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Abstract— We show how to build full-diversity product codes R. code. A code achieving the Singleton bound is said to
under both iterative encoding and decoding over non-ergodi he maximum distance separabi®DS). An MDS code is not

channels, in presence of block erasure and block fading. The acessarily full diversity, but a full-diversity code isaessarily
concept of a rootcheck or a root subcode is introduced by MDS with coding rateR, < 1/n
Cc = ct

generalizing the same principle recently invented for lowdensity . o . .
parity-check codes. We also describe some channel related Properties and methods for designing full-diversity pretdu
graphical properties of the new family of product codes, a fanily —codes are studied in this paper. Our study is restricted to
referred to as root product codes. bi-dimensional binary product codes. Some similaritiesstex
l. INTRODUCTION between our product codes and array codes such as the dual
... of B-codes [23]. Both families are MDS, but array codes are
Product codes are powerful compound codes W't_h NGTbt full-diversity and they are designed for channels with a
and elegant graphical and algebraic structures. The'rrer'}glatively large diversity . — 5,6 or more) while our codes
and erasure correcting capabilities in both bursty and no e meant for channels \jvith I}mited diversity (=2 or 3).
bursty modes have been extensively studied in the two decal e start with a small example that summar?zes the design
following their invention by Elias [8]. One of the simplest roblem and the principal ideas.
methods for combining two codes is to form their direct prod-
uct, see [13], Chap. 18. Besides its nice algebraic prageerti 1. PROBLEM ILLUSTRATION
[4][12][13], & product code has a graphical representafian \We illustrate the problem studied in this paper by setting

can lead to even more powerful generalizations under b tp K imol duct code. Consider the ptod
iterative encoding and decoding [20]. The interest in paidu OCk erasures on a Simple product code. Lonsider thé ptoduc

codes has been propelled by their excellent performancerun pdeC’ of the single parity codes of lengtisand4. The code

iterative decoding on classical ergodic Gaussian chaiihé]s can be viewed as the seF BEx .4_-n_1atr|ces Whose_ rows and
Several studies have been carried out on decoding prod%}umns are all of even weight - it is of _Iengll?, dimension
codes [1][9][15], analyzing their asymptotic and low erroﬁ rate R = 1/2). Note that for complex_lty reasons, we onl_y
rate performance [7][17][18], unveiling more propertiet c)allow ourselve_s row and column operations both for encoding
their weight distribution [21], proposing design critergand and for decoding.
analyzing their erasure rate in the presence of ergodit i.i.

erasures [2][22], and describing the convergence of their

iterative decoding [19]. 62
In this paper, erasures and fadings encountered during

transmission are not independent from one binary digit to
another, they occur in blocks and are constant within a hlock

see e.g. [3], Chap. 4. The exact channel model will be given in
sectionlll. Given a data transmission channel withinternal E
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states, where,. is referred to as the channel diversity order,
an error-correcting code achieves dadiversity order after
decoding, e.g. on a BSC channel with transition probability
p, when the error rate at the decoder output can be written . . _
in the form P, o . The code iSulldiversity if d = nc. In 50,1 four erert hannel eeauing of cone sybotae sones,
the absence of unit-rate linear precoding before transamss

[10] (e.g. a unitary transformation), theock fading Singleton
bound[11], [14] states that! < |n.(1 — R.)] + 1 for a rate

@)

(c) (d)
The matrix structure of codewords 6f is shown on Figuré.
Half the boxes (bit positions) are colored in white and theeot

1The work of Ezio Biglieri was supported by the STREP projep’  half in red. Assume all bits of one color are erased. Is theecod
VINCI’ within the 7th FP of the European Commission. C capable of finding them with only the residual color ?



Four different colorings of the product code are given iprobability is
Figure 1. In practice, they are equivalent to four different 2
: . . ly — ax]
channel interleavers (also known as multiplexers) applied p(ylx, o) x exp o )
code symbols. Consider the product code defined by Figure 7
1(a). If all red bits are erased, the decoding of the first tweheres? is the variance of the additive white Gaussian noise
rows followed by the decoding of the 4 columns will filln. Two cases are considered:
the erasures. Unfortunately, if white bits are all eraset, a 1) The non-ergodic Rayleigh fading channel where the

number of row-column decoding iterations will never retge fading coefficientar belongs toR*, with probability
the erased values. Hence, in the terminology of commuoicati density function2ae=". We should emphasize that
theory, we would say that codia) is not full diversity. The maximal diversity is still achieved in presence of other
reader can check thatb) and1(c) are not full-diversity codes. types of fading distribution, as in coding for MIMO

channels [6] where a channel state is assigned a high
order Nakagami distribution.
2) The block erasure channel where the fading coefficient

3.2 a belongs to{0, +o0}.

codeword of length N bits

Fig. 2. The full-diversity product code defined in Figurgl). Privileged bits ‘ a
are indicated by a pattern.

The product code defined in FigurHd) is full diversity.

Indeed, if all red bits (similarly if all white bits) are erd, Fig. 3. Data transmission channel with 2 states.

the decoder is capable of filling their values after 3 decgdin

iterations (row— column — row). The first bit (in red) on  Within a codeword of lengthV bits, it is assumed that

the first row is privileged because all other bits belonging takesn. independent values. Also, the fading instances are

the same row are of the opposite color. A privileged bit, isupposed to be independent from one codeword to another.

erased, can be recovered in one decoding iteration. Figurdor simplicity, we consider the case. = 2 channel states

depicts code 1(d) with privileged bits indicated by a patterper codeword, as illustrated in Figufe Code construction

Those bits are said to be connected tmatcheck and analysis is generally straightforward for > 3. Channel
The standard location of information bits is the upper lef0oding is made via a rat&-product codeC[N, K. The code

2 x 3 corner. The position of information bits can be move§' is built from a rater constituentCs [n, k], also referred to as

to those connected to rootchecks. The new full-diversityeco @ subcode of the product code. Thus, we have Cy @ Co,

is referred to as a root product code. It has the followindy = n*, K = k? andR = 2.
properties: The channel diversity order is given by the number of inde-

. . . . pendent channel states. The Tx/Rx diversity order, coettol
o Itis full diversity on both block erasure and block fadmggy the system designer on the transmit and receive sides, is

channels. the number of independent replicas of the same information
o Full diversity is achieved after one decoding iteration P P '

. : L Y .
Indeed, erased information bits are recovered in oAt high signal-to-noise ratio; = > > 1, on a block fading

n . . .
decoding iteration (two iterations if we account for rowg%izlr:je:)zf diversity orded = n., the word eror rate behavior
and column decoding, since some bits are recovere

—d
via their horizontal rootcheck, others via their vertical Peocy™ (1)
rootcheck). On a block erasure channel of diversity ordee n., for a

« Its rate meets the block fading Singleton bound. given block erasure probability equal ¢gpthe word error rate

What about larger product codes, for example can we build?ghavior should be J
root product codé16, 11]®2 ? If all symmetries are taken into Pe = €% @)

gccount, the number of configurations to examine exhathy:t_ivg\n error-correcting code whose error rate satisfigsand @)
is about2'®. We will use the rootcheck concept to desigifier decoding is a full-diversity channel code. According

full-diversity product codes the block fading Singleton bound, the coding ré&ef a full-
diversity code is upper-bounded by:
[11. CHANNEL MODEL AND NOTATION 1
Rypaz = — > R. 3)
Linear binary coding for non-ergodic channels is consid- Ne

ered. The channel state is assumed to be invariant for som&he two following propositions are essential in the design
time period, finite or infinite. Given the channel state an of coding for non-ergodic channels. Their proofs are simple
inputz = £1 and an outpuy = ax+n, the channel transition and are left to the reader. For any code structure, under



ML decoding, full diversity on block erasure channels is &hereb is a root. The sub-optimal log-map decoder considers
necessary condition for full diversity on non-ergodic Ragh the dominant likelihoods fob = 0 andb = 1. Its log-ratio
fading channels. This can be stated as follows message is

Proposition 1: Consider a linear binary cod@[N, K]. If B 9 2
C is full diversity on a block erasure channel then it is full A = |ly—az|” [y —az|” = 2Y +v, (5)

diversity on a block fading channel under ML decoding. n—k n
As described in the next section, the special root structufe=af Y (zi—%;) + a5 Y (zi—%) = wia]+wa3.
for any compound code achieves full diversity under itemti i=1 i=n—k+1
/ : : (6)
decoding. In this paper, we are concerned with product cod tsh' h SNR h ~ 1 andws > 1. Th t val
only. Other full-diversity codes such as Turbo, LDPC, an Igd (,jwe haveul__h da_m .‘6’2 on 6t ﬁ_ﬁxichvages
GLD/Tanner codes have been constructed by the authors, S8€ epend on the weight distribution 0l. The 4th order

[5] and references therein x~ distribution of Y guarantees the double diversity. ®

Proposition 2: Consider a linear binary codg[N, K| with V. FULL-DIVERSITY PRODUCT CODES
a root structure (LDPC, Product, GLD, etc). Under iterative The primary role of a full-diversity code is to ensure the

glec?(dg\g,lthehc?dde_ I fuhll divelrsity on both block erasurd arhighest diversity order for its information symbols. Such a
ock Rayleigh fading channels. protection is less important for parity-check symbols. Een
IV. ROOT CHECKNODES FORLINEAR CODES the following definition :

A rootcheck is a special type of checknode suitable for Definition 6: A root product code is a product code where
designing codes on graphs matched to iterative decodingwlﬁﬁ' |nf(_)rmat|onb|ts_ are cover_ed by rootchecks, i.e., all informa-
transmitted over block fading and block erasure channals. {on bits are rootbits belonging to a row or a column rootd¢hec
Tanner’s terminology [20], the constituent of a producteod From Propositions4 & 5 and the above definition, we
practical examples, we mainly focus on subcodes defined fréficoding on both block fading and erasure channels. The
the famous family of linear binary BCH codes [4][13]. maximal diversity order is reached after one decoding iitena

Definition 3: A rootcheck is a subcode node with all rootdvhen parallel scheduling is applied, or after two decoding

colored in one color and all leaves colored in the opposité€rations if serial row-column scheduling is performed.
color. The information rate should not be sacrificed on behalf

of diversity. Thus, forn. = 2, we should avoid ratd /3

<n—k. Up to n — k root vertices on state 1 codes which are capable of attaining a 3rd order diversitg T
e product code will be devised according to specific propsrtie
n ®: BCH constituent Cy[n, k] Design Property 7:The design coding rate satisfies the

> k./z \g\% following inequalities:
ryvyy All leaves undergo state 2

1 1 . 3 2
3 <R< 3 or equivalently % <r< %

Fig. 4. Structure of a rootcheck for a 2-state channel.

Wi E %
row subcodes

>
column subcodes

The definition of a rootcheck is illustrated by Figure
The version of the constituertf, defined by a parity-check
matrix Hy and used in a rootcheck must satisfy the following
constraint: Then — k root vertices are assigned to — £ ™™
independent columns aoffy. The simplest convention is to - . -
write the parity-check matrix in systematic fornif, = ™™
[I,—1 | Po], and assign the first— & columns to root bitnodes.
At the subcode level, we have the following equivalent of
Proposition 2 for the erasure channel :

Proposition 4: A rootcheckCy[n, k, d] guarantees full di-

versity to _a” Its I’OOt_S under block erasures. . Fig. 5. Compact graph of a full-diversity product code witsuiernodes on
Proof: If root bits are erased then recompute their valugch side. Arrows are pointing to rootchecks of the correeimay bit. Graph

—_—
bit on fading 2

- -
rootbit on fading 2

from leaf bits usingH. B notations defined in this figure will be used in the sequelsTapresentation
For the block fading channel we have : is modified later in order to yield a graph-encodable prodiazie as shown
. . ) . for example in Figures for r = %
Proposition 5: A rootcheckCy[n, k, d] guarantees full di-
versity to all its roots under block fading. A product codeC[N, K] = Coln, k]®2 is graphically

Proof: Local optimal probabilistic decoding is given byrepresented by a complete bipartite graph, Vs, ), where

APP(b) Z p(ylc), (4) Vi isthe set of row subcodeB; is the set of column subcodes,
c€Co|b and E is the set of all bits. The vertices df; and V5, are



completely connected. We also haig| = |V2| = n vertices compact graph representation, where a supernode does
and|E| = n? edges. By convention, row subcodes are drawn not contain more tham — k subcodes.

on the left and column subcodes on the right. Since we ares Colors should be selected in order to maximize the
considering non-ergodic channels with 2 stalésandV; are number of rootbits. After color selection, informationsit
split into two supernodes each containiggsubcodes. This are placed on root edges.

compact graph representation is depicted in FigurBits are e first restrict ourselves to graphs with strong symmetries

associated to edges linking row subcodes to column subcodgfere roothits are decoded in one shot as a consequence of

Arrows in Figure5 point to rootchecks of the correspondingefinition 3. This type of first order roothit is to be opposed

bits. to high order rootbits as defined in the next section, where
Let us first focus on the upper supernodelaf All rows  the compact graph has less symmetries. Now, we impose the

have been assumed to be rootchecks, each of them contaiffi@wing design property which is inherited from the iiti

n — k roots as indicated on the edges undergoing fading graph with 2 supernodes on each side.

Because the graph is complete, the number of edges linking &esign Property 8:A supernode ofi; or V4 has a maxi-

row supernode and a column supernode must be equal tomum of 2 super-edges associated to rootbits, one super-edge

Hence, there aré — (n — k) bits with stateas linking the with incoming rootbits and the other with outgoing rootbits

two upper supernodes arifl bits linking diagonally opposed A syper-edge is an edge linking two supernodes in the compact

supernodes from; to V2, as clearly indicated in Figur. graph representation. Our design procedure for first-oroet

The graph structure in the lower supernodes is symmetric §9,qyct codes limits the number of binary elements within a
that of upper ones. The graph construction is still validddd superedge to a maximum af— & bits.

n and for asymmetric product codes but it should be slightly | ¢¢ s assume that all rootchecks are row subcodes, then

modified acco;dingly. _ o ~the code guarantees full diversity for all its informatioitstif
Notice thatZ — (n — k) is a non-negative integer smcen(n k) >k Qe +r—1<0.
1 < 3 < r. Finally, the number of roothité, is Proposition 9: A full-diversity product code Cj|n, k]®2

n n ) with all its rootchecks being row subcodes satisfies £ <
K7‘:2><§><((n—k)+§—(n—k)) > k=K, Vi1 n

becauseR < % We conclude that all information bits can

be covered by rootchecks, i.e., the graph representati@ngi : ;
in Figure5 with 2 supernodes on each side represents a fulfiStéad ofv'3/3 as stated in the design propeity Now, let

diversity product code. We may also be tempted to annourlé® €x@mine encoding on the subcode level for a non-ergodic
now that a simple solution has been found for the constractigh@nnel with 2 states. A root product code is graph-encedabl
of full-diversity root product codes at any rate satisfyfgsign | the subcode dimension does not exceed the number of
property 7. Unfortunately, the diagonal links havg digits incoming and outgoing roots, i.e., if < 2(n — k).

which are parity bits ofC'. The constituent cod€), cannot ~ Proposition 10:A gzaph;encodable full-diversity root prod-
successfully carry out the computation of those parity bitéCt code exists i = & < . _

based on the knowledge of information bits becagse> From the above propositions, we conclude that a valid range
(n — k) as mentioned above. Therefore, iterative encoding i the rate of the product code constituent is

the product cod€’ = C ® C based on its row and column V5 -1
subcoded’ is impossible wherl; and V, are split into 2 5
supernodes. In an equivalent terminology, we say that such a

structure is not graph encodable. Corollary 11: A graph-encodable full-diversity root prod-

Design procedure. The compact graph of a graph-uct code[16,11,4]%* does not exist.
encodable root product code is built as follows: Of course, this corollary is meant for first order root cod&s.

« The number of edges linking two supernodes should ffuird order full-diversity[16, 11, 4]%2 code is built in the next
equal to the number of supemodes since the graphsﬁ‘:tion' Finally, we end this section by illustrating ousid@
complete. procedure in Figure§ and7 with a square product code based

. To render a graph-encodable code, the number of R the[12,8] linear binary constituent.
pernodes cannot be equal to 2 as in the previous grap\I)

. : l.
representation. The number of non-root bits must be less
than or equal ta— k. In order to let the rootchecks cover We now drop the constraint that information bits should be
all constituent information bits, the number of supernodetecoded after just one iteration which implied that the namb

2
Such an unbalanced code should be avoided in practice. The
constituent coding rate should be lower bounded§—1)/2

7°<2
i _3'

ProbucT CODES WITHHIGH-ORDER ROOTCHECKS

in ¥, and V5 should be taken equal to K, of rootbits is at leask?. By allowing more iterations we
n shall be able to deal with cases whéf. < k2. Let us say
{ k-‘ , that a rootbit has ordes if it is recovered afterp iterations.
n—

Since the girth in the product code graph is equal to 4, odder-
i.e., this is the number of supernodes on each side of tf@otbits do not exist, which translates as :



# of edges per subcode
Rows

# of edges per subcode
Rows Columns

Columns

4 subcodes 4 subcodes

4 subcodes 4 subcodes

(1]
(2]

4 subcodes 4 subcodes

Fig. 6. Two compact graph representations of a full-digrgroduct code 3
[12,8,3]92, r = % and R = § = 0.4444. Information bits transmitted on  [4]
fading 1 (resp. fading 2) are indicated on the graph edgesiblyesp.2:).

The encoding can be made via the graph using the activatibadste £1 [5
followed by £2. Any channel stateo(; or a2) can be assigned to unused
rootcheck edges.

e (6]
E§§ li-type bit . 2i-type bit
(12,8,3) (12,8,3) [7]
[8]
(12,8,3) (12,8,3)
[9]
Fig. 7. Matrix representations of the full-diversity praicodes[12, 8]®?2 [11]
defined by the compact graphs in Figuie
[12]

Proposition 12: A root product code attains full diversity
order (or equivalently recovers all information bits) aftat
most 3 decoding iterations.

An example of a full-diversity product codél6,11]%2
together with its decoding scheme is given on Fig@ée [15]
Construction details are omitted in this extended abstract

[14]

[16,11,4] [16]
I biton fading 1 [17]

p =1 for dashed bits B rootbiton fading 1
op=2 [16.11.4] W bit on fading 2 [18]

°p=3 B rootbit on fading 2
[19]
[20]

Fig. 8. Full-diversity root product codgl6, 11,4]®2 of order 3. Overall

coding rate isR = 0.4726, 3 iterations are needed to attain full diversity. For
a given bitnodeyp iterations are needed to reach full diversity under pdralle[21]
scheduling.

[22]

VII. CONCLUSIONS 23]
A finite-length design of bi-dimensional binary product

codes suitable for block fading channels has been proposed.

The study is based on graphical tools and some simple
algebraic properties of product codes. Codes at severahgod
rates capable of achieving the highest diversity order bhaesn

found. This work should be enhanced via the analysis of the
coding gain and the general asymptotic performance behavio
of product codes on non-ergodic channels.
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