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Abstract

This paper presents a simple and very accurate method
to evaluate the error probability of bit-interleaved
coded modulation. Modelling the channel as a binary-
input continuous-output channel with a non-Gaussian
transition density allows for the application of stan-
dard bounding techniques for Gaussian channels. The
pairwise error probability is equal to the tail probabil-
ity of a sum of random variables; this probability is
then calculated with a saddlepoint approximation. Its
precision is numerically validated for coded transmis-
sion over standard Gaussian noise and fully-interleaved
fading channels for both convolutional and turbo-like
codes. The proposed approximation is much tighter
and simpler to compute than the existing techniques
and reveals as a powerful tool for practical use.

1. INTRODUCTION

Binary linear codes over binary-input output sym-
metric channels (BIOS) have been widely studied and
are relatively easy to analyze, thanks to the uniform er-
ror property [1] and to the fact that the pairwise error
probability corresponds to the tail of the distribution
of a sum of random variables

∑d

j=1 Λj , where

Λ = log
Pr(ĉ = 1|z,h)

Pr(ĉ = 0|z,h)
. (1)

Here z and h are the channel output and the channel
state respectively. We shall refer to the variables Λj

as a posteriori log-likelihood ratio. Figure 1 shows the
location of Λj in the communication channel, after the
demodulator. For the most usual BIOS channels, the
sum has a known and easily manageable distribution.
For example, for the binary symmetric channel (BSC)
ΛJ are binomial random variables, for the binary-
input additive white Gaussian noise (BI-AWGN) chan-
nel with signal-to-noise ratio ` they are normally dis-
tributed N (−4`, 8`). The problem of bounding er-
ror probability becomes much more complicated for

Decoder(APP generation)
Demodulator

Λzw

x

Proposed channel interface

Standard channel interface

Modulator

c

Figure 1: Channel interfaces: standard non-binary
symbols at channel level, or at demodulator level, with
binary symbols.

codes over non-binary signal constellations, for non-
symmetric channels, and for codes that do not possess
the uniform error property.

Bit-Interleaved Coded Modulation (BICM) is a
pragmatic approach that maps a binary code over a
sequence of high-order modulation symbols. Provided
that the channel noise density function is symmetric,
the performance of BICM under the assumption that
the constituent binary code is linear can be studied by
looking at the output of the BICM soft-demodulator.
In a sense that will be made precise later, Λj collect
the “a posteriori” statistics of the noise and fading re-
alizations, as in binary transmission over AWGN, and,
critically, of the bit index in the symbol mapping.

The analysis presented in [2] provided simple ex-
pressions for the average mutual information and cut-
off rate for BICM. As explained in [2], by possibly in-
troducing an appropriate pseudo-random binary map-
ping between the coded bits and the modulation sym-
bols, the channel from the output of the binary en-
coder to the output of the BICM demodulator is again
a BIOS channel (see Figure 1). Then, the performance
of BICM schemes can be obtained straightforwardly
from the tail of the distribution of

∑d

j=1 Λj .
In [2], this tail was bounded using the simple Cher-

noff Battacharyya bound (reviewed in the following).
Other tighter bounds involved the sum over a restricted
set of error events and the exact computation of the



pairwise error probability using numerical integration.
In this paper we use more refined saddlepoint approxi-
mations for approximating the tail of

∑d

j=1 Λj . More-
over, our saddlepoint approximations provide a theo-
retical foundation for the Gaussian approximation that
the authors presented in [3], and in particular apply the
technique to fully-interleaved fading channels.

2. SYSTEM MODEL

We consider the transmission of bit-interleaved
coded modulation (BICM) over additive white Gaus-
sian noise (AWGN) fading channels, for which the
discrete-time received signal can be expressed as

yk =
√

ρ hk xk + zk, k = 1, . . . , L (2)

where xk ∈ X are complex-valued modulation symbols
with E[|xk|2] = 1, X is the complex signal constellation,
e.g., phase-shift keying (PSK), quadrature-amplitude
modulation (QAM), zk denotes the k-th noise sample
modeled as i.i.d. Gaussian NC(0, 1). The standard
AWGN and fully-interleaved Rayleigh fading channels
are obtained from (2) by simply letting hk = 1 and
hk ∼ NC(0, 1) respectively. In this way, the average
signal-to-noise ratio is ρ = Es/N0. In the case of
the fully-interleaved fading channel we assume perfect
channel state information (CSI) at the receiver. How-
ever, the technique described here can also be applied
to the non-perfect CSI case.

The codewords x =
(

x1, . . . , xL

)

∈ XL are obtained

by bit-interleaving the codewords c =
(

c1, . . . , cN

)

of a
binary code C ⊆ F

N
2 of length N and rate rC = K/N ,

and mapping over the signal constellation X with the
labeling rule µ : {0, 1}M → X , with M = log2 |X |,
such that µ

(

c(k−1)M+1, . . . , ckM

)

= xk . The resulting
length of the BICM codeword is L = N/M and the
total spectral efficiency is R = rCM bits/s/Hz.

At the receiver side, we consider the classical BICM
decoder that does not perform iterations at the demap-
per side, for which the channel demodulator computes
the bitwise a posteriori probabilities of bit cj ∈ {0, 1},
j = (k − 1)M + m, where m = 1, . . . , M :

Pr
(

cj |yk, hk

)

∝
∑

x∈X
cj
m

Pr
(

x|yk, hk

)

∝
∑

x∈X
cj
m

exp
(

−
∣

∣yk −√
ρhk x

∣

∣

2
)

, (3)

where X b
m denotes the set of constellation symbols with

a bit of value b at the label position m.
By applying the belief propagation algorithm to the

BICM code dependency graph [4], in [5], it is shown

that the general iterative decoder in (3) shows sub-
stantial performance gain when C is a trellis-terminated
convolutional code and µ is not Gray. However, this ap-
proach does not seem to show any gain when applied
to turbo-like codes. Moreover, we consider that C is
decoded with a maximum-likelihood (ML) decoder in
the BICM channel. In general this does not perform
ML decoding for the whole BICM, but is nevertheless
a good approximation for the usual cases of turbo-like
coding. Notice, however, that this particular decoder
is shown to be near-optimal when coupled with Gray
mapping [2] and that it is commonly employed in prac-
tical systems with capacity-approaching code ensem-
bles.

3. GENERALIZED UNION BOUND

3.1. Binary-Input Continuous-Output Channel

Equivalent for BICM

As introduced in [2] the BICM equivalent channel
can be made BIOS using a time-varying mapping that
uses µ and its complement µ̄ with probability 1/2. We
further consider that binary code C is linear, and there-
fore, we consider that the all-zero codeword c = 0 has
been transmitted. We now define the a posteriori log-
likelihood ratio as

Λ = log
Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)
. (4)

where we have dropped the time dependence for sim-
plicity.

The a posteriori probabilities in (3) and therefore
the density of the log-likelihood ratio Λ clearly depend
on the transmitted symbol x, channel fading h, noise
realization z and the bit position in the label m, in con-
trast to the binary case, where the dependence on the
symbol x and on m is absent. Under the assumption of
sufficient interleaving, it was shown in [2] that we can
consider both m and x as nuisance parameters to be
in characterized statistically, rather than with an ex-
act analysis. The log-likelihood ratio Λ is a continuous
random variable with density

pΛ(Λ) =
∑

m,x,h,z|

log
Pr(cm=c|x,h,z)
Pr(cm=c|x,h,z)

=Λ

Pr(m) Pr(x) Pr(h) Pr(z), (5)

where Pr(z) and Pr(h) correspond to the (continuous)
probability densities of the noise and the channel state
respectively. The sum (possibly an integral) is per-
formed over all bit positions m, and over all symbols
x with a bit c at position m which are all assumed
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Figure 2: Density of the a posteriori log-likelihood ratio
Λ and 16-QAM with Gray mapping.

equiprobable. This yields

pΛ(Λ) =
∑

m,x,h,z|

log
Pr(cm=c|x,h,z)
Pr(cm=c|x,h,z)

=Λ

1

M2M
ph(h) pz(z). (6)

The transition probabilities (5) and (6) now take
into account not only the additive noise and the fad-
ing, but also the interleavers, or equivalently the label
positions. This describes the binary-input continuous
output equivalent BICM channel, used in [2,3] to eval-
uate the error probability of BICM.

Even though a closed expression for pΛ(Λ) may be
difficult to obtain, it is nevertheless simple to approxi-
mate it by computer simulation. Figure 2 shows some
simple results of 16-QAM signaling, with Gray map-
ping in the AWGN channel. We have estimated the
density of Λ with computer simulations for several val-
ues of Es/N0, i.e., ρ = 6 dB, ρ = 10dB, and ρ = 13dB.
We plot the results in logarithmic scale, to better ap-
preciate the tail behavior.

3.2. Derivation of a Generalized Union Bound

Under the assumption of BIOS channel and of C
linear, following the standard derivation of [9] we ob-
tain a union bound on the codeword error probability
of the form

Pe ≤
∑

d

Ad Pr

(

d
∑

j=1

Λj > 0

)

(7)

where Ad is the distance spectrum of C and accounts
for the number of codewords with Hamming weight

d. Similarly, in order to estimate the bit-error prob-
ability Pb we need Ai,d, the number of codewords of
C with Hamming weight d generated with input se-
quences with Hamming weight i. Thus we can write,

Pb ≤
∑

d

∑

i

i

K
Ai,d Pr

(

d
∑

j=1

Λj > 0

)

. (8)

Therefore, (7) and (8) have the same form, and the
problem reduces then to calculating the tail probabil-
ity of a sum of independent identically distributed (iid)
random variables, Λj , with distribution pΛ(Λ) given in
(6). In the next sections we shall use accurate approx-
imations to this probability.

3.3. Bhattacharyya Union Bound

Most efficient bounds to the tail probability of a
sum of random variables Λ make use of the cumulant
transform κ(s) = log E

[

esΛ
]

, s ∈ R. Using the defini-
tion of Λ, we can rewrite κ(s) as

κ(s) = log EΛ

[(

Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)

)s]

, (9)

where the subscript Λ indicates that the expectation is
taken with respect to Λ. Since the equivocation vari-
able is a function of the channel and modulation pa-
rameters, we can in fact perform the expectation over
the joint distribution (6)

κ(s) = log Em,w,h,n

[(

Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)

)s]

. (10)

It is well known that κ(s) is a convex function of its
argument [6], and its minimum is reached at a point ŝ,
the saddlepoint, such that κ′(ŝ) = 0. From symmetry
considerations in (10) it can be easily seen that ŝ = 1/2.

The Chernoff bound [7] sets an upper bound to the
tail/error probability as

Pr

(

d
∑

j=1

Λj > 0

)

≤ edκ(ŝ). (11)

As ŝ = 1/2, we have

Pr

(

d
∑

j=1

Λj > 0

)

≤
(

Em,w,h,n

[
√

Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)

])d

,

which is nothing but the Bhattacharyya union bound,
derived by other means in [2] where

B = EΛ

[

e
1
2Λ
]

= Em,w,h,n

[
√

Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)

]

(12)



denotes the Bhattacharyya factor. Notice that B can
be easily evaluated by numerical integration using the
Gauss-Hermite (for the AWGN channel) and a combi-
nation of the Gauss-Hermite and Gauss-Laguerre (for
the fading channel) quadrature rules, which are tabu-
lated in [8].

3.4. Saddlepoint Approximation

A more accurate approximation to (7) for the error
probability is a saddlepoint approximation. A simple
version of can be found in [7] and is given by

Pr

(

d
∑

j=1

Λj > 0

)

' 1√
2πdλ

edκ(ŝ), (13)

where λ =
√

κ′′(ŝ)ŝ. The exponent is the same as for
the Chernoff bound, in accordance with its asymptotic
optimality. Note that the second derivative κ′′(ŝ),

κ′′(ŝ) =
E
[

Λ2eŝΛ
]

E [eŝΛ]

=
1

B
Em,w,h,n

[

(

log
Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)

)2
√

Pr(ĉ = 1|y, h)

Pr(ĉ = 0|y, h)

)

]

,

can again be efficiently computed using Gaussian
quadrature rules.

Although of no importance for this case, as ŝ =
1/2, the saddlepoint approximation (13) fails for ŝ in
the vicinity of 0. Another saddlepoint approximation,
called uniform due to its validity for the whole range
of ŝ, is the Lugannani-Rice formula [6], given by

Pr

( d
∑

j=1

Λj > 0

)

' Q
(
√

−2dκ(ŝ)
)

+
1√
2πd

edκ(ŝ)

(

1

λ
−1

r

)

,

where |r| =
√

−2κ(ŝ). The sign of r is the sign of ŝ.
Due to its wider validity, we shall use this approxima-
tion to the tail probability.

In [3] we used a similar approximation to this, where
the only term was

Q
(
√

−2dκ(ŝ)
)

= Q
(
√

−2d logB
)

. (14)

The key idea in [3] was to approximate the binary input
BICM channel as a binary-input AWGN (BI-AWGN)
with SNR ` = κ(ŝ) = − log B, the same approximation
that links the exact formula and the Chernoff bound
for the BI-AWGN channel [9]. This paper provides
thus further justification to the accuracy of the results
obtained in [3], and also suggests how to extend its
validity with the general framework of saddlepoint ap-
proximations. In this line, Figure 2 also depicts the
distributions of the LLR for a BI-AWGN with SNR
` = − logB, known to be ∼ N (−4`, 8`). Remark the
extreme closeness of the distributions in the tails.

4. NUMERICAL RESULTS

Figure 3(a) shows the performance of the rate-1/2,
64-state, convolutional code over 16-QAM with Gray
mapping. We depict four approximations: the Cher-
noff (or Bhattacharyya) bound [2], the Lugannani-Rice
formula, the Q() terms in the Lugannani-Rice formula
which correspond to the Gaussian approximation in [3],
and the tangential-sphere bound based on the Gaussian
approximation [3]. Note that the effect of the exponen-
tial term in the Lugannani-Rice formula is negligible
which shows that the Gaussian approximation is very
accurate, and that it is much tighter than the Bhat-
tacharyya bound.

Figure 3(b) depicts the bit error probability of
coded 8-PSK with Gray mapping, and an optimal 8-
state rate-2/3 convolutional code. As before, we con-
sider four cases, the Chernoff bound, the complete
Lugannani-Rice formula, the Lugannani-Rice formula
without exponential term, and the tangential-sphere
bound using the Gaussian approximation. For large
SNR, the behaviour is approximately linear in SNR
(code diversity), as is typical of Rayleigh fading chan-
nels. In this case we observe a difference when using
the complete Lugannani-Rice formula with the exp()
function, which implies that in this case, the BICM
equivalent channel is not Gaussian with parameter `.

Similar comments apply to Figures 4(a) and 4(b),
where we show the performance of the repeat-and-
accumulate code ensemble [10] of rate 1/4 with 16-
QAM over AWGN and Rayleigh fading channels; the
overall spectral efficiency is 1 bps/Hz. In the case of the
AWGN channels K = 1024 and in the fully-interleaved
Rayleigh fading channel K = 512. For the sake of
comparison, we also show the simulation with 20 it-
erations of belief-propagation decoding. The bounds
seem to follow closely the error rates of the code, even
though the error floor region is not reached. Again, the
bounds with only the Q() terms are very accurate for
the AWGN channel; in the case of the Rayleigh fading
channel, the complete bound is needed. Note also that,
the tangential-sphere with the Gaussian approximation
bound may also be somehow optimistic in the water-
fall region. However, the Gaussian approximation still
yields fairly accurate results.

5. CONCLUSIONS

In this paper, we have presented a very accurate and
simple to compute approximation to the error proba-
bility of BICM using the saddlepoint approximation.
We have verified the validity of the approximation for
both, convolutional and turbo-like code ensembles with
BICM, over AWGN and fully-interleaved Rayleigh fad-
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Figure 3: Comparison of simulation and saddlepoint
approximations on the bit error rate of BICM with
convolutional codes in AWGN and fully-interleaved
Rayleigh fading channels.
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ing channels. The proposed method benefits from sim-
ple numerical integration using Gaussian quadratures
for noise and fading averaging. This simple technique
constitutes a powerful tool to the analysis of finite-
length BICM; furthermore, being simpler and tighter
than the original bounds in [2], it shows a wide range
of practical applications.

A. DERIVATION OF THE SADDLEPOINT

APPROXIMATION

The saddlepoint approximation exploits the link be-
tween the probability density and the cumulant trans-
form via a Fourier-like transform. This means that we
can freely move from one domain to the other and deal
with the same random variable. As the cumulant trans-
form is a convex function of its argument, it is in some
sense easier to characterize than the density.

The cumulant transform of a random variable with
density fx(x) is defined as κ(s) = log E(esX ), with
s ∈ C, and defined in a strip of the complex plane
γ1 < Re s < γ2 [6]. We will need the property that

for a sum of independent random variables
∑`

i=1 Xi,
the cumulant transform is the sum of the transforms
for each variable; if they are identically distributed, we
have ` log E(esX1).

The tail probability
∫ +∞

x
fx(t) dt can be calculated

with the following inversion formula1 as
∫ +∞

x

fx(t) dt =
1

2πj

∫

C

eκ(s)−sx ds

s
, (15)

which forms the starting point of the saddlepoint ap-
proximation. It is convenient to choose the contour is
a straight line (−̂j∞, ŝ+ j∞) passing through the sad-
dlepoint, the value of s for which κ′(ŝ) − x = 0. Using
a Taylor expansion around the maximum we obtain

g(s) = g(ŝ) + g′(ŝ)(s − ŝ) +
1

2
g′′(ŝ)(s − ŝ)2 + O

(

(s − ŝ3)
)

= g(ŝ) +
1

2
g′′(ŝ)(s − ŝ)2 + O

(

(s − ŝ3)
)

. (16)

Analogously, we expand 1
s

around ŝ, and we obtain an
expansion of (15) whose first term is given by

eκ(ŝ)−ŝx

2πj

∫

C

e
1
2 κ′′(ŝ)(s−ŝ)2 ds

ŝ

Changing the contour of integration to pass through
the saddlepoint, and with the change of variable s =
ŝ + jsi we can rewrite the term as

eκ(ŝ)−ŝx

2π

∫ +∞

−∞

e−
1
2 κ′′(ŝ)s2

i
dsi

ŝ
=

eκ(ŝ)−ŝx

√

2πκ′′(ŝ)ŝ
. (17)

1Here there is a minor technical assumption of the contour.

It is clear that this equation ceases to be valid when
ŝ is close to zero. This is due to the pole at s = 0 in
(15), whose effect cannot be neglected when the sad-
dlepoint is in its neighbourhood. The approximations
valid also in this range are called uniform, and the for-
mula by Lugannani&Rice is the simplest example of
such an approximation.
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