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Abstract— We consider power allocation algorithms for fixed-
rate transmission over Nakagami-m non-ergodic block-fading
channels with perfect transmitter and receiver channel state
information and discrete input signal constellations under short-
and long-term power constraints. Optimal power allocation
schemes are shown to be direct applications of previous results
in the literature. We show that the SNR exponent of the optimal
short-term scheme is given by the Singleton bound. We also
illustrate the significant gains available by employing long-term
power constraints. Due to the nature of the expressions involved,
the complexity of optimal schemes may be prohibitive for system
implementation. We propose simple sub-optimal power allocation
schemes whose outage probability performance is very close to
the minimum outage probability obtained by optimal schemes.

I. INTRODUCTION

The non-ergodic block-fading channel introduced in [1] and

[2] models communication scenarios where each codeword

spans a fixed number of independently faded blocks. The

block-fading channel is an accurate model for slowly-varying

fading scenarios encountered with slow time-frequency hop-

ping or orthogonal frequency division multiplexing (OFDM).

Since each codeword experiences a finite number of degrees

of freedom, the channel is non-ergodic. Therefore, the channel

has zero capacity under most common fading statistics. A

useful measure for the channel reliability in non-ergodic

channels is the outage probability, which is the probability that

a given communication rate is not supported by the channel

[1], [2]. The outage probability is the lowest possible word

error probability for sufficiently long codes.

When knowledge of channel parameters, referred to as chan-

nel state information (CSI), is not available at the transmitter,

transmit power is allocated uniformly over the blocks. When

CSI is available at the transmitter, power allocation techniques

can be used to increase the instantaneous mutual informa-

tion, thus improving the outage performance. Optimal power

allocation schemes, minimizing the outage probability, have

been studied under various power constraints. For systems with

short-term power constraints (per-codeword power constraint),

water-filling is the optimal power allocation scheme [3]. In

[4] the power allocation problem is solved under long-term

power constraint, showing that remarkable gains are possible

with respect to short-term power allocation. For channels with
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two or more fading blocks, zero outage can be obtained under

long-term power constraint. In both cases, the optimal input

distribution is Gaussian.
In [5], the authors propose the optimal short-term power

allocation scheme to maximize the mutual information of

parallel channels for arbitrary input distributions. Also, as

mentioned in [5], optimal short-term power allocation for

block-fading channels with discrete inputs is obtained directly

from their results. Due to its complexity, the optimal solution

in [5] does not provide much insight into the impact of the

parameters involved, and may also prohibit the application to

systems with strict memory and computational constraints.
In this paper, we study optimal short- and long-term power

allocation schemes for fixed-rate transmission over discrete-

input block-fading channels with perfect CSI at the transmitter

and receiver. We consider non-causal CSI, namely, the channel

gains corresponding to the transmission of one codeword

are known to the transmitter and receiver. In practice, this

non-causal assumption reflects the situation of OFDM, where

the time-domain channel is estimated but the signals are

transmitted in the frequency domain. In particular, we show

that the SNR exponent for optimal short-term allocation is

given by the Singleton bound [6], [7], [8]. Furthermore, we

show that the results in [5] are instrumental in obtaining

the optimal long-term solution. We further aim at reducing

the complexity drawbacks of optimal schemes by proposing

suboptimal short- and long-term power allocation schemes.

The suboptimal schemes are simpler as compared to the

corresponding optimal schemes, yet they suffer only negligible

losses compared to the optimal performance. Proofs of all

results can be found in [9].

II. SYSTEM MODEL

Consider transmission over an additive white Gaussian noise

(AWGN) block-fading channel with B blocks of L channel

uses each, in which, for b = 1, . . . , B, block b is affected

by a flat fading coefficient hb ∈ C. Let γb = |hb|2 be the

power fading gain and assume that the fading gain vector

γ = (γ1, . . . , γB) is available at both the transmitter and

the receiver. The transmit power is allocated to the blocks

according to the scheme p(γ) = (p1(γ), . . . , pB(γ)). Then,

the complex baseband channel model can be written as

yb =
√

pb(γ)hbxb + zb, b = 1, . . . , B, (1)
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where yb ∈ C
L is the received signal in block b, xb ∈ XL ⊂

C
L is the portion of the codeword being transmitted in block

b, X ⊂ C is the signal constellation and zb ∈ C
L is a

noise vector with independent, identically distributed (i.i.d.)

circularly symmetric Gaussian entries ∼ NC(0, 1). Assume

that the signal constellation X is normalized in energy such

that
∑

x∈X |x|2 = 2M , where M = log2 |X |. Then, the

instantaneous received SNR at block b is given by pb(γ)γb.

We consider block-fading channels where hb are realizations

of a random variable H , whose magnitude is Nakagami-m-

distributed and has a uniformly distributed phase1. The fading

magnitude has the following probability density function (pdf)

f|H|(h) =
2mmh2m−1

Γ(m)
e−mh2

, (2)

where Γ(a) is the Gamma function, Γ(a) =
∫∞
0

ta−1e−tdt.
The coefficients γb are realizations of the random variable |H|2
whose pdf is given by

f|H|2(γ) =

{
mmγm−1

Γ(m) e−mγ , γ ≥ 0

0, otherwise.
(3)

The Nakagami-m distribution encompasses many fading dis-

tributions of interest. In particular, we obtain Rayleigh fading

by letting m = 1 and Rician fading with parameter K by

setting m = (K + 1)2/(2K + 1).

III. MUTUAL INFORMATION AND OUTAGE PROBABILITY

For any given power fading gain realization γ and power

allocation scheme p(γ), the instantaneous input-output mutual

information of the channel is given by

IB(p(γ),γ) =
1
B

B∑
b=1

IX (pbγb), (4)

where IX (ρ) is the input-output mutual information of an

AWGN channel with input constellation X received SNR ρ

IX (ρ) = M − EX,Z

[
log2

( ∑
x′∈X

e−|
√

ρ(X−x′)+Z|2+|Z|2
)]

.

Communication is in outage when the instantaneous input-

output mutual information is less than the target rate R. For

a given power allocation scheme p(γ), the outage probability

at communication rate R is given by [1], [2]

Pout(p(γ), R) = Pr(IB(p(γ),γ) < R)

= Pr

(
1
B

B∑
b=1

IX (pbγb) < R

)
. (5)

IV. SHORT-TERM POWER ALLOCATION

Short-term power allocation schemes are applied for sys-

tems where the transmit power of each codeword is limited

to BP . A given short-term power allocation scheme p(γ) =
(p1, . . . , pB) must then satisfy

∑B
b=1 pb ≤ BP .

1Due to our perfect transmitter and receiver CSI assumption, we can assume
that the phase has been perfectly compensated for.

A. Optimal Power Allocation
The optimal short-term power allocation rule popt(γ) is the

solution to the outage probability minimization problem [4].

Mathematically we express popt(γ) as

popt(γ) = arg min
p∈R

B
+PB

b=1 pb=BP

Pout(p(γ), R). (6)

For short-term power allocation, since the available power

can only be distributed within one codeword, the power

allocation scheme that maximizes the instantaneous mutual

information at each channel realization also minimizes the

outage probability. Formally, we have [4]
Lemma 1: Let popt(γ) be a solution of the problem⎧⎨

⎩
Maximize

∑B
b=1 IX (pbγb)

Subject to
∑B

b=1 pb ≤ BP
pb ≥ 0, b = 1, . . . , B.

(7)

Then popt(γ) is a solution of (6).
From [5], the solution for problem (7) is given by

popt
b (γ) =

1
γb

MMSE−1
X

(
min

{
1,

ν

γb

})
, (8)

for b = 1, . . . , B, where MMSEX (ρ) is the minimum mean-

squared error (MMSE) for estimating the input based on the

received signal over an AWGN channel with SNR ρ

MMSEX (ρ) = 1 − 1
π

∫
C

∣∣∣∑x∈X xe−|y−
√

ρx|2
∣∣∣2∑

x∈X e−|y−
√

ρx|2 dy (9)

and ν is chosen such that the power constraint is satisfied,

B∑
b=1

popt
b = BP. (10)

The optimal short-term power allocation scheme improves

the outage performance of block-fading systems. However, it

does not increase the outage diversity compared to uniform

power allocation, as shown in the following lemma.
Lemma 2: Consider transmission over the block-fading

channel defined in (1) with the optimal power allocation

scheme popt(γ) given in (8). Assume input constellation size

|X | = 2M . Further assume that the power fading gains follow

the distribution given in (3). Then, for large P and some

Kopt > 0 the outage probability behaves as

Pout(popt(γ), R) .= KoptP
−mdB(R), (11)

where dB(R) is the Singleton bound given by

dB(R) = 1 +
⌊
B

(
1 − R

M

)⌋
. (12)

B. Suboptimal Power Allocation Schemes
Although the power allocation scheme in (8) is optimal,

it involves an inverse MMSE function, which may be too

complex to implement or store for specific low-cost systems.

Moreover, the MMSE function provides little insight to the

role of each parameter. In this section, we propose power

allocation schemes similar to water-filling that tackle both

drawbacks and perform very close to the optimal solution.
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1) Truncated water-filling scheme: The complexity of the

solution in (8) is due to the complex expression of IX (ρ) in

problem (7). Therefore, in order to obtain a simple suboptimal

solution, we find an aproximation for IX (ρ) in problem

(7). The water-filling solution in [4] suggests the following

approximation of IX (ρ)

Itw(ρ) =
{

log2(1 + ρ), ρ ≤ β
log2(1 + β), otherwise, (13)

where β is a design parameter to be optimized for best per-

formance. The resulting suboptimal scheme ptw(γ) is given

as a solution of⎧⎨
⎩

Maximize
∑B

b=1 Itw(pbγb)
Subject to

∑B
b=1 pb ≤ BP

pb ≥ 0, b = 1, . . . , B.

(14)

Lemma 3: A solution to the problem (14) is given by

ptw
b (γ) =

⎧⎨
⎩

β
γb

, if
∑B

b=1
β
γb

≤ BP

min
{

β
γb

,
(
η − 1

γb

)
+

}
, otherwise

(15)

for b = 1, . . . , B, where η is chosen such that

B∑
b=1

min

{
β

γb
,

(
η − 1

γb

)
+

}
= BP. (16)

Without loss of generality, assume that γ1 ≥ . . . ≥ γB , then,

similarly to water-filling, η can be determined such that [4]

(k − l)η = BP −
l∑

b=1

β + 1
γb

+
k∑

b=1

1
γb

, (17)

where k, l are integers satisfying 1
γk

< η < 1
γk+1

and β+1
γl

<

η ≤ β+1
γl+1

.

From Lemma 3, the resulting power allocation scheme

is similar to water-filling, except for the truncation of the

allocated power at β
γb

. We refer to this scheme as truncated

water-filling.

The outage performance obtained by the truncated water-

filling scheme depends on the choice of the design parameter

β. We now analyze the asymptotic performance of the outage

probability, thus providing some guidance on the choice of β.

Lemma 4: Consider transmission over the block-fading

channel defined in (1) with the truncated water-filling power

allocation scheme ptw(γ) given in (15). Assume input con-

stellation X of size |X | = 2M . Further assume that the power

fading gains follow the distribution given in (3). Then, for large

P , the outage probability Pout(ptw(γ), R) is asymptotically

upper bounded by

Pout(ptw(γ), R)≤̇KβP−mdβ(R), (18)

where

dβ(R) = 1 +
⌊
B

(
1 − R

IX (β)

)⌋
, (19)

and IX (β) is the input-output mutual information of an

AWGN channel with SNR β.

From the results of Lemmas 2 and 4, we note that

Pout(ptw(γ), R) ≥ Pout(popt(γ), R), and we have that

Pout(ptw(γ), R) .= KtwP−mdtw(R), (20)

where dtw(R) satisfies that dβ(R) ≤ dtw(R) ≤ dB(R).
Therefore, the truncated water-filling scheme is guaranteed

to obtain optimal diversity whenever dβ(R) = dB(R), or

equivalently, when

B

(
1 − R

IX (β)

)
≥

⌊
B

(
1 − R

M

)⌋
(21)

IX (β) ≥ BR

B − ⌊
B

(
1 − R

M

)⌋ , (22)

which implies that

β ≥ I−1
X

(
BR

B − ⌊
B

(
1 − R

M

)⌋
)

� βR.

Therefore, the truncated water-filling power allocation scheme

(15) becomes the classical water-filling algorithm for Gaussian

inputs, and provides optimal outage diversity at any transmis-

sion rate by letting β → ∞. For any rate R that is not at the

discontinuity points of the Singleton bound, i.e. R such that

B
(
1 − R

M

)
is not an integer, we can always design a truncated

water-filling scheme that obtains optimal diversity by choosing

β ≥ βR.

With the results above, we choose β as follows. For a

transmission rate R that is not a discontinuity point of the

Singleton bound, we perform a simulation to compute the

outage probability at rate R obtained by truncated water-

filling with various β ≥ βR and pick the β that gives

the best outage performance. The dashed line in Figure 1

illustrates the performance of the obtained schemes for block-

fading channels with B = 4, QPSK input under Rayleigh

fading. At all rates of interest, the truncated water-filling

schemes perform very close to the optimal scheme (solid line),

especially at high SNR.

For rates at the discontinuous points of the Singleton

bound, especially when operating at high SNR, β needs to be

relatively large in order to maintain diversity. However, large

β increases the gap between Itw(ρ) and IX (ρ), thus degrades

the performance of the truncated water-filling scheme. For

β = 15, the gap is illustrated by the dashed lines in Figure 2.

In the extreme case where β → ∞, the truncated water-filling

turns into the water-filling scheme, which exhibits a significant

loss in outage performance as illustrated by the dotted lines

in Figure 1. To reduce this drawback, we propose a better

approximation to IX (ρ), which leads to a refinement to the

truncated water-filling scheme in the next section.
2) Refined truncated water-filling schemes: To obtain better

approximation to the optimal power allocation scheme, we

need a more accurate approximation to IX (ρ) in (7). We

propose the following approximation

Iref(ρ) =

⎧⎨
⎩

log2(1 + ρ), ρ ≤ α
κ log2(ρ) + a, α < ρ ≤ β
κ log2(β) + a, otherwise,

(23)
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P(dB)

P
ou

t(
p
,R

)

R = 0.4
β = 3

R = 1.4
β = 10

R = 1.7
β = 10

R = 0.9
β = 6

Fig. 1. Outage performance of various short-term power allocation schemes
for QPSK-input block-fading channels with B = 4 and Rayleigh fading. The
solid lines represent optimal scheme; the solid lines with � represent uniform
power allocation; the dashed lines and dashed-dotted lines represent truncated
water-filling and its corresponding refinement, respectively; the dotted lines
represent the classical water-filling scheme.

where κ and a are chosen such that in dB scale, κ log2(ρ)+a
is a tangent to IX (ρ) at a predetermined point ρ0. Therefore

α is chosen such that κ log2(α) + a = log2(1 + α), and β
is a design parameter. For QPSK input and ρ0 = 3, we have

κ = 0.3528, a = 1.1327, α = 1.585.

The optimization problem (7) is approximated by⎧⎨
⎩

Maximize
∑B

b=1 Iref(pbγb)
Subject to

∑B
b=1 pb ≤ BP

pb ≥ 0, b = 1, . . . , B.

(24)

The refined truncated water-filling scheme pref(γ) is given by

the following lemma.

Lemma 5: A solution to problem (24) is

pref
b =

β

γb
, b = 1, . . . , B, (25)

if
∑B

b=1
β
γb

< BP , and otherwise, for b = 1, . . . , B,

pref
b =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β
γb

, η ≥ β
κγb

κη, α
κγb

≤ η < β
κγb

α
γb

, α+1
γb

≤ η < α
κγb

η − 1
γb

, 1
γb

≤ η < α+1
γb

0, otherwise,

(26)

where η is chosen such that

B∑
b=1

pref
b = BP. (27)

The refined truncated water-filling scheme provides signif-

icant gain over the truncated water-filling scheme, especially

when the transmission rate requires relatively large β to main-

tain the outage diversity. The dashed-dotted lines in Figure 2

show the outage performance of the refined truncated water-

filling scheme for block-fading channels with B = 4, QPSK

P (dB)

P
ou

t(
p
,R

)

R=0.5 R=1.0 R=1.5

Fig. 2. Outage performance of various short-term power allocation schemes
for QPSK-input block-fading channels with B = 4 and Rayleigh fading. The
solid-lines represent optimal scheme; the solid lines with � represent uniform
power allocation; the dashed lines and dashed-dotted lines correspondingly
represent truncated water-filling and its refinement with β = 15.

input under Rayleigh fading. The refined truncated water-

filling scheme performs very close to the optimal case even

at the rates where the Singleton bound is discontinuous, i.e.

rates R = 0.5, 1.0, 1.5. The performance gains of the refined

scheme over the truncated water-filling scheme at other rates

are also illustrated by the dashed-dotted lines in Figure 1.

V. LONG-TERM POWER ALLOCATION

We consider systems with long-term power constraints, in

which the expectation of the power allocated to each block

(over infinitely many codewords) does not exceed P . This

problem has been investigated in [4] for block-fading channels

with Gaussian inputs. In this section, we obtain similar results

for channels with discrete inputs, and propose suboptimal

schemes that reduce the complexity of the algorithm.

A. Optimal Long-Term Power Allocation

Following [4], the problem can be formulated as{
Minimize Pr(IB(plt(γ),γ) < R)
Subject to E [〈plt(γ)〉] ≤ P,

(28)

where 〈p〉 = 1
B

∑B
b=1 pb.

The following theorem shows that the structure of the

optimal long-term solution popt
lt (γ) of [4] for Gaussian inputs

is generalized to the discrete-input case.

Theorem 1: Problem (28) is solved by popt
lt (γ) given by

popt
lt (γ) =

{
℘opt(γ), if γ ∈ R(s�)
0, if γ /∈ R(s�),

(29)

while if γ ∈ R(s�) \ R(s�) then popt
lt (γ) = ℘(γ) with

probability w� and popt
lt (γ) = 0 with probability 1−w�, where

℘(γ) is the solution of the following optimization problem⎧⎨
⎩

Minimize 〈℘〉
Subject to

∑B
b=1 IX (℘bγb) ≥ BR

℘b ≥ 0, b = 1, . . . , B,

(30)
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and R(s),R(s), s�, w� are defined as follows

R(s) = {γ ∈ R
B
+ : 〈℘opt(γ)〉 < s} (31)

R(s) = {γ ∈ R
B
+ : 〈℘opt(γ)〉 ≤ s} (32)

s� = sup{s : P (s) < P} (33)

w� =
P − P (s�)

P (s�) − P (s�)
, (34)

where2

P (s) = Eγ∈R(s)

[〈℘opt(γ)〉] , (35)

P (s) = Eγ∈R(s)

[〈℘opt(γ)〉] , (36)

and ℘opt(γ) is the solution of (30) given by

℘opt
b =

{
1
γb

MMSE−1
X

(
1

ηγb

)
, η ≥ 1

γb

0, otherwise
(37)

for b = 1, . . . , B, where η is chosen such that

B∑
b=1;γb≥ 1

η

IX

(
MMSE−1

X

(
1

ηγb

))
= BR. (38)

As in the Gaussian input case [4], the optimal power allo-

cation scheme either transmits with the minimum power that

enables transmission at the target rate, or turns off transmission

(allocating zero power) when the channel realization is bad.

Therefore, there is no power wastage on outage events.

The solid lines in Figure 3 illustrates the outage perfor-

mance of optimal long-term power allocation schemes for

transmission over 4-block block-fading channels with QPSK-

input and Rayleigh fading. The simulation results suggest

that for communication rates where dB(R) > 1, zero outage

probability can be obtained with finite power. This agrees to

the results obtained for block-fading channels with Gaussian

inputs [4], where only for B > 1 zero outage was possible.

B. Suboptimal Long-Term Power Allocation

In the optimal long-term power allocation scheme popt
lt (γ)

given in Theorem 1, w�, s� can be evaluated offline for any

fading distribution. Therefore, given an allocation scheme

℘opt(γ), the complexity required to evaluate popt
lt (γ) is

low. Thus, the complexity of the long-term power allocation

scheme is mainly due to the complexity of evaluating ℘opt(γ),
which requires the evaluation or storage of MMSEX (ρ) and

IX (ρ). In this section, we propose suboptimal long-term power

allocation schemes by replacing ℘opt(γ) with simpler power

allocation algorithms.

A long-term power allocation scheme plt(γ) corresponding

to an arbitrary ℘(γ) is obtained by replacing ℘opt(γ) in

(29), (31)–(36) with ℘(γ). From (29), (31)–(36), the long-

term power allocation scheme plt(γ) satisfies

E [〈plt(γ)〉] =Eγ∈R(s�) [〈plt(γ)〉] (39)

+ w�
Eγ∈R(s�)\R(s�) [plt(γ)] (40)

=P (s�) + w�
(
P (s�) − P (s�)

)
= P (41)

2For simplicity, for a random variable ξ with pdf fξ(ξ), we denote

Eξ∈A[g(ξ)] � R
ξ∈A g(ξ)fξ(ξ)dξ.

Therefore, a long-term power allocation schemes correspond-

ing to an arbitrary ℘(γ) is suboptimal with respect to popt
lt (γ).

Following the transmission strategy in the optimal scheme,

we consider the power allocation schemes ℘(γ) that satisfy

the rate constraint IB(℘(γ),γ) ≥ R to avoid wasting power

on outage events. These schemes are suboptimal solutions of

problem (30). Based on the short-term schemes, two simple

rules are discussed in the next subsections.

1) Long-term truncated water-filling scheme: Similar to

the short-term truncated water-filling scheme, we consider

approximating IX (ρ) in (30) by Itw(ρ) in (13), which results

in the following problem⎧⎨
⎩

Minimize 〈℘(γ)〉
Subject to

∑B
b=1 Itw(℘bγb) ≥ BR

℘b ≥ 0, b = 1, . . . , B.

(42)

The solution of (42) is given by

℘b = min

{
β

γb
,

(
η − 1

γb

)
+

}
, b = 1, . . . , B, (43)

where η is chosen such that

B∑
b=1

log2(1 + ℘bγb) = BR. (44)

Note that since Itw(ρ) upperbounds IX (ρ), ℘(γ) does not

satisfy the rate constraint IB(℘(γ),γ) ≥ R. By adjusting η,

we can obtain a suboptimal ℘tw(γ) of ℘opt(γ) as follows

℘tw
b = min

{
β

γb
,

(
η − 1

γb

)
+

}
, b = 1, . . . , B, (45)

where η is chosen such that

B∑
b=1

IX (℘tw
b γb) = BR. (46)

Using this scheme, we obtain a power allocation ptw
lt (γ),

which is the long-term power allocation scheme corresponding

to the suboptimal ℘tw(γ) of ℘opt(γ). The performance of the

scheme is illustrated by the dashed lines in Figure 3.

2) Refinement of the long-term truncated water-filling: In

order to improve the performance of the suboptimal scheme,

we approximate IX (ρ) by Iref(ρ) given in (23). Replacing

IX (ρ) in (30) by Iref(ρ), we have the following problem⎧⎨
⎩

Minimize 〈℘(γ)〉
Subject to

∑B
b=1 Iref(℘bγb) ≥ BR

℘b ≥ 0, b = 1, . . . , B.

(47)

Following the same steps as in Section V-B.1, the suboptimal

℘ref(γ) of ℘opt(γ) is given as

℘ref
b =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β
γb

, η ≥ β
κγb

κη, α
κγb

≤ η ≤ β
κγb

α
γb

, α+1
γb

≤ η ≤ α
κγb

η − 1
γb

, 1
γb

≤ η ≤ α+1
γb

0, otherwise,

(48)
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where η is chosen such that

B∑
b=1

IX (℘ref
b γb) = BR. (49)

The performance of the long-term power allocation corre-

sponding to ℘ref(γ), pref
lt (γ), is illustrated by the dashed-

dotted lines in Figure 3.

3) Approximation of IX (ρ): The suboptimal schemes in the

previous sections perform close to optimality, and are simpler

than the optimal scheme. However, the suboptimal schemes

still require the implementation or storage of IX (ρ) to compute

η. This can be avoided by using approximations of IX (ρ).
Let ĨX (ρ) be an approximation of IX (ρ) and the rate error

ΔR = maxρ{ĨX (ρ)−IX (ρ)}. Then, for a suboptimal scheme

℘(γ), η chosen such that

B∑
b=1

ĨX (℘bγb) = B(R + ΔR) (50)

satisfies the rate constraint since

B∑
b=1

IX (℘bγb) ≥
B∑

b=1

ĨX (℘bγb) − BΔR = BR. (51)

Following [10], we use the approximation for IX (ρ)

ĨX (ρ) = M
(
1 − e−c1ρc2

)c3

. (52)

For channels with QPSK input, using numerical optimization

to minimize the mean squared error between IX (ρ) and ĨX (ρ),
we obtain c1 = 0.77, c2 = 0.87, c3 = 1.16 and ΔR = 0.0033.

Using this approximation to evaluate η in subsections V-B.1

and V-B.2, we arrive at much less computationally demanding

power allocation schemes with little loss in performance.

We finally illustrate in Figure 4 the significant gains achiev-

able by the long-term schemes when compared to short-

term. As remarked in [4], remarkable gains are possible with

Gaussian inputs (11dB at 10−4). As shown in the figure,

similar gains (12dB at 10−4) are also achievable by discrete

inputs. Note that, due to the Singleton bound, the slope of the

discrete-input short-term curves is not as steep as the slope of

the corresponding Gaussian input curve.

VI. CONCLUSION

We considered power allocation schemes for discrete-input

block-fading channels with transmitter and receiver CSI under

short- and long-term power constraints. We have studied

optimal and low-complexity sub-optimal schemes, and have

illustrated the corresponding performances, showing that min-

imal loss is incurred when using the sub-optimal schemes.
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[7] E. Malkamäki and H. Leib, “Coded diversity on block-fading channels,”
IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 771–781, Mar. 1999.
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