude that all information bits can

be covered by rootchecks, i.e., the graph representation given
in Figure5 with 2 supernodes on each side represents a full-
diversity product code. We may also be tempted to announce
now that a simple solution has been found for the construction
of full-diversity root product codes at any rate satisfyingdesign
property 7. Unfortunately, the diagonal links haven

2
digits

which are parity bits ofC. The constituent codeC0 cannot
successfully carry out the computation of those parity bits
based on the knowledge of information bits becausen

2
>

(n − k) as mentioned above. Therefore, iterative encoding of
the product codeC = C0 ⊗ C0 based on its row and column
subcodesC0 is impossible whenV1 and V2 are split into 2
supernodes. In an equivalent terminology, we say that such a
structure is not graph encodable.

Design procedure. The compact graph of a graph-
encodable root product code is built as follows:

• The number of edges linking two supernodes should be
equal to the number of supernodes since the graph is
complete.

• To render a graph-encodable code, the number of su-
pernodes cannot be equal to 2 as in the previous graph
representation. The number of non-root bits must be less
than or equal ton−k. In order to let the rootchecks cover
all constituent information bits, the number of supernodes
in V1 andV2 should be taken equal to

⌈

n

n − k

⌉

,

i.e., this is the number of supernodes on each side of the

compact graph representation, where a supernode does
not contain more thann − k subcodes.

• Colors should be selected in order to maximize the
number of rootbits. After color selection, information bits
are placed on root edges.

We first restrict ourselves to graphs with strong symmetries
where rootbits are decoded in one shot as a consequence of
Definition 3. This type of first order rootbit is to be opposed
to high order rootbits as defined in the next section, where
the compact graph has less symmetries. Now, we impose the
following design property which is inherited from the initial
graph with 2 supernodes on each side.

Design Property 8:A supernode ofV1 or V2 has a maxi-
mum of 2 super-edges associated to rootbits, one super-edge
with incoming rootbits and the other with outgoing rootbits.
A super-edge is an edge linking two supernodes in the compact
graph representation. Our design procedure for first-orderroot
product codes limits the number of binary elements within a
superedge to a maximum ofn − k bits.

Let us assume that all rootchecks are row subcodes, then
the code guarantees full diversity for all its information bits if
n(n − k) ≥ k2, i.e. r2 + r − 1 ≤ 0.

Proposition 9: A full-diversity product codeC0[n, k]⊗2

with all its rootchecks being row subcodes satisfiesr = k

n
≤√

5−1

2
.

Such an unbalanced code should be avoided in practice. The
constituent coding rate should be lower bounded by(

√
5−1)/2

instead of
√

3/3 as stated in the design property7. Now, let
us examine encoding on the subcode level for a non-ergodic
channel with 2 states. A root product code is graph-encodable
if the subcode dimension does not exceed the number of
incoming and outgoing roots, i.e., ifk ≤ 2(n − k).

Proposition 10: A graph-encodable full-diversity root prod-
uct code exists ifr = k

n
≤ 2

3
.

From the above propositions, we conclude that a valid range
for the rate of the product code constituent is

√
5 − 1

2
≤ r ≤ 2

3
.

Corollary 11: A graph-encodable full-diversity root prod-
uct code[16, 11, 4]⊗2 does not exist.
Of course, this corollary is meant for first order root codes.A
third order full-diversity[16, 11, 4]⊗2 code is built in the next
section. Finally, we end this section by illustrating our design
procedure in Figures6 and7 with a square product code based
on the[12, 8] linear binary constituent.

VI. PRODUCT CODES WITH HIGH-ORDER ROOTCHECKS

We now drop the constraint that information bits should be
decoded after just one iteration which implied that the number
Kr of rootbits is at leastk2. By allowing more iterations we
shall be able to deal with cases whenKr < k2. Let us say
that a rootbit has orderρ if it is recovered afterρ iterations.
Since the girth in the product code graph is equal to 4, order-4
rootbits do not exist, which translates as :
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# of edges per subcode
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unused rootcheck edge

unused rootcheck edge

E2

E1

E2

E1 E1

E1

E1

E2

E2
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Fig. 6. Two compact graph representations of a full-diversity product code
[12, 8, 3]⊗2, r = 2

3
and R = 4

9
= 0.4444. Information bits transmitted on

fading 1 (resp. fading 2) are indicated on the graph edges by1i (resp.2i).
The encoding can be made via the graph using the activation scheduleE1
followed by E2. Any channel state (α1 or α2) can be assigned to unused
rootcheck edges.
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Fig. 7. Matrix representations of the full-diversity product codes[12, 8]⊗2

defined by the compact graphs in Figure6.

Proposition 12: A root product code attains full diversity
order (or equivalently recovers all information bits) after at
most 3 decoding iterations.

An example of a full-diversity product code[16, 11]⊗2

together with its decoding scheme is given on Figure8.
Construction details are omitted in this extended abstract.
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[16,11,4]

[16,11,4]

rootbit on fading 2

bit on fading 2

rootbit on fading 1

bit on fading 1

ρ = 3

ρ = 2

ρ = 1 for dashed bits

Fig. 8. Full-diversity root product code[16, 11, 4]⊗2 of order 3. Overall
coding rate isR = 0.4726, 3 iterations are needed to attain full diversity. For
a given bitnode,ρ iterations are needed to reach full diversity under parallel
scheduling.

VII. CONCLUSIONS

A finite-length design of bi-dimensional binary product
codes suitable for block fading channels has been proposed.

The study is based on graphical tools and some simple
algebraic properties of product codes. Codes at several coding
rates capable of achieving the highest diversity order havebeen
found. This work should be enhanced via the analysis of the
coding gain and the general asymptotic performance behavior
of product codes on non-ergodic channels.
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