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Abstract—Saddlepoint approximations and expansions of the
random coding union bound are derived for the i.i.d. random
coding ensemble. Using the inverse Laplace transform of lattice
and strongly non-lattice distributions, our results recover the
random coding error exponent and refine the pre-exponential
coefficient of the error probability. Explicit characterization of
the terms are given for the binary symmetric channel and for
the binary input AWGN channel.

I. INTRODUCTION

Random coding [1], [2] is a central tool in information
theory to prove the existence of codes with vanishing error
probability Pe as the code length n tends to infinity. For a
fixed coding rate R and i.i.d. random coding ensembles with
input distribution Q(x), the average error probability over the
ensemble of codes is given by

Pe = αn · e−nE(R) (1)

with positive error exponent E(R) > 0 as long as the rate is
below the mutual information R < I(Q) [3].

The polynomial decay of αn was first studied in [4] for
strongly symmetric channels, and shown to be related to the
slope of E(R). Recently, more accurate characterizations of
the term αn were derived by [5]–[7]. In [5], large deviations
techniques are used to upper bound αn for discrete memory-
less channels, whereas asymptotically tight expressions of αn
are derived in [7] for the exact random coding error probability
using the saddlepoint method. Large deviations, saddlepoint
and Laplace methods were also used to study coding rates for
a fixed error probability in [8]–[10].

We consider the random coding union (RCU) bound to
the error probability Pe, and note that it can be written as
two nested tail probabilities. Inspired by our previous works
[11]–[16], we use the saddlepoint method to approximate the
RCU for i.i.d. random coding for both lattice and strongly
non-lattice distributions. Our analysis differs from that of [5]–
[7] in the way we optimize the parameters involved in the
saddlepoint approximation.

The derived approximations and expansions of the RCU
recover the random coding error exponent E(R), refine the
computation of αn for finite length n based on the cumulant
generating function of the two tail probabilities, and asymptot-
ically retrieves the polynomial decay of αn found in [5]–[7].
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II. RANDOM CODING UNION BOUND

We consider the i.i.d. random coding ensemble where M
codewords of length n are independently generated accord-
ing to the probability distribution Qn(x) =

∏n
i=1Q(xi),

and transmitted over a channel with transition probability
Wn(y|x) =

∏n
i=1W (yi|xi). Let Pe be the average of

the maximum likelihood decoding error probability over the
ensemble of codes. Then, there exists a code of parameters
(M,n) whose error probability is at most Pe [17, Th. 15].
Considering decoding ties as errors, and applying the union
bound of the error events, Pe is weakened to the random
coding union (RCU) [17, Th. 16], given by

rcu = E
[
min

{
1, (M − 1)

Pr
[
Wn(Y |X) ≥Wn(Y |X)|X,Y

]}]
, (2)

where (X,Y,X) ∼ Q ×W × Q. Further using the identity
E[min{1, A}] = Pr[A ≥ U ], where U is uniform in the [0, 1]
interval and taking logarithms, the RCU (2) can be written as
two nested tail probabilities, i.e.,

rcu = Pr
[
Θ ≥ logU

]
, (3)

where Θ is the random variable

Θ = log(M − 1) + log pep(X,Y ), (4)

with pep(x,y) being the pairwise error (tail) probability

pep(x,y) = Pr
[
V (x,y) ≥ 0

]
, (5)

and V (x,y) is a random variable defined as

V (x,y) = logWn(y|X)− logWn(y|x). (6)

For discrete memoryless channels, V (x,y) is the sum of n
terms. As n → ∞, we show in Sec. III.B and Sec. IV.B
that Θ is also the sum of n terms, since (4) is asymptotically
equivalent to the random variable Z = nR− is(X,Y ), where
is(x,y) is a tilted information density given by

is(x,y) = log
Wn(y|x)s

E
[
Wn(y|X)s

] , (7)

for s > 0. This motivates the use of the saddlepoint method
to approximate the tail probabilities (3) and (5),



III. LATTICE CASE

For discrete input and output alphabets Xn and Yn,
the random variables V (x,y) and Z involved in the RCU
may be lattice random variables. We say that X is a lat-
tice random variable with distribution p(x) and support set
L = {a+ h` : ` ∈ Z}, where h > 0 is the span and a ∈ [0, h)
is the offset, if p(x) ≥ 0 for x ∈ L, p(x) = 0 for x /∈ L, and
h is the largest value such that these conditions are satisfied.

A. Inverse Laplace Transform

Let X = (X1, . . . , Xn) be a sequence of random variables.
We define the random variable Z =

∑n
i=1Xi with probability

distribution p(z). If Z is a lattice random variable with offset
a and span h, the characteristic function ϕ(t) [18] is given by

ϕ(t) = E
[
ejt·Z

]
=

+∞∑
k=−∞

pk · ejt·zk , (8)

where j =
√
−1, and we defined the lattice point zk as

zk = a+ hk and its probability mass as pk = p(zk). Clearly,
|ϕ(t)| is 2π

h -periodic. Then, the probability mass of Z at the
lattice point ` can be recovered from ϕ(t) by Fourier inversion
over one period [19], i.e.,

p` =
h

2π

∫ +π
h

−πh
ϕ(t) · e−jt·z` dt. (9)

Plugging (8) into (9) and interchanging integration and sum,
the integrands are zero whenever k 6= ` and equal to 2π

h p`
only for k = `. Let s = jt. The inversion formula (9) can be
written as the inverse Laplace transform [20]

p` =
h

2πj

∫ +j πh

−j πh
eκ(s)−sz` ds, (10)

where κ(s) is the cumulant generating function defined as

κ(s) = log E
[
es·Z

]
= log

+∞∑
k=−∞

pk · es·zk . (11)

Using the Cauchy’s integral theorem [21], we may move the
integration path to the line segment

(
ŝ−j πh , ŝ+j πh

)
, as far as

ŝ ∈ R is within the region of convergence of (11). With this
new integration path location, we find a second order Taylor
expansion of κ(s) around s = ŝ, and extend the integration
path to the whole line that crosses the real axis at ŝ, i.e.,(
ŝ− j∞, ŝ+ j∞

)
, to approximate (10) as

p` ≈
h

2πj

∫ ŝ+j∞

ŝ−j∞
eκ(ŝ)+κ′(ŝ)(s−ŝ)+ 1

2κ
′′(ŝ)(s−ŝ)2−s·z` ds.

(12)
Making the change of variable s = ŝ+ jt, we obtain

p` ≈
h · eκ(ŝ)−ŝ·z`

2π

∫ ∞
−∞

ejtκ
′(ŝ)− 1

2κ
′′(ŝ)t2 · e−jt·z` dt. (13)

Since ejtκ
′(ŝ)− 1

2κ
′′(ŝ)t2 is the characteristic function of a

Gaussian random variable with mean κ′(ŝ) and variance κ′′(ŝ),

the integration in (13) can be solved by Fourier inversion to
obtain that p` may be approximated as

p` ≈ eκ(ŝ)−ŝ·z` · h√
2πκ′′(ŝ)

e
− (z`−κ

′(ŝ))2

2κ′′(ŝ) . (14)

The parameter ŝ allows us to adjust the mean, variance and
the exponential tilting of the approximation (14). A classical
choice is κ′(ŝ) = z0 for every ` when (14) is used to
approximate the tail probability Pr[Z ≥ z0]. The point ŝ is
a saddlepoint and it is unique due to the convexity of κ(s).

B. Pairwise Error Probability

Let us assume that the pair Q(x), W (y|x) is non-singular
[5, Def. 1]. Then, the random variable V (x,y) given in (6) has
zero offset, and span g independent on x and y. For clarity,
we define v` = g`, and denote its probability mass as p`(x,y).
Then, equation (5) becomes

pep(x,y) =

+∞∑
`=0

p`(x,y), (15)

The saddlepoint approximation of p`(x,y) is given by (14),
with the cumulant generating function of V (x,y), given by

κs(x,y) = log E

[(
Wn(y|X)

Wn(y|x)

)s ]
. (16)

Here, we place s as subindex to highlight the dependence on
x and y. Is is straightforward that (16) is related to the tilted
information density (7) as κs(x,y) = −is(x,y). For a given
ŝ, plugging (14) into (15), we obtain that

pep(x,y) ≈ γŝ(x,y) · e−iŝ(x,y), (17)

where the pre-exponential factor γŝ(x,y) is given by

γŝ(x,y) =
g√

2πκ′′ŝ (y)

+∞∑
`=0

e
−ŝ·v`−

(v`−κ
′
ŝ(x,y))2

2κ′′
ŝ
(y) . (18)

We remark that κ′ŝ(x,y) is the first derivative of κs(x,y) at
s = ŝ, and that κ′′ŝ (y) is its second derivative, also at s =
ŝ, that only depends on y. Since κs(x,y) is the sum of n
terms, we note that γŝ(x,y) decays as 1√

n
. Finally, as the tail

probability (15) is evaluated at V (x,y) = 0, the saddlepoint
ŝ satisfying κ′ŝ(x,y) = 0 clearly depends on x and y.

C. Error Exponent

Let Θ be the random variable defined in (4). Using the
approximation (17), we observe that Θ is asymptotically
equivalent1 to the random variable Z given by

Z = nR− iŝ(X,Y ), (19)

where ŝ is the saddlepoint of the pairwise error probability
discussed in Sec. III-B. The Chernoff bound to the tail
probability Pr[Θ ≥ logU ] allows to obtain the exponential
decay of the RCU as the following upper bound

lim
n→∞

1

n
log rcu ≤ inf

0≤ρ≤1
lim
n→∞

1

n
φn(ρ), (20)

1An is asymptotically equivalent to Bn, An � Bn, if limn→∞
An
Bn

= 1.



where φn(ρ) is the cumulant generating function of Θ. As
discussed in [11, Sec. III], the convergence of Pr[Θ ≥ logU ]
requires 0 ≤ ρ ≤ 1. Since Θ � Z, φn(ρ) is asymptotically
equivalent to the cumulant generating function of Z, given by

χn(ρ) = nρR+ log E
[
e−ρiŝ(X,Y )

]
. (21)

For an i.i.d. codebook and a memoryless channel, the bound
in (20) is optimized by setting ŝ = 1

1+ρ . This differs from our
previous work [6] where ŝ is optimized independently of ρ,
and also from the analysis in [7] that considers a sequence-
dependent optimization parameter. Using this choice of ŝ, we
recover the random coding error exponent, i.e., (21) becomes

χn(ρ) = nρR− nE0(ρ), (22)

where E0(ρ) is the Gallager function [2, Eq. (5.6.14)]. Let ρ̂ be
the optimizer of the bound (20), or equivalently the unique so-
lution to E′0(ρ) = R. Then, the range 1 ≥ ρ̂ ≥ 0 corresponds
to the rate range Rc(Q) ≤ R ≤ I(Q), where Rc(Q) and I(Q)
are the critical rate and the mutual information, respectively,
for the random coding ensemble Q(x) [2, Eq. (5.6.30)].

D. Random Coding Union Bound

We now turn back to the refined asymptotics analysis to
derive a saddlepoint approximation of the RCU. We let a and
h as the offset and span of the random variable Z given by
(19), and define the lattice points z` = a+ h` for ` ∈ Z. It is
convenient to write the RCU in terms of Θ given in (4), i.e.,

rcu = E
[
1{Θ ≥ 0}

]
+ E

[
eΘ1{Θ < 0}

]
, (23)

The cumulant generating function of Θ, φn(ρ), and the cumu-
lant generating function of Z, χn(ρ), satisfy

φn(ρ) = χn(ρ) + πn(ρ), (24)

where πn(ρ) is the term from the pre-exponential factor of the
pairwise error probability. Using the pairwise error probability
approximation (17), we obtain that πn(ρ) is approximated as

πn(ρ) ≈ log E
[
γŝ(Xρ,Yρ)

ρ
]
, (25)

with Xρ and Yρ distributed according to

Qnρ (x)Wn
ρ (y|x) ∝ Qn(x)Wn(y|x)e−ρiŝ(x,y). (26)

Upon the optimization of the error exponent by E0(ρ̂) = R,
our analysis suggests that the rate R determines a distribution
of typical sequences (x,y) through the saddlepoint ρ̂, and
in turn a set of typical sequences x in the pairwise error
probability through ŝ = 1

1+ρ̂ . This allows to recover the
error exponent, i.e., χn(ρ̂), and to study the contribution of
the pre-exponential term of the pairwise error probability,
i.e., πn(ρ̂), around the typical sequences (x,y). After several
manipulations omitted in this paper for the sake of space, it can
be shown that the expectation (25) under the tilted probability
distribution (26) is asymptotically equivalent to

πn(ρ) � ρ logψn(ρ)− 1

2
log(1 + ρ), (27)

where the log(1+ρ) term comes from the quadratic exponen-
tial in (18), and ψn(ρ) is given by

ψn(ρ̂) =
g√

2πnκ′′(ρ̂)
·
(

1

1− e−ŝg

)
(28)

where κ′′(ρ̂) is given by

κ′′(ρ̂) =
∑
y

Pρ̂(y)

[
∂2

∂s2

(
log
∑
x

Q(x)W (y|x)s
)∣∣∣∣
s=ŝ

]
,

(29)
with Pρ(y) the single letter marginal distribution of (26).

Since Z is the sum of n independent terms, we note that
χn(ρ) is linear with n, whereas πn(ρ) has order log n. Hence,
the saddlepoint approximation to the RCU involves finding the
second order Taylor expansion of χn(ρ) around ρ = ρ̂, i.e.,

χn(ρ) ≈ nρ̂R− nE0(ρ̂)− 1

2
nV (ρ̂)(ρ− ρ̂)2 (30)

where we used that E′0(ρ̂) = R. In (30), V (ρ̂) is the variance
of the tilted information density (7) given by

V (ρ̂) = −E′′0 (ρ̂). (31)

For ρ̂ = 0, i.e., for R = I(Q), V (ρ̂) coincides with the channel
dispersion [17, Eq. (304)].

Using (24) and (27), the probability mass p` can be recov-
ered from the cumulant generating function φn(ρ) as

p` =
h

2πj

∫ +j πh

−j πh

eχn(ρ)−ρ(θ`−logψn(ρ))

√
1 + ρ

dρ. (32)

Spelling out equation (23), and making the change of variable
θ` = z` + logψn(ρ), we have that

rcu =

+∞∑
`=`?

p` +

`?−1∑
`=−∞

eθ` · p` (33)

=

+∞∑
`=`?

p` + ψn(ρ)

`?−1∑
`=−∞

ez` · p` (34)

where `? is the smallest ` ∈ Z such that θ` ≥ 0. Placing the
Taylor expansion (30) on p`, approximating ψn(ρ) ≈ ψn(ρ̂)
and
√

1 + ρ ≈
√

1 + ρ̂, solving the complex integration (32),
and using the approximated p` in (34), we obtain the following
approximation for the RCU.

Approximation 1 (Lattice case): For rates such that
Rc(Q) < R < I(Q), let 0 < ρ̂ < 1 be the unique solution to
E′0(ρ̂) = R. Then, the RCU (2) can be approximated as

rcu ≈ αn · e−n(E0(ρ̂)−ρ̂R), (35)

where

αn =

+∞∑
`=`?

e−ρ̂z` · h · e−
z2`

2nV (ρ̂)√
2πnV (ρ̂)(1 + ρ̂)

+

+ψn(ρ̂)

`?−1∑
`=−∞

e(1−ρ̂)z` · h · e−
z2`

2nV (ρ̂)√
2πnV (ρ̂)(1 + ρ̂)

. (36)
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Fig. 1. BSC error probability bounds vs block-length n with R = 0.1 bits
per channel use and crossover probability δ = 0.11.

The computation of αn as in (36) involves the infinite sum-
mation of quadratic terms. An alternative form of αn involves
finding its asymptotics neglecting the quadratic exponential
terms of (36), and obtaining the following asymptotic result.

Expansion 1 (Lattice case): For rates such that Rc(Q) <
R < I(Q), as n→∞, we have

αn �
h · ψn(ρ̂)ρ̂√

2πnV (ρ̂)(1 + ρ̂)
·
(
e−ρ̂θ`?

(
1

1− e−ρ̂h

)
+

+ e(1−ρ̂)θ`?
(

e−(1−ρ̂)h

1− e−(1−ρ̂)h

))
, (37)

where ψn(ρ̂) is given in (28) and θ`? = z`? + logψn(ρ̂).
From (28) and (37), we observe that the pre-exponential

term αn of the RCU decays as n−
1+ρ̂
2 , matching the results

of [4]–[7]. The improvement of (37) with respect to [6, Eq.
(135)] is the refinement of πn(ρ) in (27) due to the dependence
between ŝ and ρ̂.

E. Binary Symmetric Channel

We numerically evaluate our result (35) using αn given in
(36) and (37), respectively the RCU (approx) and the RCU
(expan). We consider a binary symmetric channel (BSC) with
crossover probability δ = 0.11 and uniform input distribution
Q(x) at a rate R = 0.3 bits per channel use. As a reference, we
include the Gallager bound [2, Eq. (5.6.18)], the exact RCU
[17, Eq. (162)], and the converse bound [17, Eq. (137)].

We note that logWn(y|x) = (n − t) log(1 − δ) + t log δ,
where t is the Hamming distance between x and y. As a result,
the random variable V (x,y) defined in (6) lies in a lattice of
zero offset and span g = log 1−δ

δ , whereas Z in (19) has a non-
zero offset and span h = s · g. The explicit expressions of the
terms in the RCU expansion (35) are related to the cumulants
of Z and V (x,y) given in (22) and (16), respectively.

Fig. 1 shows that both the RCU approximation and the
RCU expansion capture the rippling effect of the exact RCU,
and that the RCU approximation, with αn in (36), accurately
approximates the RCU even for small values of n.

IV. STRONGLY NON-LATTICE CASE

A. Inverse Laplace Transform

We turn into the case where an arbitrary random variable
Z =

∑n
i=1Xi is strongly non-lattice [18], with probability

distribution p(z). In this case, the characteristic function of Z
either satisfies |ϕ(t)| < 1 for all t 6= 0, or p(z) is concentrated
at a single point. Since |ϕ(t)| is not periodic, Fourier inversion
is now performed as

p(z) =
1

2π

∫ ∞
−∞

ϕ(t) · e−jt·z. (38)

Mimicking the developments for the lattice case, we write
(38) as an inverse Laplace transform involving the cumulant
generating function κ(s) given by

κ(s) = log E[es·Z ] = log

∫ +∞

−∞
p(z) · es·z, (39)

move the integration path to (ŝ− j∞, ŝ+ j∞), Taylor expand
κ(s), and solve the complex integration to obtain

p(z) ≈ eκ(ŝ)−ŝz · 1√
2πκ′′(ŝ)

e
− (z−κ′(ŝ))2

2κ′′(ŝ) . (40)

B. Pairwise Error Probability

For a given x and y, the pairwise error probability is the
upper tail probability of the random variable V (x,y) given in
(6), with probability distribution p(v), i.e.,

pep(x,y) =

∫ +∞

0

p(v) dv. (41)

Applying the saddlepoint approximation (40) on p(v) and
using it on (41), we obtain

pep(x,y) ≈ γŝ(x,y) · e−iŝ(x,y), (42)

where iŝ(x,y) is the tilted information density (7), and for
the strongly non-lattice case γŝ(x,y) is given by,

γŝ(x,y) =
1√

2πκ′′ŝ (y)

∫ +∞

0

e
−ŝ·v− (v−κ′ŝ(x,y))2

2κ′′
ŝ
(y) dv. (43)

C. Random Coding Union Bound

The error exponent and cumulant generating function anal-
ysis we discussed in Sec. III-D also holds for the strongly
non-lattice case, up to equation (31). Recalling that the RCU
can be written as in (23), we now have that the counterpart of
(34) is given by

rcu =

∫ +∞

− logψn(ρ̂)

p(z) dz + ψn(ρ̂)

∫ − logψn(ρ̂)

−∞
ez · p(z) dz,

(44)

where p(θ) and p(z) are the probability density of Θ and Z,
respectively, and now

ψn(ρ̂) =
1√

2πnκ′′(ρ̂)
· 1

ŝ
, (45)

with κ′′(ρ̂) is given by (29) substituting the summations
by integrations. Applying (40) on p(z) with the cumulant



generating function (22) and Taylor expansion (30), we obtain
the following approximation for the RCU.

Approximation 2 (Strongly non-lattice case): The RCU (2),
with rates satisfying Rc(Q) < R < I(Q), is approximated as

rcu ≈ αn · e−n(E0(ρ̂)−ρ̂R), (46)

where ρ̂ is the unique solution to E′0(ρ̂) = R, and

αn =

∫ +∞

− logψn(ρ̂)

e−ρ̂z` · e−
z2`

2nV (ρ̂)√
2πnV (ρ̂)(1 + ρ̂)

dz+

+ψn(ρ̂)

∫ − logψn(ρ̂)

−∞
e(1−ρ̂)z` · e−

z2`
2nV (ρ̂)√

2πnV (ρ̂)(1 + ρ̂)
dz.

(47)

The evaluation of αn can be done efficiently using error
function tables, though a simpler expression is obtained fol-
lowing the same reasoning as in the lattice case. Specifically,
setting 1

2nV (ρ̂) = 0 in (47), we obtain the following result.
Expansion 2 (Strongly non-lattice case): As n → ∞, the

asymptotics of the term αn in (47) is given by

αn �
ψn(ρ̂)ρ̂√

2πnV (ρ̂)(1 + ρ̂)
· 1

ρ̂(1− ρ̂)
(48)

valid for rates such that Rc(Q) < R < I(Q).
We note that the asymptotics of ψn(ρ̂) and αn in equations

(45) and (48) can also be obtained from the asymptotics in
the lattice case in equations (28) and (37) by taking the limits
as the lattice spans tend to zero, i.e., g → 0 and h→ 0.

D. Binary Input AWGN Channel

We finally illustrate the strongly non-lattice case with
the binary input additive Gaussian noise (AWGN) chan-
nel, with uniform input distribution Q(x), input alphabet
{−
√

snr,+
√

snr}, and unit noise variance, for a signal-to-
noise ratio of snr = 4 dB. We also include the Gallager
bound, a Monte Carlo simulation of the exact RCU (2), and the
meta-converse bound [17, Th. 27] with the exponent achieving
distribution using the method presented in [16].

The numerical example in Fig. 2 shows that both the
approximated RCU and the expanded RCU computed through
equations (47) and (48), respectively, are simple and accurate
tools to estimate the RCU, especially in channels whose exact
evaluation or numerical simulation is computationally hard.
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