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Engineering Department
University of Cambridge

Cambridge, CB2 1PZ, UK
guillen@ieee.org

Giuseppe Caire
Electrical Engineering Department
University of Southern California

Los Angeles, CA 90089
caire@usc.edu

Abstract— We study the problem of constructing coded modu-
lation schemes over multidimensional signal sets in Nakagami-m
block-fading channels. In particular, we consider the optimal
diversity reliability exponent of the error probability when
the multidimensional constellation is obtained as the rotation
of classical complex-plane signal constellations. We show that
multidimensional rotations of full dimension achieve the optimal
diversity reliability exponent, also achieved by Gaussian con-
stellations. Multidimensional rotations of full dimension induce
a large decoding complexity, and in some cases it might be
beneficial to use multiple rotations of smaller dimension. We
also study the diversity reliability exponent in this case, which
yields the optimal rate-diversity-complexity tradeoff in block-
fading channels with discrete inputs.

I. INTRODUCTION

Rotated multidimensional constellations in fading channels
were proposed in [1], [2] as a means of achieving high
reliability with uncoded modulation in fading channels. Since,
rotated constellations have been extensively studied, and have
been shown to be an effective technique to achieve full-rate
and full-diversity transmission in fading channels [3], [4],
[5], [6]. Traditionally, rotated constellations have always been
studied uncoded, with the exception of some recent works for
the multiple-input multiple-output (MIMO) channel [7], [8].

In this work, we study the problem of constructing general
coded modulation schemes over multidimensional signal sets,
obtained by rotating classical complex-plane signal constella-
tions, for block-fading channels with B fading blocks (or de-
grees of freedom) per codeword [9]. The block-fading channel
is a useful model for transmission over slowly varying fading
channels, such as orthogonal frequency division multiplexing
(OFDM) or slow time-frequency-hopped systems such as
GSM or EDGE.

Despite the elegance of full-diversity rotations of dimension
B, they induce large decoding complexity since the set of can-
didate points for detection at a given time instant is exponential
with B. In fact, when uncoded rotations are used, the sphere
decoder [10] is usually employed to avoid exhaustive search
over all candidate points. However, when coded modulation
is used, the code itself can help to achieve full diversity. This
means that sometimes rotations of smaller dimension N < B
might be sufficient. Also in the coded case, soft information

1The work by A. Guillén i Fàbregas work has been partly supported by the
Australian Research Council under ARC grant DP0558861.

should be provided to the decoder and this further complicates
the problem. As a matter of fact, despite the recent advances
in soft-output sphere decoding techniques [11], most of the
proposed techniques still show some limitations in some cases,
which might be undesirable in practice. Therefore, in practice,
one might want to use rotations of dimension smaller than
N < B, in order to establish the tradeoff between diversity,
rate, constellation size and complexity induced by the rotations.

In this paper, we study the reliability exponent, namely, the
optimal exponent of the error probability of such schemes
with the signal-to-noise ratio (SNR), and illustrate the rate-
diversity-complexity tradeoff for coded modulation schemes
constructed over multidimensional signal sets.

II. SYSTEM MODEL

We consider a single-input single-output block-fading chan-
nel with B fading blocks, and is defined as follows,

yb =
√

SNRhb xb + zb b = 1, . . . , B (1)

where hb ∈ C is the b-th fading coefficient, yb ∈ CL is the
received signal vector corresponding to fading coefficient b,
xb ∈ CL is the portion of codeword allocated to block b and
zb ∈ CL is the vector of i.i.d. noise samples ∼ NC(0, 1). We
assume that the transmitted signal is normalized in energy, i.e.,
E[|x|2] = 1. Hence, SNR is the average received SNR.

We assume that the fading coefficients are i.i.d. from block
to block and from codeword to codeword, and that they are
perfectly known at the receiver, i.e, perfect channel state
information (CSI). Since the channel coefficients are perfectly
known to the receiver, we assume that the phase of the fading
has been corrected. We also assume that the magnitudes of the
channel coefficients follow a Nakagami-m distribution

p|h|(ξ) =
2mmξ2m−1

Γ(m)
e−mξ2

for m > 0 2 where Γ(ξ) ∆=
∫ +∞
0

tξ−1e−tdt is the Gamma
function [13]. By analizing Nakagami-m fading, we can
recover the analysis for a large class of fading statistics,
including Rayleigh fading by setting m = 1 and Rician fading
with parameter K by setting m = (K + 1)2/(2K + 1) [14].

2The literature usually considers m ≥ 0.5 [12]. However, the distribution
is well defined and reliable communication is possible for 0 < m < 0.5.



We can express (1) in matrix form as

Y =
√

SNRHX + Z (2)

where Y = [y1, . . . ,yB ]T , X = [x1, . . . ,xB ]T =
[X1, . . . ,XL], Z = [z1, . . . , zB ]T ∈ CB×L and H =
diag(h1, . . . , hB) ∈ CB×B .

We consider that codewords X form a coded modulation
scheme X ⊂ CB×L. In particular, we consider that X is
obtained as the concatenation of a binary code C ∈ Fn

2 of
rate r, a modulation over the signal constellation S ∈ C with
M = log2 |S|, and K rotations Mk ∈ CN×N with KN = B
(see Figure 1). In particular we have that at time ` = 1, . . . , L

x`,k = Mks`,k (3)

where s`,k = (s`,k,1, . . . , s`,k,N )T ∈ SN is the vector of
complex-plane signal constellation symbols that is rotated by
the k-th rotation matrix, x`,k = (x`,k,1, . . . , x`,k,N )T is the
portion of transmitted signal at time ` that has been rotated
by the k-th rotation, and

x` = [xT
`,1, . . . ,x

T
`,K ]T

is the transmitted signal at time `. The rotation matrices are
unitary, i.e., MkM

†
k = I. We will be interested in full-

fiversity rotations, namely, rotation matrices M for which
∀s, s′ ∈ SB , s 6= s′

M(s− s′) 6= 0 (4)

componentwise. This implies that, if the vector s−s′ has only
one entry different from zero, all the components of its rotation
will be different from zero. The rate in bits per channel use of
this scheme is R = rM . This general formulation includes the
case where only one single rotation of dimension B is used
and the non-rotated case.
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Fig. 1. Block diagram for coded modulation with K rotated constellations
with rotation matrices M1, . . . ,MK .

Definition 1: The block-diversity of a coded modulation
scheme X ⊂ CB×L is defined as

δ = min
X,X′∈X
X′ 6=X

|{b ∈ (1, . . . , B) | xb 6= x′b}|. (5)

In words, the block diversity is the minimum number of
nonzero rows of X − X′ for any pair of codewords X′ 6=
X ∈ X .

Proposition 1: Given a coded modulation scheme X ⊂
CB×L, the block diversity is upperbounded by

δ ≤ N

(
1 +

⌊
B

N

(
1− R

M

)⌋)
. (6)

Proof: The result follows from the straightforward application
of the Singleton bound to the coded modulation X seen as a
code of block-length K, over an alphabet of size 2MNL.

We will say that a code is blockwise maximum-distance
separable (MDS) if it attains the Singleton bound with equality.

III. OUTAGE PROBABILITY

Strictly speaking, the channel defined in (1) is not infor-
mation stable and has zero capacity for any finite B [15],
since there is a non-zero probability that the transmitted
message is detected in error. For sufficiently large L, the
word error probability Pe(SNR,X ) of any coding scheme
X ⊂ CB×L is lowerbounded by this limiting error probability,
the information outage probability [9], [16], given by

Pe(SNR,X ) ≥ Pout(SNR, R) ∆= Pr(I(SNR,H) ≤ R). (7)

where I(SNR,H) is the input-output mutual information of
the channel for a given fading realization H. For a fixed H,
the outage probability is minimized when the entries of X ∈ X
are i.i.d. Gaussian ∼ NC(0, 1). In this case [17]

I(SNR,H) =
1
B

B∑
b=1

log2(1 + SNRγb). (8)

With the coded modulation scheme shown in Figure 1 is used
(assuming uniform inputs), we can express the instantaneous
mutual information for a given channel realization H as

I(SNR,H) =
1
K

K∑
k=1

1
N

Ik(SNR,Hk) =
1
B

K∑
k=1

Ik(SNR,Hk)

where
Ik(SNR,Hk) = MN − 1

2MN

∑
s∈SN

Ez

log2

1 +
∑
s′ 6=s

e−‖
√

SNRHkMk(s−s′)+z‖2+‖z‖2

 (9)

denotes the mutual information of the N × N MIMO
channel induced by the k-th rotation, and Hk =
diag(h(k−1)N+1, . . . , hkN ) ∈ CN×N are the channel co-
efficients used by rotation k. Note that for small N , the
expectation over the noise vector z in (9) can be efficiently
computed using the Gauss-Hermite quadrature rules [13].

Note that concatenating a Gaussian random code with a
rotation brings no benefit in terms of exponent nor mutual
information. In fact, the output of the rotated Gaussian i.i.d.
vector is also a Gaussian i.i.d. vector with identical distribu-
tion, provided that the rotation matrix is unitary. Therefore,
the mutual information

I(SNR,H) =
1
B

log2 det
(
I + SNRHMM†H†) (10)

=
1
B

B∑
b=1

log2(1 + SNRγb). (11)

is the same than without rotation, and so is therefore the
corresponding diversity exponent. Rotations are usually seen



as information lossless, when in fact they are simply not
needed when combined with Gaussian inputs.

Figure 2 shows the mutual information with Gaussian
inputs, unrotated 16-QAM (identity rotation) and rotated3 16-
QAM in a block-fading channel with B = 4 blocks and
h1 = 1.5 and h2 = h3 = h4 = 0.1. This choice of the
channel coefficients is particularly interesting since 3 out of
the 4 components are in a deep fade. Rotations of dimension N
yield vanishing (with SNR) error probability whenever there
are up tp N−1 deeply faded blocks. As we observe, the mutual
information corresponding to the rotated 16-QAM follows the
Gaussian input in a larger SNR support than the unrotated 16-
QAM. For example, at SNR = 25dB, the Krüskemper rotation
gains 1 bit of information with respect to unrotated 16-QAM.
Combining 2 cyclotomic rotations of dimension N = 2 brings
also significant information gains with respect to unrotated 16-
QAM. As we shall see, this effect brings substantial exponent
benefits with respect to the unrotated case. We also appreciate
some difference between optimal Krüskemper and the mixed
(2× 2) rotations, especially at low rates. As a matter of fact,
rotations provide only mutual information advantages at high
rates. At low rates, unrotated transmission performs almost as
well with much less decoding complexity.
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Fig. 2. Instantaneous mutual information I(SNR,H) (bits/channel use) in a
block-fading channel with B = 4 blocks and h1 = 1.5 and h2 = h3 = h4 =
0.1 with Gaussian inputs (thick solid) and rotated 16-QAM inputs with the
optimal Krüskemper (thin solid), mixed (thin dash-dotted), 2 independent 2-
dimensional cyclotomic rotations (thin dashed) and no rotations (thick dotted).

IV. OPTIMAL RELIABILITY

We define the diversity reliability exponent of a given coded
modulation scheme X as

dX = lim
SNR→+∞

− log Pe(SNR,X )
log SNR

(12)

3Rotation matrices are extracted from [18]. This reference reports rotation
matrices using the row convention used in [19]. In this paper, we use a column
convention for lattice generator matrices, and therefore, matrices from [18]
are transposed.

and the optimal diversity reliability exponent is

d? ∆= sup
X

dX = sup
X

lim
SNR→+∞

− log Pe(SNR,X )
log SNR

. (13)

When no particular structure is imposed on the coded
modulation scheme X , we have the following result.

Lemma 1: The diversity reliability exponent dX of any
coded modulation scheme X subject to the power constraint
1

BLE[‖X‖2] ≤ 1 is upperbounded by

dX ≤ d? = mB. (14)

The optimal diversity reliability exponent can be achieved by
random Gaussian codes of rate R > 0 with entries ∼ NC(0, 1).
The optimal exponent d? can also be achieved by random
coded modulation schemes X of rate R consisting of a random
coded modulation scheme over a discrete signal constellation
S of size |S| = 2M concatenated with a full-diversity rotation
of dimension B, whenever 0 ≤ R

M < 1.
Note that we have added the achievability with random

coded modulation ensemble over the B-dimensional rotated
constellation to illustrate that a coding scheme with discrete
inputs can also achieve the optimal exponent. This result which
is based on a divide and conquer approach, should be rather
intuitive: the rotation of dimension B takes care of achieving
full diversity while the coding gain is then left to the outer
coded modulation scheme over S. When no rotations are used,
the optimal diversity reliability exponent for m = 1 is given
by the Singleton bound [20]

d? = 1 +
⌊
B

(
1− R

M

)⌋
. (15)

As shown in Figure 3 the advantage of rotations is clear:
they can achieve optimal diversity reliability exponent for all
the range of rates. Instead, when no rotations are used, the
largest rate such that optimal diversity reliability exponent is
achieved is R = M

B .
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Fig. 3. Diversity reliability exponents for B = 8 and m = 1. Optimal
exponent (14) and Singleton bound (15).

As outlined in the Introduction, full-diversity rotations
induce large decoding complexity, since the size of set of
candidate points at a given time instant is 2MB . We are
therefore interested in characterizing the optimal diversity



reliability exponent when rotations of smaller size N < B
are employed. We have the following results

Proposition 2: The diversity reliability exponent for the
coded modulation schemes based on K rotations of dimension
N , in a Nakagami-m block-fading channel with B = KN
blocks is upperbounded by

dX ≤ mN

(
1 +

⌊
B

N

(
1− R

M

)⌋)
. (16)

Proposition 3: The diversity reliability exponent in a
Nakagami-m block-fading channel with B = KN of random
coded modulation schemes based on K rotations of dimension
N of length L satisfying limSNR→∞

L(SNR)
SNR = λ, is lower-

bounded by
dX ≥ λBM log 2

(
1− R

M

)
(17)

when 0 ≤ λNM log 2 < m and by

dX ≥ min

{
mN

⌈
B

N

(
1− R

M

)⌉
,mN

⌊
B

N

(
1− R

M

)⌋

+ λM log 2
(

B

(
1− R

M

)
−N

⌊
B

N

(
1− R

M

)⌋)}
(18)

otherwise.
Theorem 1: The optimal diversity reliability exponent for

the coded modulation schemes based on K rotations of
dimension N , in a Nakagami-m block-fading channel with
B = KN blocks is given by

d?
X = mN

(
1 +

⌊
B

N

(
1− R

M

)⌋)
(19)

whenever B
N

(
1− R

M

)
is not an integer.

Proof: Proposition 2 shows that

dX ≤ mN

(
1 +

⌊
B

N

(
1− R

M

)⌋)
. (20)

Letting λ →∞ in Proposition 3 shows that

dX ≥ mN

⌈
B

N

(
1− R

M

)⌉
. (21)

Noting that dxe = bxc+ 1 whenever x is not an integer leads
the desired result.

As we observe, Theorem 1 shows that the optimal exponent
is given by m times the Singleton bound of (6), proving
its optimality and separating the the roles of the channel
distribution (through m) and of the code construction. When
N = 1, there is no rotation, and the inputs to the channel are
directly signal constellation points drawn from S. In this case,
we have that the optimal reliability exponent is given by the
Singleton bound [21], [20]

d?
X = m

(
1 +

⌊
B

(
1− R

M

)⌋)
(22)

for any R ≤ M , and the optimal codes are blockwise MDS
in a channel with B blocks. For N > 1 Theorem 1 suggests
that the optimal coding scheme is to use a coded modulation
scheme constructed over S which is MDS in a block-fading
channel with K = B

N blocks concatenated with rotations of
dimension N . In this case the MDS constraint on the code is

relaxed, since it has to be MDS for a smaller number of blocks,
at an expense of a decoding complexity increase. Theorem 1
implicitly introduces an equivalent channel model, namely, a
block-fading channel with K = B

N , where each block has
diversity mN . When K = 1, N = B, there is only one single
rotation of full dimension, Theorem 1 generalizes Lemma 1.
The optimal coding scheme here does not need to be MDS.
Therefore, Theorem 1 generalizes and proves the optimality
of the modified Singleton bound introduced in [7].

Figure 4 shows the reliability exponents in the case of
B = 8, m = 0.5 and N = 1, 2, 4. The figure confirms the
intuition behind such designs that the rotations should increase
the reliability exponent. For example, for R

M = 1
2 , we have that

with classical complex-plane inputs the reliability exponent is
d?
X = m5, while for rotations with N = 2 the exponent is

d?
X = m6 and for N = m4 the exponent is d?

X = m8,
full diversity. This approach can be seen as a divide-and-
conquer approach, namely, the task of achieving diversity is
split between both, the code C and the rotations. Figure 5
shows the diversity upper bound as well as the random coding
lower bounds given in Propositions 2 and 3, respectively. As
we see, if λ is increased, both bounds coincide in a larger
support. Eventually, for λ → ∞ they coincide wherever they
are continuous.
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Fig. 4. Reliability exponents for B = 8, m = 0.5 and rotations of
dimensions N = 1 (dash-dotted), N = 2 (dashed) and N = 4 (solid).

To illustrate the performance benefits of rotations, Figure 6
shows Pout(SNR, R) as a function of Eb

N0
in a block-fading

channel with m = 1 and B = 4 for R = 2, with Gaussian
inputs (solid), discrete inputs (dotted), rotated discrete inputs
with two cyclotomic rotations with N = 2 (dash-dotted)
and rotated discrete inputs with one Krüskemper rotation
with N = 4 (dashed). Gaussian inputs achieve the optimal
exponent, namely d? = B = 4, while unrotated inputs have
d?
X = 3 [20]. As we observe from the curves, using two

rotations of dimension N = 2, not only allows to recover the
largest possible exponent (in agreement with Theorem 1) but
also brings a large gain in terms of gain. Using one rotation
of dimension N = 4 incurs much larger complexity and does
not bring any benefits in terms of exponent nor gain.
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Fig. 6. Outage probability for R = 1, 2 in a block-fading channel with
B = 4, m = 1, with Gaussian, rotated and unrotated inputs.

V. CONCLUSIONS
We have studied coded modulation schemes over Nakagami-

m block-fading channels with discrete input signal constel-
lations. In particular, we have derived the optimal diversity
reliability exponent for multidimensional signal constellations
obtained from the rotation of classical complex-plane constel-
lations, and we have shown that there is a tradeoff between the
transmission rate, optimal achievable diversity, dimension of
the rotations and size of the complex-plane signal constellation
given by a modified form of the Singleton bound. Since
using rotated constellations induces an increase in decoding
complexity, the Singleton bound establishes the optimal rate-
diversiy-complexity tradeoff.
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