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Abstract—This paper studies a random coding ensemble in
which each codeword is constrained to satisfy multiple cost
constraints. Using this ensemble, an achievable second-order
coding rate is presented for the mismatched single-user channel.
Achievable error exponents are given for the mismatched single-
user channel and the matched multiple-access channel.

I. INTRODUCTION

The method of random coding is a ubiquitous tool in
information theory for proving the existence of codes with
a vanishing error probability. In particular, the i.i.d. random-
coding ensemble introduced by Shannon [1] has found use in
a vast range of settings [2], [3]. An alternative ensemble is the
constant-composition ensemble [4], [5], in which each code-
word has the same empirical distribution. In many settings, this
ensemble yields performance gains over the i.i.d. ensemble.
For example, for a given input distribution it is known that
the error exponent for the constant-composition ensemble can
exceed that of the i.i.d. ensemble [4]. For the multiple-access
channel (MAC), the constant-composition ensemble can yield
strictly higher error exponents than the i.i.d. ensemble even
after the full optimization of the input distributions [6]. Finally,
in the setting of mismatched decoding, in which the decoding
rule is fixed and only the codebook is optimized, constant-
composition random coding not only yields a higher error
exponent, but also an improved achievable rate [7].

The cost-constrained i.i.d. ensemble, in which each code-
word is randomly generated conditioned on a cost constraint
being satisfied, was originally used for settings in which each
codeword must satisfy a given system cost (e.g. a power
constraint) [8, Ch. 7]. More recently, this ensemble has proved
useful as an alternative method for achieving the performance
gains of constant-composition codes over i.i.d. codes. For
example, the above-mentioned gain in the achievable rate
under mismatched decoding can be obtained using the cost-
constrained i.i.d. ensemble [9]. In this setting, the cost con-
straint can be seen as a pseudo-cost which is used to improve
the performance of the random-coding ensemble. In contrast,
system costs are given as part of the problem statement.

In the above applications, the cost-constrained i.i.d. ensem-
ble typically contains only a single cost constraint. In this
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paper, we consider a similar ensemble with multiple cost
constraints. We show that this generalization has many applica-
tions in which the performance gains of constant-composition
codes can be matched in the discrete memoryless setting, and
generalized to infinite and continuous alphabets. In each case,
the performance of constant-composition coding is obtained
using a fixed number of cost functions which is independent
of the alphabet sizes. We present an achievable second-order
coding rate under mismatched decoding, and give achievable
error exponents for both the mismatched single-user channel
and the matched MAC.

Notation

The probability of an event is denoted by P[·]. The symbol
∼ means “distributed as”. The marginals of a joint distribution
PXY (x, y) are denoted by PX(x) and PY (y). For a distribu-
tion PX(x), expectations are denoted by EP [·], or simply E[·]
when the distribution is understood from the context.

Throughout the paper, we use summations when writing
expectations explicitly (e.g. E[g(X)] =

∑
x PX(x)g(x)).

However, it should be noted that the alphabets are not assumed
to be finite, and the results apply to continuous alphabets when
the summations are replaced by integrals.

Given a distribution Q(x) and a conditional distribution
W (y|x), we write Q × W to denote the joint distribution
Q(x)W (y|x). Mutual information with respect to a joint
distribution PXY (x, y) is written as IP (X;Y ). All logarithms
have base e, and all rates are in units of nats. We denote the
indicator function by 11{·}.

For two functions f(n) and g(n), we write f(n) = O(g(n))
if f(n) ≤ cg(n) for some constant c and for sufficiently large
n. We write f(n) = Ω(g(n)) if g(n) = O(f(n)), and f(n) =

o(g(n)) if f(n)
g(n) → 0.

II. RANDOM-CODING ENSEMBLE

In this paper, we are interested in setups involving block
coding, in which an encoder selects a message m equiprobably
from the set {1, . . . ,M} and transmits the corresponding
codeword x(m) from a codebook C = {x(1), . . . ,x(M)}.
We consider random coding, in which each codeword is
independently generated according to a distribution PX(x).

The cost-constrained i.i.d. ensemble with L cost constraints
is given by

PX(x) =
1

µn

n∏
i=1

Q(xi)11
{
x ∈ Dn

}
, (1)



where

Dn
4
=

{
x :

∣∣∣∣ 1n
n∑
i=1

al(xi)− φl
∣∣∣∣ ≤ δ

n
, l = 1, . . . , L

}
, (2)

and where µn is a normalizing constant, δ is a positive constant
(independent of n), and for each l ∈ {1, . . . , L}, al(·) is
a cost function and φl

4
= EQ[al(X)]. Roughly speaking,

each codeword is generated according to an i.i.d. distribution
conditioned on 1

n

∑
i al(xi) being close to its mean for all l.

The ensemble described by (1)–(2) can be generalized in
several ways. The constant δ could vary with both n and l,
but a fixed value will suffice for our purposes. More generally,
one could consider constraints of the form

δ′l,n
n
≤ 1

n

n∑
i=1

al(xi)− φl ≤
δ′′l,n
n
. (3)

In particular, the choice δ′′l,n = 0 is relevant in the case
that each codeword is constrained to satisfy a system cost
[8]. The results of this paper can easily be extended to this
setting. However, our focus is on the improvements obtained
by introducing pseudo-costs, and thus we do not include
system costs in the problem formulation.

If |X | is finite, then the constant-composition ensemble is
a special case of the above ensemble, since it is obtained by
setting L = |X | − 1 and δ < 1 for all l, and choosing the
cost functions a1 = (1, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), etc.
However, we will see that many of the performance gains
of constant-composition codes can be obtained using a fixed
number of cost functions which is independent of |X |.

The following proposition shows that µn decays polyno-
mially in n. This result will prove to be important for the
applications presented in the later sections. A proof for the
case L = 1 is given in [8], [10].

Proposition 1. If the second moment of al(X) is finite under
X ∼ Q for all l = 1, . . . , L, then µn = Ω(n−L/2).

Proof: We extend the steps of [10, Eq. (88)] to
the multidimensional setting. Defining the vectors a(x) =
(a1(x), . . . , aL(x))T and φ = (φ1, . . . , φL)T , we have

µn = P
[
− δ√

n
1 � 1√

n

(
a(X)− φ

)
� δ√

n
1

]
, (4)

where � denotes element-wise inequality and 1 is the vector
of ones. We define Σ to be the covariance matrix of a(X)−
φ. We can assume without loss of generality that det(Σ) >
0, since otherwise we can reduce the evaluation of µn to a
lower dimension.1 Since each φl and σ2

l

4
= E[(al(X)− φl)2]

is finite by assumption, we can apply the multidimensional
central limit theorem [11], yielding

µn → P
[
− δ√

n
1 � Z � δ√

n
1

]
, (5)

1This statement may not be true in general under constraints of the form
(3). A simple counter-example is given by L = 2, δ′′1,n = δ′′2,n = 0, and
a1(x) = −a2(x), yielding an overall constraint of 1

n

∑n
i=1 a1(xi) = φ1.

where Z ∼ N (0,Σ) has density

fZ(z) =
1

(2π)L/2 det(Σ)1/2
exp

(
− 1

2
zTΣ−1z

)
. (6)

To approximate (5), we use the fact that fZ(z) approaches
1

(2π)L/2 det(Σ)1/2
as each entry of z tends to zero, and hence

µn →

(
2δ√
n

)L
(2π)L/2 det(Σ)1/2

(7)

since
(

2δ√
n

)L
is the area of the region over which the

integration is being performed. Equations (5) and (7) can be
made more precise by using the Berry-Esseen theorem [11],
yielding the growth of Ω(n−L/2) in (7).

III. SECOND-ORDER CODING RATE FOR MISMATCHED
DECODING

In this section, we consider the problem of channel coding
with a given decoding rule (mismatched decoding) [7], [9].
We consider block coding, as described at the beginning of
Section II. Upon receiving the signal y at the output of the
memoryless channel W (y|x), the decoder forms the estimate2

m̂ = arg max
j

n∏
i=1

q(x
(j)
i , yi), (8)

where q(x, y) is a given (possibly suboptimal) non-negative
decoding metric, and x

(j)
i (respectively, yi) denotes the i-

th entry of x(j) (respectively, y). An error is said to have
occurred if m̂ 6= m. We say that (M,n, ε) is achievable if
there exists a code with M codewords of block length n with
average error probability under the decoding metric q(x, y) not
exceeding ε. For a given error probability ε and block length
n, the largest M such that (M,n, ε) is achievable is denoted
by M∗(n, ε). We say that R is an achievable rate if

logM∗(n, ε) ≥ nR− o(n)

for all ε ∈ (0, 1).
For memoryless channels, cost-constrained coding can be

used to prove the achievability of the LM rate [9], given by

ILM(Q)
4
= sup
s≥0,a(·)

E
[
log

q(X,Y )sea(X)

E[q(X,Y )sea(X) |Y ]

]
, (9)

where Q is an arbitrary input distribution. In this section,
we show that multiple cost constraints can be used to obtain
a corresponding achievable second-order coding rate; this
statement is made more precise in Theorem 1 below.

We fix an input distribution Q(x) and define the quantities

is,a(x, y)
4
= log

q(x, y)sea(x)

E[q(X, y)sea(X)]
(10)

Is,a(Q)
4
= E[is,a(X,Y )] (11)

2Our analysis is unaffected under any method for breaking ties, since we
upper bound the error probability by that of the decoder which decodes ties
as errors.



Vs,a(Q)
4
= E

[
Var[is,a(X,Y ) |X]

]
, (12)

where (X,Y,X) ∼ Q(x)W (y|x)Q(x). The quantity is,a can
be viewed as a generalized information density, since the
information density [12] is recovered by substituting s = 1,
a(x) = 0 and q(x, y) = W (y|x). We observe that Is,a(Q)
coincides with ILM(Q) after the optimization of s and a.

We further define

is,a(x)
4
= E[is,a(x, Y )] (13)

vs,a(x)
4
= Var[is,a(x, Y )] (14)

ts,a(x)
4
= E[|is,a(x, Y )− Is,a(Q)|3], (15)

where each expectation is taken with respect to W (·|x).
We write is,a(x,y) as a shorthand for

∑n
i=1 is,a(xi, yi),

and similarly for al(x), vs,a(x) and ts,a(x). Similarly, we
write q(x,y), W (y|x) and Q(x) to denote the multiplica-
tive extension of the single-letter definition (e.g. q(x,y) =∏n
i=1 q(xi, yi)). We define the random variables

(X,Y ,X) ∼ PX(x)W (y|x)PX(x) (16)

The following assumption on Q, W , s and a will be used.
Assumption 1. Let X ′ ∼

∏n
i=1Q(x′i). For any δv > 0

(independent of n), vs,a satisfies

P
[ 1

n
vs,a(X ′)− Vs,a(Q) ≥ δv

]
= o
( 1

n

)
(17)

and for some δt <∞ (independent of n), ts,a satisfies

P
[ 1

n
ts,a(X ′)− EQ[ts,a(X)] ≥ δt

]
= o
( 1

n

)
. (18)

The right-hand sides of (17)–(18) are written as o
(

1
n

)
for the

sake of generality. To fulfill the assumption, it clearly suffices
for the left-hand sides of (17)–(18) to be O(e−ψn) for some
constant ψ. By Hoeffding’s inequality [11], this occurs when
vs,a(x) and ts,a(x) are bounded, which in turn occurs in the
discrete memoryless setting. From [13, Ex. 2.1.6], a more
general sufficient condition is that vs,a(X) and ts,a(X) are
sub-Gaussian under X ∼ Q, i.e. P[vs,a(X) ≥ v] ≤ Ae−cv

2

for some constants A and c, and similarly for ts,a.
In the following theorem, Q−1(·) denotes its functional

inverse of Q(·), defined to be the upper tail probability of
a zero-mean unit-variance Gaussian random variable.

Theorem 1. For any s > 0, a(x) and distribution Q(x),
M∗(n, ε) satisfies

logM∗(n, ε) ≥ nIs,a(Q)

−
√
nVs,a(Q)Q−1(ε) + o(

√
n) (19)

provided that, under (X,Y ) ∼ Q ×W , the second moment
of a(X) is finite, the third absolute moment of is,a(X,Y ) is
finite, and Assumption 1 holds.

Proof: We set L = 2 and choose the cost functions

a1(x) = a(x) (20)

a2(x) = is,a(x). (21)

By the assumptions on the moments of a(x) and is,a(x, y),
and using Proposition 1, we obtain µn = Ω(n−1).

The random-coding union (RCU) bound for mismatched
decoders [14], [15] can be written as

pe ≤ E
[

min
{

1, (M − 1) (22)

× P[is,a(X,Y )− a(X) ≥ is,a(X,Y )− a(X) |X,Y ]
}]

≤ E
[

min
{

1, (M − 1) (23)

× P[is,a(X,Y ) ≥ is,a(X,Y )− 2δ |X,Y ]
}]

≤ P
[
is,a(X,Y ) ≤ γ + 2δ

]
+ (M − 1)P

[
is,a(X,Y ) > γ

]
,

(24)

where (23) follows from the bounds on a(x) and a(x) given
in the constraint set in (2), and (24) follows by upper bounding
the minimum in (22) by 1 when is,a(X,Y ) ≤ γ+2δ, and by
the second term otherwise. The first probability in (24) can be
upper bounded as

P
[
is,a(X,Y ) ≤ γ + 2δ

]
(25)

≤ P
[
X /∈ An] + max

x∈An
P
[
is,a(x,Y ) ≤ γ + 2δ

]
, (26)

where the set An is arbitrary. We fix δv > 0 and δt <∞ (the
latter satisfying (18) in Assumption 1) and choose

An
4
=

{
x ∈ Dn : vs,a(x) ≤ n

(
Vs,a(Q) + δv

)
,

ts,a(x) ≤ n
(
EQ[ts,a(X)] + δt

)}
. (27)

We thus have from the union bound that

P
[
X /∈ An] ≤ P

[
vs,a(X) > n

(
Vs,a(Q) + δv

)]
(28)

+ P
[
ts,a(X) > n

(
EQ[ts,a(X)] + δt

)]
≤ 1

µn
P
[
vs,a(X ′) > n

(
Vs,a(Q) + δv

)]
(29)

+
1

µn
P
[
ts,a(X ′) > n

(
EQ[ts,a(X)] + δt

)]
= o(1), (30)

where (29) follows from (1) and by defining X ′ ∼∏n
i=1Q(x′i), and (30) follows since µn = Ω(n−1) and by

Assumption 1. Combining (26) and (30), we obtain

P
[
is,a(X,Y ) ≤ γ+2δ

]
≤ max

x∈An
P
[
is,a(x,Y ) ≤ γ+2δ

]
+o(1).

(31)
The second probability in (24) can be written as∑
x,y

PX(x)PY (y)1{is,a(x,y) > γ} (32)

≤ 1

µn

∑
x,y

Q(x)PY (y)1{is,a(x,y) > γ} (33)

≤ 1

µn

∑
x,y

Q(x)PY (y)
q(x,y)sea(x)∑

x′ Q(x′)q(x′,y)sea(x′)
e−γ (34)

=
1

µn
e−γ , (35)



where (33) follows by substituting the definition of the
random-coding ensemble and by summing over all x (rather
than just x ∈ Dn), and (34) follows by using the definition of
is,a and upper bounding the indicator function.

In order to apply the Berry-Esseen theorem [11] to (31),
we must bound the relevant first, second and third moments
associated with is,a(x,Y ) for x ∈ An. The second and third
moments are already bounded by the definition of An in (27);
recall also that the third absolute moment of is,a(X,Y ) is
finite by assumption. For the first moment, we have

E[is,a(x,Y )] = nIs,a(Q) +O(1) (36)

for all x ∈ Dn, which follows from the choice of a2 in (21)
and the definitions of is,a(x) and Dn. Applying the Berry-
Esseen theorem accordingly and using an identical argument
to [16, Theorem 1], we obtain from (24), (31) and (35) that

logM∗(n, ε) ≥ nIs,a(Q)

−
√
n
(
Vs,a(Q) + δv

)
Q−1(ε) + o(

√
n). (37)

The proof follows by taking δv → 0 and applying a first-order
Taylor expansion to the square root.

In the discrete memoryless setting, the expansion in (19)
can be obtained using constant-composition random coding by
following the analysis of [16]. The proof of Theorem 1 shows
that the same expansion is obtained using cost-constrained
coding with L = 2.

Under suitable technical assumptions, the term o(
√
n) in

(19) can be improved to O(log n). If the assumption in (17)
is replaced by the assumption that

P
[ 1

n
vs,a(X ′)− Vs,a(Q) ≥ δv,n

]
= O

( log n

n
√
n

)
(38)

for some δv,n = O
(

logn√
n

)
, then this improvement is obtained

using identical steps to Theorem 1. Alternatively, one can
set L = 3 and let a3(x) = vs,a(x), thus ensuring that
Var[is,a(x,Y )] is close to its mean, similarly to E[is,a(x,Y )]
in (36). In this case, Proposition 1 requires that the variance
of vs,a(X) is finite, which follows provided that the fourth
moment of is,a(X,Y ) is finite. We no longer require (17)
to hold, but the right-hand side of (18) must be replaced by
O
(

logn
n2

)
in order to achieve the third-order O(log n) term.

Assuming the supremum is achieved in (9), the best asymp-
totic expansion in (19) for a given Q is obtained by letting
(s, a) be a pair which maximizes Is,a(Q). If multiple such
(s, a) exist and ε < 1

2 , the best expansion is obtained by
choosing the one which minimizes Vs,a(Q). In any case, one
must ensure that the resulting (s, a) are such that the assump-
tions of Theorem 1 are satisfied. In the discrete memoryless
setting, this is always the case.

IV. ERROR EXPONENT FOR MISMATCHED DECODING

In this section, we use the cost-constrained ensemble with
multiple constraints to obtain an achievable error exponent for
mismatched decoding. More formally, we consider the same
setting as Section III, and we say that E(R) is an achievable

error exponent if there exists a sequence of codebooks of
length n and rate R whose error probability satisfies

lim
n→∞

− 1

n
log pe ≥ E(R) (39)

under the decoding metric q(x, y). We henceforth write
f({al}) to denote a function f which depends on the cost
functions a1, . . . , aL.

Theorem 2. Fix any distribution Q and cost functions
{al}Ll=1. If the second moment of al(X) is finite for all
l = 1, . . . , L, then an achievable error exponent is given by

Ecost
r (Q,R, {al}) = max

ρ∈[0,1]
Ecost

0 (Q, ρ, {al})− ρR, (40)

where

Ecost
0 (Q, ρ, {al})

4
= sup
s≥0,{rl},{rl}

− logE

[(
E
[
q(X,Y )se

∑L
l=1 rl(al(X)−φl) |Y

]
q(X,Y )se

∑L
l=1 rl(al(X)−φl)

)ρ]
. (41)

Proof: Applying Markov’s inequality and min{1, α} ≤
αρ (ρ ∈ [0, 1]) to (22), we obtain

pe ≤
1

µ1+ρ
n

Mρ
∑

x∈Dn,y
Q(x)W (y|x)

×
(∑

x∈Dn Q(x)q(x,y)s

q(x,y)s

)ρ
(42)

for any ρ ∈ [0, 1] and s ≥ 0. It follows from (2) that each
codeword x ∈ Dn satisfies

exp
(
rl(al(x)− nφl)

)
≤ e|rl|δ (43)

for any real number rl. Thus, combining (42) with (43), we
obtain

pe ≤
eρ

∑
l(|rl|+|rl|)δ

µ1+ρ
n

Mρ
∑
x

Q(x)W (y|x)

×
(∑

xQ(x)q(x,y)se
∑
l rl(al(x)−nφl)

q(x,y)se
∑
l rl(al(x)−nφl)

)ρ
(44)

for any real numbers {rl} and {rl}, where we have replaced
the summations over Dn with summations over all sequences.
Expanding each term in the summation as product from 1
to n, and noting from Proposition 1 that µn decays to zero
subexponentially in n, we obtain the exponent in (40)–(41).

In [15], the present authors derived Ecost
r in the discrete

memoryless setting using the method of types and Lagrange
duality. Connections were drawn between Ecost

r and the expo-
nent Ecc

r for constant-composition random coding, given by

Ecc
r (Q,R)

4
= max
ρ∈[0,1]

Ecc
0 (Q, ρ)− ρR (45)



Ecc
0 (Q, ρ)

4
= sup
s≥0,a(·)

E

[
− logE

[(
E
[
q(X,Y )sea(X) |Y

]
q(X,Y )sea(X)

)ρ ∣∣∣∣X]
]
. (46)

In particular, it was shown that Ecc
r ≥ Ecost

r , with equality
when L = 2 suitably chosen cost functions are used. In the
remainder of this section, we give a direct derivation of Ecc

r

using cost-constrained coding, again using L = 2. As was
done in [15], we let one of the cost functions play the role
of a(x) in (46). In contrast to [15], we also give an explicit
formula for the second cost function in terms of the first.

Fix the input distribution Q, and the parameters ρ ∈ [0, 1],
s ≥ 0 and a(x). We set a1(x) = a(x) and

a2(x) = log
∑
y

W (y|x)

(∑
x

Q(x)
(q(x, y)

q(x, y)

)s ea(x)

ea(x)

)ρ
.

(47)
Combining (42) and (43), pe is upper bounded by

e2ρδ

µρn

∑
x,y

PX(x)W (y|x)

(
M
∑
x

Q(x)
(q(x,y)

q(x,y)

)s ea(x)

ea(x)

)ρ
(48)

≤ e2ρδ

µρn
Mρ max

x∈Dn

∑
y

W (y|x)

(∑
x

Q(x)
(q(x,y)

q(x,y)

)s ea(x)

ea(x)

)ρ
.

(49)

We write the summation in (49) as

exp

(
log
∑
y

W (y|x)

(∑
x

Q(x)
(q(x,y)

q(x,y)

)s ea(x)

ea(x)

)ρ)
.

(50)
The constraint on a2(x) in the definition of Dn implies that,
for all x ∈ Dn, the logarithm in (50) differs from its mean
by no more than δ. Expanding each term in the logarithm as
a product from 1 to n, we see that this mean is simply nEcc

0 ,
and thus (50) is upper bounded by

exp
(
nEcc

0 (Q, ρ) + δ
)
. (51)

The derivation is concluded by substituting (51) into (49) and
using Proposition 1, and maximizing over ρ ∈ [0, 1], s ≥
0 and a. In the case of infinite or continuous alphabets, the
supremum in (46) is restricted to parameters such that the
resulting second moments of a1(X) = a(X) and a2(X) are
finite under X ∼ Q, in accordance with Proposition 1.

V. ERROR EXPONENT FOR THE MULTIPLE-ACCESS
CHANNEL

In this section, we consider the MAC with two users. Given
the codebooks Cν = {x(1)

ν , . . . .,x
(M)
ν } (ν = 1, 2), user ν

transmits the codeword x(mν)
ν corresponding to a randomly

chosen message mν . Upon receiving the output signal y at the
output of the (memoryless) channel W (y|x1, x2), the decoder
forms the estimate (m̂1, m̂2). We limit our attention to the
unconstrained memoryless MAC with maximum-likelihood
(ML) decoding. Extensions to the constrained and mismatched

settings are possible, though the analysis in the latter setting
is somewhat more involved (e.g. see [17]).

We use similar terminology to the single-user setting for the
achievability of rate pairs and error exponents (e.g. see [18]).
We focus on random coding in the absence of time-sharing,
and outline the corresponding results with time-sharing in
Remark 1. Thus, we consider random coding of the form

PXν (xν) =
1

µν,n

n∏
i=1

Qν(xν,i)11
{
xν ∈ Dν,n

}
, (52)

where

Dν,n
4
=

{
xν :

∣∣∣∣ 1n
n∑
i=1

aν,l(xν,i)− φν,l
∣∣∣∣ ≤ δ

n
, l = 1, . . . , Lν

}
(53)

for ν = 1, 2, and where each quantity is defined analogously to
(1)–(2). For user ν, we randomly and independently generate
Mν = enRν codewords according to PXν

(xν).
We split the error event into three types:
(Type 1) m̂1 6= m1 and m̂2 = m2

(Type 2) m̂1 = m1 and m̂2 6= m2

(Type 12) m̂1 6= m1 and m̂2 6= m2

The random-coding error probabilities of these events are
denoted by pe,1, pe,2 and pe,12 respectively. To ease the
notation, we write f(Q) to denote a function which depends
on the input distributions Q1 and Q2.

The following theorem states an achievable random-coding
error exponent for the above ensemble. In the proof, we first
obtain an error exponent for a general choice of L1 and L2,
and then show that it is maximized by choosing L1 = L2 = 3
and optimizing the corresponding cost functions.

Theorem 3. For any (Q1, Q2), an achievable error exponent
for the memoryless MAC is given by

Er(Q, R1, R2)
4
=

min
{
Er,1(Q, R1), Er,2(Q, R2), Er,12(Q, R1, R2)

}
, (54)

where

Er,1(Q, R1)
4
= sup
ρ∈[0,1]

E0,1(Q, ρ)− ρR1 (55)

Er,2(Q, R2)
4
= sup
ρ∈[0,1]

E0,2(Q, ρ)− ρR2 (56)

Er,12(Q, R1, R2)
4
= sup
ρ∈[0,1]

E0,12(Q, ρ)−ρ(R1 +R2) (57)

E0,1(Q, ρ)
4
= sup
a1(·),a2(·)

− log
∑
x2,y

Q2(x2)

×
(∑

x1

Q1(x1)W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

(58)



E0,2(Q, ρ)
4
= sup
a1(·),a2(·)

− log
∑
x1,y

Q1(x1)

×
(∑

x2

Q2(x2)W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

(59)

E0,12(Q, ρ)
4
= sup
a1(·),a2(·)

− log
∑
y

( ∑
x1,x2

Q1(x1)Q2(x2)

×W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

. (60)

Each supremum over aν is taken over all functions such that
the second moment of aν(Xν) is finite under Xν ∼ Qν .

Proof: We first analyze the cost-constrained i.i.d. en-
semble for a given L1 and L2. Each error event is handled
similarly, so we focus on the type-12 event. We analyze a
straightforward extension of the RCU bound [19], given by

pe,12 ≤ E
[

min
{

1, (M1 − 1)(M2 − 1)

× P
[
W (Y |X1,X2) ≥W (Y |X1,X2) |X1,X2,Y

]}]
.

(61)

Applying analogous steps to the proof of Theorem 2, we obtain
the E0 function

E0,12(Q, ρ, {al})
4
= − log

E

[(
E
[
W (Y |X1, X2)se

∑2
ν=1

∑Lν
l=1 rν,l

(
aν,l(xν)−φν,l

) ∣∣Y ]
W (Y |X1, X2)se

∑2
ν=1

∑Lν
l=1 rν,l

(
aν,l(xν)−φν,l

) )ρ]
(62)

for arbitrary constants {rν,l} and {rν,l}. Using Hölder’s in-
equality similarly to [8, Ex. 5.6], we can lower bound the
expectation in (62) by∑

y

( ∑
x1,x2

Q1(x1)Q2(x2)

×W (y|x1, x2)
1

1+ρ e
∑2
ν=1

∑Lν
l=1 rν,l

(
aν,l(xν)−φν,l

))1+ρ

(63)

and obtain the parameters s = 1
1+ρ and rν,l =

−rν,l
ρ (for all

ν, l) achieving this bound. Similar E0 functions are obtained
for the type-1 and type-2 events.

To obtain (58)–(60), we set L1 = L2 = 3 and choose rν,l
as follows. For ν = 1, 2, we let rν,l = 1 for one value of l,
and rν,l = 0 for the other two values of l. Since there are
three error events and three cost functions per user, a different
cost function can be used for each error event. Using this
observation and optimizing each cost function accordingly,
we obtain (58)–(60). We can do no better by introducing
further cost functions, since for ν = 1, 2 any sum of cost
functions aν,l(xν) weighted by rν,l in (63) can be replaced
by an equivalent single cost function

∑
l rν,laν,l(xν).

Remark 1. It is well known that time-sharing can improve both
the achievable rates and error exponents of the MAC [6], [18].

The cost-constrained ensemble can be adjusted to allow for
time-sharing as follows. Fix a finite time-sharing alphabet U , a
time-sharing sequence u ∈ Un with empirical distribution QU ,
and the input distributions Q1(x1|u) and Q2(x2|u). The cost
constraints are of the same form as (53), where the empirical
average of a(u, xν) is constrained to be close to its average
E[a(U,Xν)]. Following the proof of Theorem 3, we obtain
E0 functions of the form E0 =

∑
uQU (u)E

(u)
0 , where E(u)

0

is the E0 function in Theorem 3 associated with Q1(·|u) and
Q2(·|u).

Setting a1 and a2 to zero in each of (58)–(60) recovers
Gallager’s error exponent for i.i.d. random coding [18]. The
following lemma shows that, after the optimization of a1 and
a2, our exponent is equivalent to that of Liu and Hughes
[6], which was obtained using constant-composition random
coding. We present the lemma in the absence of time-sharing,
but the same statement holds when we consider the more
general result outlined in Remark 1.

Lemma 1. The exponents given in (55)–(57) coincide with [6,
Theorem 1] under |U| = 1.

Proof: Since the proof is rather detailed but based on
existing techniques, we provide only an outline. Each of
the three exponents are handled similarly, so we focus on
Er,12. We denote the corresponding exponent in [6] by
Êr,12(Q, R1, R2). From [6, Eq. (30)], we can write Êr,12 in
the form maxρ∈[0,1] Ê0,12(Q, ρ)− ρ(R1 +R2), where

Ê0,12(Q, ρ)
4
= min

P̃X1X2Y
:

P̃X1
=Q1,P̃X2

=Q2

D
(
P̃X1X2Y ‖Q1×Q2×W

)
+ρD

(
P̃X1X2Y ‖Q1×Q2×P̃Y

)
.

(64)

We split the minimization by first minimizing over P̃X1X2Y

subject to P̃X1Y = P̂X1Y and P̃X2
= Q2, and then minimizing

over P̂X1Y subject to P̂X1
= Q1. Starting with the former

minimization and using the identity

D
(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
= IP̃ (X1;Y ) + IP̃ (X2;X1, Y ),

(65)
it can be shown that

Ê0,12(Q, ρ) = min
P̂X1Y

: P̂X1
=Q1

sup
a′2(·)

HP̂ (Y |X1)

+ ρIP̂ (X1;Y )− (1 + ρ)
∑
x1,y

P̂X1Y (x1, y)

× log
∑
x2

Q2(x2)W (y|x1, x2)
1

1+ρ e
a′2(x2)−φ′2

1+ρ , (66)

where the supremum over a′2 is over all real-valued functions
on X2, and φ′2

4
= EQ[a′2(X2)]. Specifically, one can upper

bound Ê0,12 by the right-hand side of (64) using Lagrange
duality, and a matching lower bound can be obtained using
the log-sum inequality, similarly to [20, Appendix A].



Using Fan’s minimax theorem [21], we can swap the order
of the minimum and the supremum in (66). Writing the mutual
information IP̂ (X;Y ) in the form [8]

min
QY

∑
x,y

P̂X1Y (x1, y) log
P̂X1Y (x1, y)

Q1(x1)QY (y)
(67)

we can again using Lagrange duality techniques to show that

Ê0,12(Q, ρ) = sup
a′2(·)

min
QY
−(1 + ρ)

∑
x1

Q1(x1)

× log
∑
x2,y

Q2(x2)W (y|x1, x2)
1

1+ρ e
a′2(x2)−φ′2

1+ρ QY (y). (68)

We can write the objective in (68) as

− (1 + ρ)D(Q1‖Q̃1)− (1 + ρ)
∑
x1

Q1(x1)

×log
Q̃1(x1)

Q1(x1)

∑
x2,y

Q2(x2)W (y|x1, x2)
1

1+ρ e
a′2(x2)−φ′2

1+ρ QY (y),

(69)

where Q̃1 is an arbitrary distribution with the same support
as Q. Using this expression and following similar steps to [5,
Sec. 2.5, Prob. 23], we obtain

Ê0,12(Q, ρ) = sup
a′2(·)

max
Q̃1

−(1 + ρ)D(Q1‖Q̃1)

− log
∑
y

(∑
x1

Q̃1(x1)Q2(x2)W (y|x1, x2)
1

1+ρ e
a′2(x2)−φ′2

1+ρ

)1+ρ

,

(70)

where Q̃1 is constrained to have the same support as Q.
Finally, using the techniques of [15, Theorems 4-5], it can
be shown that (70) yields

Ê0,12(Q, ρ) = sup
a1(·),a′2(·)

− log
∑
y

( ∑
x1,x2

Q1(x1)Q2(x2)

×W (y|x1, x2)
1

1+ρ ea1(x1)−φ1e
a′2(x2)−φ′2

1+ρ

)1+ρ

. (71)

The proof is concluded by identifying a2(x2) =
a′2(x2)
1+ρ .

In contrast to the single-user setting, the error exponents
for constant-composition random coding [6] can be strictly
greater than that of i.i.d. random coding [18] even after the
optimization of the input distributions; see [6] for details.
Thus, the exponent of Theorem 3 can be strictly higher than

that of [18]. A further advantage of the exponent in Theorem 3
is that it can be applied to channels with infinite or continuous
alphabets. In contrast, the analysis of [6] is based on the
method of types, and is valid only for finite alphabets.
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