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Abstract— In this paper, we consider an automatic-repeat-
request (ARQ) retransmission protocol signaling over a block-
fading multiple-input, multiple-output (MIMO) channel. I n par-
ticular, we consider fixed rate codes constructed over discrete
complex signal constellations. We show that the optimal signal-
to-noise ratio (SNR) exponent is given by a modified Singleton
bound, relating all the system parameters. To demonstrate the
practical significance of the theoretical analysis, we present nu-
merical results showing that practical Singleton-bound-achieving
maximum distance separable codes achieve the optimal SNR
exponent.

I. I NTRODUCTION

The block-fading channel model was introduced in [1],
allowing for transmission extending over channels with multi-
ple block-fading periods. Within a block-fading period, the
fading channel coefficients remain constant, while between
periods the channel coefficients change randomly according
to a fading distribution. The block-fading channel model isa
reasonable model for orthogonal frequency division multiplex-
ing (OFDM) transmission over frequency-selective wireless
channels. Despite its simplicity, the model captures important
aspects of OFDM modulation over frequency-selective fading
channels and it is useful for developing coding design criteria.

The seminal work of Teletar [2], and Foschini and Gans [3],
has inspired a flurry of research in multiple-input, multiple-
output (MIMO) channels. The fundamental tradeoff between
diversity gain and multiplexing gain1 for quasi-static MIMO
channels is described in [4], assuming Gaussian distributed
inputs. The fundamental tradeoff developed in [4] has become
a benchmark for the performance evaluation of space-time
coding schemes, and the corresponding framework has become
a preferred approach for characterizing classes of MIMO
channels [5, 6]. For fixed rate codes constructed over discrete
signal constellations, the work in [7] reports the fundamental
rate-diversity tradeoff over quasi-static MIMO channels.
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1The diversity gain (or signal-to-noise ratio (SNR) exponent) is defined as
d , − limSNR→∞

log Pe(SNR)
log SNR

, wherePe(SNR) denotes the probability
that the transmitted message is decoded incorrectly. The multiplexing gain
is defined asrm , limSNR→∞

R(SNR)
log SNR

, whereR(SNR) is the code rate.
The multiplexing gain essentially quantifies how close the code rate is to the
capacity of a single-input single-output link at high SNR [4].

The fundamental tradeoff for MIMO automatic-repeat-
request (ARQ) block-fading channel is described in [5] under
the Gaussian input assumption. In this work, the authors
established the fundamental tradeoff between diversity gain,
multiplexing gain and delay (i.e. maximum number of retrans-
missions) over MIMO ARQ channels. This result asserts ARQ
delay as a potential source for diversity, even when the channel
remains constant over the transmission of a given message.

In this paper, we consider an ARQ system signaling over a
block-fading MIMO channel withL maximum allowable ARQ
rounds andB fading blocks per ARQ round. We constrain the
transmitter to fixed rate codes constructed over complex signal
constellations. In particular, we examine the general case
of average input-power-constrained constellations as well as
the practically important case of finite discrete constellations.
The receiver is able to generate a finite number of one-bit
repeat-requests, subject to a latency constraint, whenever an
error is detected in the decoded message. A maximum of
L transmissions pertaining to each information message is
allowed. The main focus of our work is to characterize the
tradeoff between throughput, diversity gain and delay. Similar
to [5], we demonstrate that while the optimal SNR exponent of
the system is an increasing function of the maximum number
of allowed ARQ roundsL, the throughput of the system is
independent ofL for sufficiently high SNR, and is determined
by the rate of the first ARQ round. We therefore denote our
main result as theoptimal throughput-diversity-delay tradeoff.
This result provides strong incentive to use ARQ as a way to
increase reliability without suffering code rate penalties.

The following notation is used in the paper. Sets are denoted
by calligraphic fonts. The exponential equalityf(z)

.
= zd

indicates thatlimz→∞
log f(z)

log z
= d. The exponential inequality

.

≤,
.

≥ are similarly defined.‖ · ‖F is the Frobenius norm and
vector/matrix transpose is denoted by′ (e.g. v′). ⌈x⌉ (⌊x⌋)
denotes the smallest (largest) integer greater (smaller) thanx.

II. SYSTEM MODEL

Consider a block-fading MIMO ARQ system withNt

transmit antennas andNr receive antennas. We investigate
the use of a simple stop-and-wait ARQ protocol where the
maximum number of ARQ rounds is denoted byL. Each
ARQ round is subject toB independent block-fading periods,



each of lengthT (coherence time/bandwidth) in channel uses.
Hence each ARQ round spansBT channel uses.

The received signal at thebth block andℓth ARQ round is

Yℓ,b =

√
ρ

Nt

Hℓ,bXℓ,b + Wℓ,b, (1)

where Xℓ,b ∈ CNt×T ,Yℓ,b,Wℓ,b ∈ CNr×T and Hℓ,b ∈
CNr×Nt denote the transmitted signal matrix, received signal
matrix, the noise matrix and the channel fading gain matrix,
respectively, whileρ denotes the average SNR per receive
antenna. Both the elements of the channel fading gain matrix
Hℓ,b and the elements of the noise matrixWℓ,b are assumed
i.i.d. zero mean circularly symmetric complex Gaussian with
varianceσ2 = 0.5 per dimension. The channel coefficients are
assumed to be perfectly known to the receiver. In addition, we
consider two types of fading dynamics and obtain thelong-
term static model of [5] by lettingHℓ,b = Hℓ′,b for all ℓ 6= ℓ′

in (1). The short-term static model of [5] is obtained when
the matricesHℓ,b are i.i.d. for each block and ARQ round.

The receiver attempts to decode following the reception of
an ARQ round. If the received codeword can be decoded,
the receiver sends back a one-bit acknowledgement signal to
the transmitter via a zero-delay and error-free feedback link.
The transmission of the current codeword ends immediately
following the acknowledgment signal and the transmission of
the next message in the queue starts. If an error is detected
in the received codeword before theLth ARQ round, then the
receiver requests another ARQ round by sending back a one-
bit negative acknowledgment along the perfect feedback path.
However, a decision must be made at the end of theLth ARQ
round regardless of whether errors are detected.

In general, the optimal ARQ decoder makes use of all
available coded blocks and corresponding channel state infor-
mation up to the current ARQ round in the decoding process.
This leads to the concept of information accumulation, where
individual ARQ rounds are combined, along with any other
side information. We hence introduce the ARQ channel model
up to the ℓth ARQ round, completely analagous to (1), but
allowing for a more concise notation. In particular, we have

Ỹℓ =

√
ρ

Nt

H̃ℓX̃ℓ + W̃ℓ, (2)

where

Ỹℓ =
[
Y

′
1,1, . . . ,Y

′
1,B, . . . ,Y

′
ℓ,1, . . . ,Y

′
ℓ,B

]′
,

X̃ℓ =
[
X

′
1,1, . . . ,X

′
1,B, . . . ,X

′
ℓ,1, . . . ,X

′
ℓ,B

]′
,

W̃ℓ =
[
W

′
1,1, . . . ,W

′
1,B, . . . ,W

′
ℓ,1, . . . ,W

′
ℓ,B

]′
,

H̃ℓ = diag(H1,1, . . . ,H1,B, . . . ,Hℓ,1, . . . ,Hℓ,B) .

That is,Ỹℓ ∈ CℓBNr×T , X̃ℓ ∈ CℓBNt×T andW̃ℓ ∈ CℓBNr×T

are simply collections of the received, code and noise matrices,
respectively, available at the end of theℓth ARQ round,
concatenated into block column matrices. The new channel
matrix H̃ℓ ∈ CℓBNr×ℓBNt is a block diagonal matrix with
the diagonal blocks composed of the respective channel state
during each block-fading period up to ARQ roundℓ.
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Fig. 1. Block diagram of the concatenated MIMO ARQ architecture.

A. Encoding

The information message to be transmitted is passed through
a space-time coded modulation encoder with codebookC ⊂
C

LBNt×T and code rateR0, whereR0 , R1

L
and R1 ,

1
BT

log2 |C| is the code rate of the first ARQ round. Therefore,

|C| = 2R0LBT and the message indexm ∈ M, whereM
∆
=

{1, 2, . . . , 2R0LBT} is the set of possible information message
indices. We denote the codeword corresponding to information
messagem by X(m) ∈ CLBNt×T . The rateR0 codeword
can be partitioned into a sequence ofLB space-time coded
matrices, denotedXℓ,b ∈ CNt×T . We consider ashort term
average power constraint where the transmitted codewords are
normalized in energy such that∀X ∈ C, 1

LBT
E[‖X‖2

F ] = Nt.
Let C, illustrated in Figure 1, be obtained as the con-

catenation of aclassical coded modulation schemeCQ ⊆
QLBTNt constructed over a complex-plane signal setQ =
{q1, . . . , q|Q|} ⊂ C with a unit rate linear dispersion space-
time modulator [8]. Furthermore, letcQ ∈ CQ denote a
codeword ofCQ of length LBTNt and Q = log2 |Q| the
number of bits conveyed in one symbol ofQ, namely,|Q| =
2Q. Since the linear dispersion space-time modulator has unit
rate we have that0 ≤ R1 ≤ LQNt.

B. Decoding

We make use of the ARQ decoder proposed in [5], which
behaves as a typical set decoder for the firstL−1 ARQ round
and finally performs ML decoding at the last ARQ round.
Specifically, the decoding function at ARQ roundℓ, denoted
ψℓ(Ỹℓ, H̃ℓ), outputs the message index̂m ∈ M whenever the
received vector can be decoded andψℓ(Ỹℓ, H̃ℓ) = 0 whenever
errors are detected. On the last ARQ round, retransmissions
are not allowed and the ARQ decoder always outputs the best
estimate of the transmitted message.

III. ARQ PERFORMANCEMETRICS

For ease of notation, let

Dℓ ,

{
ψ1(Ỹ1, H̃1) = 0, . . . , ψℓ(Ỹℓ, H̃ℓ) = 0

}

denote the event of error detection up to and including ARQ
roundℓ. The expected latencyκ of the system is determined
by the probability of error detection, and it is given by

κ = 1 +

L−1∑

ℓ=1

Pr(Dℓ) , (3)



whereκ is expressed in terms of number of ARQ rounds. The
corresponding transmit throughput of the system in terms of
the average effective code rate is simply obtained by [5]

η(R1, L) =
R1

1 +
∑L−1

ℓ=1 Pr(Dℓ)
, (4)

whereη(R1, L) is expressed in bits per channel use.

IV. I NFORMATION ACCUMULATION

The instantaneous input-output mutual information of the
channel (2) up to ARQ roundℓ, for the channel realization
H̃ℓ = G̃ℓ can be written as

I
(
ρ|G̃ℓ

) ∆
=

1

T
I(X̃ℓ ; Ỹℓ | H̃ℓ = G̃ℓ) =

1

T

ℓ∑

k=1

I(ρ|Gℓ) (5)

whereI(ρ|Gℓ) is the instantaneous input-output mutual infor-
mation corresponding to ARQ roundℓ. Following (5) we will
refer to I

(
ρ|G̃ℓ

)
as theaccumulated mutual information up

to ARQ roundℓ. I
(
ρ|G̃ℓ

)
measures the normalized mutual

information betweenỸℓ and X̃ℓ, given H̃ℓ = G̃ℓ. Since
G̃ℓ is a random matrix,I

(
ρ|G̃ℓ

)
is a non-negative random

variable. Further, from (5) it is clear that the accumulated
mutual information is an increasing function of the ARQ round
index ℓ, for a given realization of̃Gℓ.

Following [9, Lemma 1], we get that for|M| = 2R1BT ,
there exists a codebookC such that the conditional probability
of errorPe(ρ|G̃ℓ) < ǫ for anyǫ > 0 wheneverI

(
ρ|G̃ℓ

)
≥ R1

for any ℓ = 1, . . . , L, provided that the block lengthℓBT is
sufficiently large. We hence define information outage as the
event that occurs when the accumulated mutual information is
belowR1, namely

Oℓ ,

{
G̃ℓ ∈ C

ℓBTNr×ℓBTNt : I
(
ρ|G̃ℓ

)
< R1

}
. (6)

For any finiteB and L, the channel defined in (2) is not
information stable and the channel capacity in the strict
Shannon sense is zero, since the probability of the outage event
is nonzero. The corresponding outage probability is definedas

Pout(ρ, ℓ, R1) = Pr
(
I
(
ρ|G̃ℓ

)
< R1

)
. (7)

V. THROUGHPUT-DIVERSITY-DELAY TRADEOFF

We now present the main results of this paper concerning
the optimal SNR exponent of ARQ systems.

Theorem 1: Consider the channel model (2) with input
constellation satisfying the short term average power constraint

1
LBT

E[‖X‖2
F ] ≤ Nt. The optimal SNR exponentd⋆(R1) is

given by

d⋆(R1) =

{
NtNrLB for short-term static fading

NtNrB for long-term static fading
(8)

Further, this is achieved by Gaussian random codes of rate
R1 > 0, provided that the block length is sufficiently long.

Proof: Theorem 1 follows immediately as a corollary of
[5, Theorem 2] after taking into account the introduction of
B in the system.

Theorem 1 states that Gaussian codes achieve maximal di-
versity gain for any positive rate. As we show in the following,
this is not the case with discrete input signal constellations.

Theorem 2: Consider the channel model (2) satisfying the
short term average power constraint1

LBT
E[‖X‖2

F ] ≤ Nt, with
discrete input signal constellations of cardinality2QNt . The
optimal SNR exponent is given by

d⋆
D(R1) = NtNr

(
1 +

⌊
LB

(
1 −

R1

LQNt

)⌋)
(9)

for short-term static fading and

d⋆
D(R1) = NtNr

(
1 +

⌊
B

(
1 −

R1

LQNt

)⌋)
(10)

for long-term static fading over the full range of0 ≤ R1 ≤
LQNt, where (9) and (10) are continuous.

Proof (Sketch): We first prove the converse and show
that the diversity gaind⋆

D(R1) is upper-bounded by (9) and
(10). We can use Fano’s inequality to show that the outage
probability Pout(ρ, ℓ, R1) lower-bounds the error probability
Pe(ρ) for a sufficiently large block length. Then we bound
the maximum SNR exponent by considering the diversity gain
of the outage probability. For large SNR, the instantaneous
mutual information is either zero orQNt bits per channel use,
corresponding to when the channel is in deep fade and when
the channel is not in deep fade, respectively [10]. Achievability
is proved by bounding the error probability of the typical set
decoder [5] for ARQ roundsℓ = 1, . . . , L− 1, and that of the
ML decoder at roundL, using the union Bhattacharyya bound
on a random coded modulation scheme overQ concatenated
with linear dispersion space-time modulation. For finiteT , we
obtain similar conditions to those in [10]. Finally, asT → ∞,
we show that the SNR exponent of random codes is given by
the bounds (9) and (10) for all values ofR1 where they are
continuous. Further details of the proof are in [11].

Theorem 2 states that optimal diversity gain ofNtNrLB

and NtNrB for short- and long-term models, respectively,
can also be achieved by discrete signal sets coupled with linear
dispersion space-time modulators, spreading the symbols of Q
overB fading blocks at each ARQ round. Under this scenario,
full diversity is maintained for all rates0 ≤ R1 ≤ QNt

over short-term static fading channels, and all rates0 ≤
R1 ≤ LQNt over long-term static fading channels. This result
demonstrates the utility of ARQ: over short-term static fading
channels, ARQ can be used to increase reliability, while over
long-term static fading channels, ARQ can be used to increase
the range of supported transmission rates.

The upper bounds (9) and (10) are also applicable to
any systems using block codes overLB independent block-
fading periods. The significance of the ARQ framework is
that it provides a way of achieving the optimal SNR exponent
attained by a block code withLB coded blocks, without
always having to transmit allLB code blocks. Following [5],
it is possible to show that the throughput approaches the rate
of a single ARQ round asymptotically, i.e.

η(R1, L)
.
= R1. (11)
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for a long-term static2 × 2 MIMO channel.

In other words, provided the SNR is sufficiently high, ARQ
systems which sendon average B coded blocks (i.e. one
single ARQ round) can achieve the same diversity gain as
that achieved by a block code system which sendsLB coded
blocks every time. This is because in the high SNR regime,
most frames can be decoded correctly with high probability
based only on the first transmitted code block. ARQ retrans-
missions are used to correct the rare errors which occur almost
exclusively whenever the channel is in outage. While the
throughputη(R1, L) is a function ofL at mid to low SNR,
it converges towardsR1 independent ofL at sufficiently high
SNR. Since the optimal diversity gain is an increasing function
of L, this behavior can be exploited to increase reliability
without suffering code rate losses. However, as noted in [5],
this behavior is exhibited only by decoders capable of near
perfect error detection (PED). Therefore, the performanceof
practical error detection schemes can be expected to signifi-
cantly influence the throughput of ARQ systems.

Since equation (11) relates the asymptotic throughput with
the coding parameterR1, the optimal SNR exponent given
by (9) and (10) gives theoptimal throughput-diversity-delay
tradeoff of MIMO ARQ block-fading channels. Examining the
optimal discrete throughput-diversity-delay tradeoff (9) and
(10) in more detail, we first note thatR1

NtLQ
= R0

QNt

= r

is the code rate of a binary code. i.e.0 ≤ r ≤ 1, as if
the coded modulation schemeCQ was obtained itself as the
concatenation of a binary code of rater and lengthNtLQBT .
Expressions (9) and (10) imply that the higher we set the target
rateR1 (equivalently,R0), the lower the achievable diversity
order. In particular,uncoded sequences (i.e.R1 = QNtL)
achieve optimal diversity gain ofNtNr, while any code with
non-zeroR1 ≤ QNtL will achieve optimal diversity gain
less than or equal toNtNrLB or NtNrB in the short- and
long-term static models, respectively. This is an intuitively
satisfying result asLB andB are precisely the number of
independent fading periods in the short- and long-term static
models, respectively, each with inherent diversityNtNr.

Figures 2 and 3 illustrate the effect of the maximum number
of allowed ARQ roundsL on the diversity of the system
over short- and long-term static channels, respectively. It is
clear from the plot that in the short-term static case the
effect of L is to simply shift tradeoff curves upwards. This
is also intuitively satisfying, since each additional ARQ round
represents incremental redundancy, which can be considered as
a form of advanced repetition coding. Each additional ARQ
round containsB additional independent fading blocks and
hence the diversity gain withL ARQ rounds is simply the
diversity gain with L − 1 rounds plusB. In the case of
long-term static fading, since each ARQ round uses the same
channel realization, largerL implies a broader range ofR1

for which maximum diversity can be achieved.
The diversity tradeoff functions (9) and (10) can be viewed

as modified versions of the Singleton bound with the diversity
gain corresponding to the Hamming distance of our codeC,
viewed as a code of lengthLB constructed over an alphabet of
size 2QNtT . Therefore, Singleton-bound achieving maximum
distance separable (MDS) codes are optimal for the discrete-
input MIMO ARQ block-fading channel.

VI. N UMERICAL RESULTS

In this section, we show some examples of MDS codes for
MIMO ARQ block-fading channels withNt = Nr = 2. In
particular, the first system has a maximum number of ARQ
rounds ofL = 2, B = 1, and is using the terminated 4-
state[5, 7]8 convolutional code, while the second system has
a maximum number of ARQ rounds ofL = 4, B = 1,
and is using the terminated 4-state[5, 5, 7, 7]8 convolutional
code. The outer convolutional codes are divided into blocks,
interleaved and modulated using the complex2 × 2 threaded
algebraic space-time (TAST) modulator proposed in [12]. The
two systems are investigated for their performance over the
short-term static fading channel.

In this example, the channel coherence time isT = 32
channel uses and the mapper overQ is set to 4QAM. In
this case, ML decoding becomes impractical and we therefore
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resort to a sub-optimal iterative error detection and decod-
ing scheme. The iterative scheme is based on the max-log
APP detector proposed in [13], recursively exchanging code
symbol extrinsics with an outer APP decoder, thus generating
estimates of the information sequence. Note that the max-log
APP detector used here considers all possible input vectors,
but it generates an approximation of the code symbol extrinsic
using two maximization operations. At each ARQ round, we
run the accumulated received signal through six iterationsof
the detection and decoding algorithm before examining the de-
coder output. Errors are detected in this system by examining
the soft output of the decoder at each ARQ round, namely, the
minimum bit-reliability criterion (MinLLR) proposed in [14].

Figure 4 compares the error rate performance of theL = 2
system andL = 4 systems under the short-term fading dy-
namics. For each system, we plot three curves, corresponding
to the lower outage probability bound, the PED performance,
as well as the MinLLR performance. We notice that additional
retransmissions lead to an appreciable decrease in error rates,
and, equally important, the MinLLR criterion performs virtu-
ally as good as perfect error detection.

Figure 5 compares the average latency (measured in ARQ
rounds) of the two ARQ systems under the short-term fading
scenario. Again, we plot three curves per system, correspond-
ing to the lower bound of expected latency, as well as the PED
and MinLLR performances. In this case, we observe that the
cost of using the MinLLR criterion is mainly an increase in
latency, caused by requesting superfluous retransmissions.

VII. C ONCLUSION

In this paper, we derived expressions for the optimal ARQ
SNR reliability function over the block-fading channel. The
discrete reliability functions (9) and (10) characterize the
tradeoff between diversity gain, throughput, signal set and
delay. We showed that ARQ transmissions can significantly
increase the level of diversity in the system. Further, the ad-
ditional diversity gain due to ARQ comes with no throughput
or delay penalty at high SNR. We recognized the optimal

SNR reliability function as the Singleton bound in a modified
form, which lead us to conclude the optimality of MDS codes.
Finally, we showed via simulation that practical MDS codes
can achieve the optimal SNR reliability function with low-
complexity decoders on the ARQ block-fading channel.
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