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Abstract—We derive an upper bound on the reliability function
of mismatched decoding for zero-rate codes. The bound is based
on a result by Komlós that shows the existence of a subcode with
certain symmetry properties. The bound is shown to coincide
with the expurgated exponent at rate zero for a broad family of
channel and decoding metric pairs.
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I. INTRODUCTION

Consider a discrete memoryless channel with finite input
alphabet X and output alphabet Y , and with transition prob-
abilities W (y|x). For a message set M = {1, 2, . . . ,M}
and blocklength n, an encoder is a function C : M → Xn

that assigns to each message m a corresponding codeword
xm = (xm,1, xm,2, . . . , xm,n). The rate of transmission is
defined as R , log M

n . When message m is sent, an output
sequence y = (y1, y2, . . . , yn) is received with probability
Wn(y|xm) =

∏n
i=1W (yi|xm,i). A decoder is a function

C−1 : Yn → M which maps each output sequence to a
message in M as

C−1(y) ∈ arg max
m∈M

qn(xm,y) (1)

where qn(xm,y) =
∏n

i=1 q(xm,i, yi) where q : X ×Y → R+

is a decoding metric. Ties are broken uniformly at random.
When message m is sent, a decoding error occurs if
C−1(y) 6= m, that is if y is not in the subset Ym ⊂ Yn

of output sequences that are decoded in m. Letting Pe,m be
the probabilty of this event, the average probability of error
of the code is Pe , 1

M

∑M
m=1 Pe,m.

When q(x, y) = W (y|x), the decoder is the maximum
likelihood decoder, achieving the lowest probability of error.
Instead, when the decoding metric q(x, y) 6= W (y|x), the
decoder is, in general, said to be mismatched [1], [2] (see
also [3] for a recent survey on the subject).

For fixed R, n and decoding metric q, let P q
e (R,n) be the

smallest probability of error over all codes with rate at least
R and block length n, with decoding metric q. The reliability
function is defined as

Eq(R) , lim sup
n→∞

− 1

n
logP q

e (R,n) (2)
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is the best possible asymptotic exponential rate of decay of the
error probability for a given channel and decoding metric, for
codes of rate at least R and blocklength n. The supremum of
the information rates R for which the error probability tends
to zero is called mismatched capacity.

There is no single-letter expression for the mismatched ca-
pacity. Random-coding rates and error exponents are available
in the literature [1], [2], [4]–[6]. There are fewer upper bounds
on the mismatched capacity in the literature. Recently, single-
letter upper bounds on the mismatched capacity improving
over the Shannon capacity were proposed in [7], [8]. A sphere-
packing upper bound on the mismatched reliability function
was recently proved in [9].

We study the problem of finding an upper bound on the mis-
matched reliability function of any given discrete memoryless
channel and decoding metric, when the rate tends to 0, that is,
we are interested in upper-bounding Eq(0+). We restrict our
attention to channel and decoding metric pairs such that

W (y|x) > 0 =⇒ q(x, y) > 0 (3)

for all x ∈ X and y ∈ Y . In fact, whenever the decoding metric
does not meet this condition for some input x, the mismatched
capacity is zero if that input is used [1].

Relevant for this work is a generalization of Gallager’s
expurgated bound to mismatched decoding [10]; when the rate
approaches zero, the bound takes the form

E(0+) ≥

max
Q∈P(X )

sup
s≥0
−
∑
a∈X

∑
b∈X

Q(a)Q(b) log
∑
y∈Y

W (y|a)

(
q(b, y)

q(a, y)

)s
.

(4)

In this paper, we derive an upper bound on E(0+) for a wide
class of channel and metrics pairs that matches the above lower
bound, showing that it is tight for such pairs.

II. MISMATCHED ZERO-ERROR CAPACITY

We restrict our attention to channels and decoding metrics
that give a strictly positive probability of error at any R > 0; if
this is not the case, Eq(R = 0+) is infinite and no finite upper
bound is possible. We thus need the mismatched zero-error
capacity C̄q

0 = 0, where C̄q
0 is defined as the supremum of the

rates R for which there exist codes with probability of error



exactly equal to zero, given that ties are broken uniformly at
random, for a channel W (y|x) and a decoding metric q(x, y)1.

Notice that C̄q
0 is positive if and only if there exist two

codewords x1 and x2 (of arbitrary blocklength) such that for
all output sequences y:

1) either Wn(y|x1) = 0 or Wn(y|x2) = 0;
2) Wn(y|x1) > 0 =⇒ q(x1,y) > q(x2,y)

Wn(y|x2) > 0 =⇒ q(x2,y) > q(x1,y).

Condition 1 states that each possible output sequence can be
obtained only from one of the two codewords; condition 2
states that each sequence is always decoded correctly.

The study of the conditions which ensure C̄q
0 = 0 can be

done using the same tools that we later need for the study of
E(0+). Hence, we introduce a real-valued function that will
be useful to both ends. For any two sequences x1,x2 ∈ Xn,
we define, for s ≥ 0,

µx1,x2
(s) , − log

∑
y∈Ŷn

x1,x2

Wn(y|x1)

(
qn(x2,y)

qn(x1,y)

)s

(5)

where Ŷn
x1,x2

,
{
y ∈ Yn : qn(x1,y)qn(x2,y) > 0

}
. When

n = 1, (5) becomes, for any a, b ∈ X ,

µa,b(s) , − log
∑

y∈Ŷa,b

W (y|a)

(
q(b, y)

q(a, y)

)s

(6)

with Ŷa,b ,
{
y ∈ Y : q(a, y)q(b, y) > 0

}
. We will also use

the limit of the derivatives of these functions when s → ∞,
and we thus define

µ′x1,x2
, lim

s→∞
µ′x1,x2

(s) (7)

µ′a,b , lim
s→∞

µ′a,b(s) (8)

setting by definition µ′x1,x2
= +∞ if µx1,x2(s) = +∞, and

the same for µ′a,b.2 It is easily seen that µx1,x2
(s) is additive,

in the sense that letting Px1,x2
denote the joint type of x1 and

x2, we have
1

n
µx1,x2(s) =

∑
a∈X

∑
b∈X

Px1,x2(a, b)µa,b(s) (9)

So, important properties of µa,b(s) are thus immediately
inherited by 1

n µx1,x2(s). In particular, µa,b(s) is concave in s
and, due to assumption (3), it satisfies µa,a = 0. Furthermore,
it can be proved that

µ′a,b = min
y:W (y|a)>0

log
q(a, y)

q(b, y)
(10)

and that

lim
s→+∞

µa,b(s) = +∞ ⇐⇒ µ′a,b > 0

lim
s→+∞

µa,b(s) ∈ [0,+∞) ⇐⇒ µ′a,b = 0

lim
s→+∞

µa,b(s) = −∞ ⇐⇒ µ′a,b < 0.

1More discussion on the zero-error capacity for mismatched decoding with
different ways of handling ties is given in the extended version of this paper.

2Throughout the paper we use the convention ·
0
= +∞.

We are now ready to state the following theorem on C̄q
0 .

Theorem 1: For any discrete memoryless channel W (y|x)
and decoding metric q(x, y), C̄q

0 = 0 if and only if

min
y:W (y|a)>0

q(a, y)

q(b, y)
≤ max

y:W (y|b)>0

q(a, y)

q(b, y)
∀ a, b ∈ X .

(11)
Corollary 1:

C̄q
0 = 0 =⇒ max

Q∈P(X )
sup
s≥0

∑
a

∑
b

Q(a)Q(b)µa,b(s) < +∞.

(12)
Proof: Consider the properties that a pair of codewords

x1 and x2 must have in order to satisfy Conditions 1 and 2
above for a positive C̄q

0 . Condition 1 is satisfied if and only
if in at least a coordinate of the pair of codewords, there is
a pair of input symbols (a, b) such that W (y|a)W (y|b) = 0
for all y, that is, the joint type Px1,x2 of the two codewords
must have Px1,x2

(a, b) > 0 for that pair of input symbols.
This condition can be satisfied only if there actually exists a
pair of symbols (a, b) such that W (y|a)W (y|b) = 0 for all y.
Thus, a precondition for C̄q

0 > 0 is that

A ,
{

(a, b) ∈ X 2 : W (y|a)W (y|b) = 0 for all y ∈ Y
}
6= ∅.

(13)
Notice that this is also the condition for the classical C0 to
be positive, which is of course a necessary condition to have
C̄q

0 > 0, since clearly C̄q
0 ≤ C0.

Instead, from (10), Condition 2 is satisfied if and only if

µ′x1,x2
> 0 and µ′x2,x1

> 0. (14)

Hence, using (9), there exists a pair of codewords satisfying
Condition 2 if and only if there exists a joint type P such that
both∑

a

∑
b

P (a, b)µ′a,b > 0 and
∑
a

∑
b

P (a, b)µ′b,a > 0. (15)

Any pair of codewords with a joint type P satisfying (15)
satisfies Condition 2 for a positive C̄q

0 . Now, condition (15) is
possible for some n if and only if

sup
P∈P(X 2)

min
{∑

a

∑
b

P (a, b)µ′a,b,
∑
a

∑
b

P (a, b)µ′b,a

}
> 0

(16)
This supremum can be computed easily. Notice first that the
minimum of two linear functions is concave. Then, since the
minimum of the two functions is invariant with respect to
the transformation P (a, b)↔ P (b, a), its maximum is always
attained (also) by a joint type such that P (a, b) = P (b, a) for
all a, b. In such a case, the two functions are both equal to∑

a≤b

P (a, b)(µ′a,b + µ′b,a) (17)

and this quantity is maximized when all the weight is given
to the largest term. Notice also that the P achieving this
maximum has rational entries. Hence, thanks to (10), condition
(16) becomes

max
a,b

(
min

y:W (y|a)>0
log

q(a, y)

q(b, y)
+ min

y:W (y|b)>0
log

q(b, y)

q(a, y)

)
> 0.

(18)



Thus, if (18) is true, then we can find at least one joint type P
that satisfies (15), and with it a whole set of pairs of codewords
that satisfy Condition 2 for having C̄q

0 > 0. However, we
have no guarantees that there exists a pair of codewords in
this set that satisfies also Condition 1. For this to be true, it
is necessary that a pair of codewords in the set has a joint
type with P (a, b) > 0 for some (a, b) ∈ A. We now consider
this issue. Since the maximum in (18) is strictly positive, then,
thanks to the fact that the argument of the max in (17) is linear
in P , in the neighborhood of the joint distribution achieving
the maximum, there exists a (symmetric) joint type P̂ that has
P̂ (a, b) > 0 for a pair of symbols (a, b) ∈ A, and that, when
put into (17), still returns a positive value. Hence, the two
codewords with that joint type satisfy both Conditions 1 and
2, and C̄q

0 is positive.
Finally, the corollary follows from the fact that

max
Q∈P(X )

sup
s≥0

∑
a

∑
b

Q(a)Q(b)µa,b(s)

=
1

2
max

Q∈P(X )
sup
s≥0

∑
a

∑
b

Q(a)Q(b)
(
µa,b(s) + µb,a(s)

)
≤ 1

2
max

Q∈P(X )

∑
a

∑
b

Q(a)Q(b) sup
s≥0

(
µa,b(s) + µb,a(s)

)
(19)

where the equality follows from the fact that∑
a

∑
b

Q(a)Q(b)µa,b(s) =
∑
a

∑
b

Q(a)Q(b)µb,a(s).

The quantity in (19) is finite if C̄q
0 = 0, since inequality (11)

can be rewritten as µ′a,b + µ′b,a ≤ 0, which is equivalent to

lim
s→+∞

(
µa,b(s) + µb,a(s)

)
< +∞ (20)

which in turn implies that

sup
s≥0

(
µa,b(s) + µb,a(s)

)
< +∞ (21)

since µa,b(s) + µb,a(s) is concave.

III. LOWER BOUND ON THE PROBABILITY OF ERROR

Under the assumption that C̄q
0 = 0 and that ties are resolved

equiprobably, we now derive a lower bound on the probability
of error of codes with two codewords, and then we generalize
the result to codes with an arbitrary number of codewords.

The following derivation depends heavily on the method of
types developed by Csiszár and Körner [11]. Let Px1,x2

be
the joint type of codewords x1,x2. We define the conditional
type of an output sequence y ∈ Yn as

Vy(y|a, b) , Px1,x2,y(a, b, y)

Px1,x2
(a, b)

(22)

for any a, b ∈ X and y ∈ Y , and we denote by Vn(x1,x2) the
set of all conditional types given the codewords x1 and x2.
Since the channel is memoryless, output sequences with the
same conditional type Vy have the same conditional probabil-
ity Wn(y|xi) given any of the two codewords i = 1, 2, and

also the same value of the decoding metric qn(xi,y). Hence,
sequences with the same conditional type are decoded in the
same way. Therefore, we can group them together according
to their conditional type Vy .

We lower bound the probability of error for the code
composed of x1 and x2 and decoding metric q(x, y) as

Pe ≥
1

4

( ∑
V ∈Vn

2

Wn(V |x1) +
∑

V ∈Vn
1

Wn(V |x2)

)
(23)

where Vn
i is the set of conditional types decoded to message

i, or tied between i and the other message. Using standard
properties of types, we can bound the first sum in (23) as∑
V ∈Vn

2

Wn(V |x1) ≥ exp
{
−n min

V ∈Vn
2

D(V ‖Wx1 |Px1,x2)+o(n)
}

(24)
where

D(V ‖W |P ) =
∑
x

P (x)
∑
y

V (y|x) log
V (y|x)

W (y|x)
(25)

is the conditional relative entropy. The second term in (23) can
be handled similarly. It can be proved with methods similar to
those used [13] (we omit the details due to space limitations),
that the following expression holds

sup
s≥0

1

n
µx1,x2(s) =

{
min
V ∈V2

D(V ‖Wx1
|Px1,x2

), if V2 6= ∅

+∞, if V2 = ∅.
(26)

A similar expression holds with x1 and x2 swapped. Hence,
after passing from types Vn

2 to distributions V2 (details are
again omitted here), equation (23) can be rewritten as

Pe ≥ exp
{
− nD(n)

x1,x2
+ o(n)

}
(27)

where

D(n)
x1,x2

= min

{
sup
s≥0

1

n
µx1,x2(s), sup

s≥0

1

n
µx2,x1(s)

}
. (28)

Finally, notice that if we consider a code with more than two
codewords, say M , then there is one message m for which

Pe,m ≥ exp
{
− nDmin(C) + o(n)

}
(29)

where
Dmin(C) , min

m6=m′∈C
D(n)

xm,xm′ (30)

and therefore, for the whole code, the average probability of
error is lower-bounded by

Pe ≥
Pe,m

M
≥ exp

{
− n

(
Dmin(C) +R+ o(1)

)}
. (31)

IV. UPPER BOUND ON THE RELIABILITY FUNCTION

Equation (31) illustrates us that the problem of upper-
bounding the reliability function when the rate R approaches
0, reduces to upper-bounding Dmin(C). We note here that
the minimum distance Dmin(C) of any code C can be upper-
bounded by the minimum distance of any subcode Ĉ extracted



from C. Furthermore, the minimum distance Dmin(C) is upper-
bounded by the average distance D

(n)
xm,xm′ over all pairs of

codewords in C. Therefore, we upper bound the minimum
distance of a code by upper bounding the average distance
over a carefully selected subcode, that is,

Dmin(C) ≤ Dmin(Ĉ) ≤ 1

M̂(M̂ − 1)

∑
m6=m′∈Ĉ

D(n)
xm,xm′ (32)

for any Ĉ ⊂ C with |Ĉ| = M̂ .
The choice of the subcode Ĉ is critical, since, in general,

the average in (32) may be difficult to evaluate, for two
reasons: for two arbitrary codewords xm,xm′ , the functions
µxm,xm′ (s), µxm′ ,xm

(s) that define D
(n)
x1,x2 in (28) can be

very different from each other, and also, different pairs of
codewords have in general very different values of s at which
the functions µ(s) attain their supremum. To overcome these
difficulties, we apply the following result by Komlós [15], first
employed by Blinovsky [16] in the classical maximum like-
lihood setting, which ensures the existence of a “symmetric”
subcode in any large enough code.

Theorem 2 (Komlós [15]): For any positive integers t and
M̂ , there exists a positive integer M0(M̂, t) such that from
any code C with M > M0(M̂, t) codewords, a subcode Ĉ ⊂ C
with M̂ codewords can be extracted such that for any m 6= m′

and m̄ 6= m̄′ (not necessarily different from m and m′) in Ĉ,
and any (a, b) ∈ X 2,∣∣Pm,m′(a, b)− Pm̄,m̄′(a, b)

∣∣ ≤ ∆(M̂, t) (33)

where

∆(M̂, t) ,
6√
M̂

+ 2

√
2

t
+

3

t
. (34)

Thanks to property (9), the fact that all pairs of codewords
in the subcode have similar joint types implies that they also
have similar µ(s), while the fact that these types are close
to symmetrical implies that µxm,xm′ (s) and µxm′ ,xm

(s) are
close to each other. However, technical problems arise due
to the presence of the suprema in (28), since even if the joint
types are close to each other, the suprema of the functions µ(s)
might be very different if they are approached as s→∞. This
constrains our study only to a (very wide) class of channels
and decoding metrics for which we are sure that at least one
supremum in the definition of each D(n)

xm,xm′ is attained at an s
no larger than a known fixed value. The class is the following.

Definition 1: A discrete memoryless channel W (y|x) and a
decoding metric q(x, y) form a balanced pair if C̄q

0 = 0 and
for every pair (a, b) ∈ X 2 belonging to the set

B ,

{
(a, b) ∈ X 2 : min

y:W (y|a)>0

q(a, y)

q(b, y)
= max

y:W (y|b)>0

q(a, y)

q(b, y)

}
(35)

there exists a constant B(a, b) such that

q(a, y)

q(b, y)
= B(a, b) ∀ y ∈ Ŷa,b : W (y|a) +W (y|b) > 0.

(36)

A careful check of the above condition shows that all channels
and decoding metrics such that C̄q

0 = 0 and

W (y|x) > 0 ⇐⇒ q(x, y) > 0 (37)

are balanced pairs, and indeed represent a very important
special case. Furthermore, for this particular subclass,

C0 = 0 ⇐⇒ C̄q
0 = 0 (38)

where C0 is the classical zero-error capacity.
We are ready to proceed and prove the upper bound on the

reliability function at R = 0+ for any balanced channel-metric
pair. What we are going to prove is that, for this class, the
D

(n)
m,m′ are all close to each other for all pairs of codewords

in the symmetric subcode of C guaranteed by Theorem 3, that
from now on we shall denote by Ĉ. In order to show this, first
of all, for any concave function f(s), let3

S ,
{

0 ≤ s ≤ +∞ : f(s) = sup
s≥0

f(s)
}

(39)

and define
arg sup

s≥0
f(s) , inf S. (40)

The following two lemmas ensure that the D(n)
m,m′ are close to

each other for all pairs of codewords in Ĉ. This fact is what
will make the computation of the average in (32) possible.

Lemma 1: For any balanced pair, for any pair of codewords
m,m′,

arg sup
s≥0

(
µm,m′(s) + µm′,m(s)

)
∈ [ 0, ŝ ] (41)

where

ŝ , max
a,b

{
arg sup

s≥0

(
µa,b(s) + µb,a(s)

)}
< +∞. (42)

Lemma 2: For any balanced pair, for any pair of codewords
m,m′ ∈ Ĉ, let

s̄m,m′ , min
{

arg sup
s≥0

µm,m′(s), arg sup
s≥0

µm′,m(s)
}
. (43)

Then, 0 ≤ s̄m,m′ ≤ ŝ, with ŝ defined by (42), and

D
(n)
m,m′ ≤

1

n
µm,m′(s̄m,m′) +K∆(M̂, t) (44)

with ∆(M̂, t) as defined by (34), and

K , max
0≤s≤ŝ

∑
a

∑
b

∣∣µa,b(s)
∣∣. (45)

Furthermore, for any other pair of codewords m̄, m̄′ ∈ Ĉ,∣∣∣∣ 1n µm̄,m̄′(s̄m̄,m̄′)− 1

n
µm̄,m̄′(s̄m,m′)

∣∣∣∣ ≤ 4K∆(M̂, k). (46)

Finally, thanks to this lemma, we can prove our upper bound
on the reliability function at R = 0+, which coincides with
the lower bound (4).

3Here f(+∞) means lims→+∞ f(s). If lims→+∞ f(s) = +∞, then
S = {+∞}, since f(s) is concave.



Theorem 3: For any balanced pair,

Eq(0+) =

max
Q∈P(X )

sup
s≥0

[
−
∑
a∈X

∑
b∈X

Q(a)Q(b) log
∑
y∈Y

W (y|a)

(
q(b, y)

q(a, y)

)s ]
.

Proof: We already pointed out that for any subcode of C,
and in particular for the subcode Ĉ of Theorem 2, we have

Dmin(C) ≤ Dmin(Ĉ) ≤ 1

M̂(M̂ − 1)

∑
m 6=m′

D
(n)
m,m′ (47)

with m,m′ ∈ Ĉ. Then, we can bound the average as follows,
similarly as what Shannon, Gallager and Berlekamp did in the
non-mismatch setting for pairwise reversible channels [18].
Fix any pair of codewords xm̂ 6= xm̂′ ∈ Ĉ. Then,

Dmin(Ĉ)

≤ 1

M̂(M̂ − 1)

∑
m 6=m′

D
(n)
m,m′ (48)

≤ K∆(M̂, t) +
1

M̂(M̂ − 1)

∑
m6=m′

1

n
µm,m′(s̄m,m′) (49)

≤ 5K∆(M̂, t) +
1

M̂(M̂ − 1)

∑
m 6=m′

1

n
µm,m′(s̄m̂,m̂′) (50)

' 1

M̂(M̂ − 1)

∑
a

∑
b

∑
m 6=m′

Pm,m′(a, b)µa,b(s̄m̂,m̂′) (51)

' 1

n

1

M̂(M̂ − 1)

n∑
c=1

∑
a

∑
b

M̂c(a)M̂c(b)µa,b(s̄m̂,m̂′) (52)

' 1

n

M̂

M̂ − 1

n∑
c=1

∑
a

∑
b

M̂c(a)

M̂

M̂c(b)

M̂
µa,b(s̄m̂,m̂′) (53)

.
M̂

M̂ − 1
max

Q∈P(X )

∑
a

∑
b

Q(a)Q(b)µa,b(s̄m̂,m̂′) (54)

.
M̂

M̂ − 1
sup
s≥0

max
Q∈P(X )

∑
a

∑
b

Q(a)Q(b)µa,b(s) (55)

where the approximations hide the term 5K∆(M̂, t) in (50)
(otherwise they would be equalities or inequalities), (49) is
due to (44), (50) is due to (46), (52) is due to the standard
Plotkin double counting trick, and (54) is due to the fact that
for every c, {M̂c(a)/M̂}a∈X is a probability distribution over
X . As we already underlined, these steps are possible thanks
to the fact that all pairs of codewords in Ĉ have joint types
that are both symmetrical and close to each other, and that this
combined with the fact that for all balanced pairs we can focus
the attention only on the s in a known bounded interval, all the
D

(n)
m,m′ that appear in the average (47) are close to each other.

Then, letting M →∞ (so that we may also let M̂ →∞, by
Theorem 2) and t→∞ we obtain, thanks to the fact that the
hidden term 5K∆(M̂, t) in (55) tend to zero,

Dmin(C) ≤ sup
s≥0

max
Q∈P(X )

∑
a

∑
b

Q(a)Q(b)µa,b(s) + o(1)

which is independent of the code C. Finally, replacing µa,b(s)
with its definition (6), thanks to equation (31), since we let
R → 0 after n → ∞, we obtain the claimed upper bound
upper bound on the reliability function at R = 0+:

Eq(0+)

≤ max
Q∈P(X )

sup
s≥0
−
∑

a,b∈X

Q(a)Q(b) log
∑
y∈Y

W (y|a)

(
q(b, y)

q(a, y)

)s
which equals the expurgated lower bound given by (4), proving
the theorem.
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