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Abstract—For random-coding ensembles with pairwise-
independent codewords, we show that the probability that the
exponent of a given code from the ensemble being smaller
than an upper bound on the typical random-coding exponent
is vanishingly small. This upper bound is known to be tight
for i.i.d. ensembles over the binary symmetric channel and for
constant-composition codes over memoryless channels. Our result
recovers these as special cases and remains valid for arbitrary
alphabets and channel memory, as well as arbitrary ensembles
with pairwise independent codewords.

I. INTRODUCTION

We consider coding over discrete channels with conditional
probability distribution Wn(y|x), being x ∈ Xn,y ∈ Yn
the transmitted and received sequences of length n, and X ,Y
the finite channel input and output alphabets, respectively. For
memoryless channels we have Wn(y|x) =

∏n
i=1W (yi|xi),

where xi ∈ X , yi ∈ Y . A code Cn = {x1, . . . ,xMn
} is a set of

Mn codewords of length n. Assuming equiprobable messages
and maximum-likelihood decoding, the error probability of a
fixed code Cn is given by Pe(Cn) , 1

Mn

∑Mn

m=1 Pe(Cn,m),
where Pe(Cn,m) is the error probability when codeword xm
is transmitted. We define the error exponent of a code Cn as

En(Cn) , − 1

n
logPe(Cn). (1)

An exponent E is achievable when there exists a sequence of
codes {Cn}∞n=1 such that lim infn→∞En(Cn) ≥ E.

Lower bounds on the error exponent of codes used over
discrete memoryless channels are traditionally derived using
random-coding arguments [1, Sec. 5.6], [2, Ch. 10]. Let Cn be
the random variable representing a code randomly generated
with some probability distribution. In code ensembles with
pairwise-independent codewords, such as the i.i.d. or the
constant composition ensembles later discussed in Sec. III,
Mn codewords are generated independently with probability
distribution Qn(x). For such ensembles and sufficiently large
n, there exists a sequence of codes {Cn}∞n=1 whose error
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exponent (1) is at least as large as the random-coding error
exponent Er(R,Q) given by

Er(R,Q) , lim
n→∞

− 1

n
logE[Pe(Cn)], (2)

where R , limn→∞
1
n logMn is the code rate and Q is

the asymptotic single-letter version of Qn. It is known that
(2) is smaller than the reliability function for low code rates
and was improved by Gallager by employing expurgation [1,
Sec. 5.7]. Expurgation shows the existence of a codebook with
an improved exponent, the expurgated exponent Eex(R,Q) [3,
Eq. (5.7.11)].

In contrast, Barg and Forney [4] and Merhav [5], considered
the typical random-coding error exponent, defined it as the
limiting expected error exponent of the ensemble

Etrc(R,Q) , lim
n→∞

− 1

n
E[logPe(Cn)]. (3)

The typical error exponent improves over the random-coding
error exponent (2) at low rates, and is achieved by codes
in the specified ensemble, unlike the expurgated exponent,
achieved by codes with unknown structure. For the i.i.d. [4]
and the constant-composition [5] [6, Lemma 3] ensembles,
the typical error exponent is shown to satisfy Etrc(R,Q) =
Eex(2R,Q) + R ≤ Eex(R,Q), with equality for R = 0 1.
In the constant-composition case, it is further known that the
probability of finding codes outperforming the typical error
exponent is double-exponentially decaying in n [8].

II. MAIN RESULT

The main result of this paper is a consequence of the lemma
below, a refinement of a Lemma by Gallager [1, p. 151] that
can be shown by applying Markov’s inequality to the random
variable Pe(Cn)s for s > 0.

Lemma 1. Let γn be a real-valued monotonically in-
creasing sequence in n such that limn→∞ γn = ∞ and
limn→∞

1
n log γn = 0. For an arbitrary random-coding en-

semble and s > 0, it holds that

P
[
Pe(Cn) ≥ γ

1
s
nE[Pe(Cn)s]

1
s

]
≤ 1

γn
. (4)

1In [5] an inequality sign is used, but this is only because the improved
expurgated presented in [7, Section 1, point 4.] is used instead of Gallager’s.



Lemma 1 implies that the probability to randomly generate
a code Cn such that

Pe(Cn) < γ
1
s
nE[Pe(Cn)s]

1
s (5)

is larger than 1 − 1
γn

. The r.h.s. of (5) shows a strong
connection with the typical random-coding exponent (3) as
lims→0 E[Pe(Cn)s]

1
s = E[logPe(Cn)]. However, since the

lemma assumes that γn > 1 from a certain n, the bound (5)
is tightened for s < ∞, rather leading to a lower bound on
the error exponent of a typical random code. This result is
subsumed in the following theorem, valid for channels with
arbitrary alphabets or memory and pairwise-independent code
ensembles, thus significantly extending the results in [4]–[6].

Theorem 1. For a channel Wn and a pairwise-independent
ensemble with codeword distribution Qn, it holds that

lim
n→∞

P
[
En(Cn) ≥ Enex(2R,Qn) +R− δn

]
= 1, (6)

where δn > 0 such that limn→∞ δn = 0,

Enex(R,Qn) = Enx (ρ̂n, Q
n)− ρ̂nR (7)

is the multi-letter version of the expurgated exponent,

Enx (ρ,Qn) , − 1

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)Zn(x,x′)
1
ρ

)ρ
,

(8)

Zn(x,x′) =
∑

y

√
Wn(y|x)Wn(y|x′) is the Bhattacharyya

coefficient between x,x′ ∈ Xn and

ρ̂n = arg max
ρ≥1

{
Enx (ρ,Qn)− ρ2R

}
(9)

is the bound parameter that yields the highest exponent.

Proof. We start deriving an upper bound on the average tilted
error probability. For a given code Cn we have:

Pe(Cn) =
1

Mn

Mn∑
m=1

Pe(Cn,m) (10)

≤ 1

Mn

Mn∑
m=1

∑
m′ 6=m

Zn(xm,xm′) (11)

where (11) follows from the Bhattacharyya bound [9, Sec. 2.3]
expressed in terms of the Bhattacharyya coefficient Zn(x,x′).
For s ∈ (0, 1], we bound Pe(Cn)s as

Pe(Cn)s ≤
(

1

Mn

Mn∑
m=1

∑
m′ 6=m

Zn(xm,xm′)

)s
(12)

≤
Mn∑
m=1

∑
m′ 6=m

(
1

Mn
Zn(xm,xm′)

)s
. (13)

Taking the ensemble average at both sides in (13), we obtain

E[Pe(Cn)s] ≤ 1

Ms
n

Mn∑
m=1

∑
m′ 6=m

E
[
Zn(Xm,Xm′)s

]
, (14)

where Xm,Xm′ are randomly generated codewords corre-
sponding to messages m,m′. For pairwise-independent en-
sembles, the expectation over the ensemble does not depend
on the specific pair of codewords, and (14) simplifies to

E[Pe(Cn)s] ≤ 1

Ms
n

Mn(Mn − 1)E
[
Zn(X,X ′)s

]
, (15)

where X and X ′ have joint distribution Qn(x)Qn(x′).
Using the r.h.s. of (15) in (5) and making the change of

variable s = 1
ρ for ρ ≥ 1, we obtain

Pe(Cn) ≤ 1

Mn

(
γnMn(Mn − 1)

)ρ (E[Zn(X,X ′)
1
ρ

])ρ
. (16)

Taking the negative normalized logarithm of both sides in (16),
we lower bound the error exponent of a code Cn (1) as

En(Cn) ≥ Enx (ρ,Qn)− ρ2R+R− ρ

n
log γn, (17)

where we defined

Enx (ρ,Qn) , − 1

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)Zn(x,x′)
1
ρ

)ρ
(18)

as the multiletter version of the Gallager’s Ex-function [3, Eq.
(5.7.12)], and used that logMn = nR. For every n, we let ρ̂n
be the optimizing parameter defined in (9). Then, the lower
bound (17) is further tightened as

En(Cn) ≥ Enex(2R,Qn) +R− δn, (19)

where Enex(R,Qn) is the multi-letter version of the expurgated
exponent [3, Eq. (5.7.11)] given by

Enex(R,Qn) = Enx (ρ̂n, Q
n)− ρ̂nR (20)

and
δn =

ρ̂n
n

log γn. (21)

Using Lemma 1 for the ensembles of codes whose error
probability satisfy (16), we obtain that

P
[
En(Cn) ≥ Enex(2R,Qn) +R− δn

]
> 1− 1

γn
. (22)

Define ρ̂ = limn→∞ ρ̂n. We have that limn→∞ δn =
limn→∞

1
n log γn = 0 by definition of γn when ρ̂ < ∞.

Instead, for ρ̂n → ∞ we have that limn→∞ δn = 0 if and
only if ρ̂n grows slower than n

log γn
, e.g., as ρ̂n =

√
n

log γn
.

Under these assumptions, δn vanishes with n. Hence, taking
the limit n→∞ at both sides of (22) we obtain (6).

For all channels Wn and ensembles with pairwise-
independent codeword distribution Qn such that the limit in (6)
can be brought inside the square brackets, Theorem 1 reads

P
[

lim
n→∞

{En(Cn) + δn} ≥ Eex(2R,Q) +R
]

= 1, (23)

where Eex(R,Q) is the asymptotic single-letter version of
the expurgated exponent (20). This is guaranteed if (i) the
Borel-Cantelli lemma [10] applies and (ii) we have that
limn→∞Enex(2R,Qn) = Eex(2R,Q), which is the case, for
instance, in memoryless channels. The result in (23) implies



that the achievable typical random-coding exponent is lower
bounded as Eex(2R,Q) + R. Such lower bound is known to
be tight for constant-composition ensembles [5] and coincides
with the one derived in [4] for the binary symmetric channel
(BSC).

Observe that Theorem 1 does not apply to code ensembles
whose codeword generation is not pairwise independent, such
as the random Gilbert-Varshamov (RGV) ensemble [11]. For
this ensemble, it is known that the exponent of the ensemble
average error probability is the maximum of the expurgated
and random-coding exponents [11]. For ensembles whose
average error probability achieves the expurgated exponent,
like the RGV, by setting s = 1 in Lemma 1, we find that

P
[
En(Cn) ≥ Eex(R,Q)− δn

]
> 1− εn, (24)

implying that the error exponent of typical codes is lower
bounded by Eex(R,Q). This can also be seen as a con-
sequence of Jensen’s inequality, since E[logPe(Cn)] ≤
logE[Pe(Cn)] = Eex(R,Q), and thus Etrc(R,Q) =
limn→∞− 1

nE[logPe(Cn)] ≥ Eex(R,Q).

III. I.I.D. AND CONSTANT COMPOSITION ENSEMBLES

We now specialize Theorem 1 to the i.i.d. and constant-
composition ensembles over memoryless channels under a
common single-letter input distribution Q(x). As a by-product,
we provide a direct dual-domain derivation of the expurgated
exponent for constant composition-codes [12], as an alternative
to that found in [13].

A. i.i.d. Ensemble

We first consider the i.i.d. ensemble with distribution

Qniid(x) =

n∏
i=1

Q(xi). (25)

Using (25) in (18), we recover the single-letter version of
the Gallager’s Ex-function [3, Eq. (5.7.12)], namely

Eiid
x (ρ,Q) = −ρ log

∑
x

∑
x′

Q(x)Q(x′)Z(x, x′)
1
ρ , (26)

where Z(x, x′) is the single-letter Bhattacharyya coefficient,
and the i.i.d. expurgated exponent in (20) becomes

Eiid
ex (R,Q) = Eiid

x (ρ̂, Q)− ρ̂R. (27)

When R > 0, it follows that the optimal parameter (9) does
not depend on n and reads

ρ̂ = arg max
ρ≥1

{
Eiid

x (ρ,Q)− ρ2R
}
. (28)

In this case, since ρ̂ < ∞, the condition limn→∞ δn = 0
of the theorem is satisfied. For strictly zero rates, namely
when limn→∞

1
n logMn = 0, the largest exponent in (27)

is achieved for ρ̂→∞. We then consider the dependence on
n in the rate setting R = 1

n logMn in (28) and let ρ̂n be

ρ̂n = arg max
ρ≥1

{
Eiid

x (ρ̂, Q)− 2ρ

n
logMn

}
. (29)

In order to characterize how ρ̂n grows as n→∞, we find the
Taylor series expansion of Eiid

x (ρ,Q) around ρ→∞, yielding

Eiid
x (ρ,Q) = a0(Q)− a1(Q)

ρ
+O(ρ−2), (30)

where

a0(Q) = −
∑
x

∑
x′

Q(x)Q(x′) logZ(x, x′) (31)

and

a1(Q) =
1

2

(∑
x

∑
x′

Q(x)Q(x′) log2 Z(x, x′)− a2
0(Q,W )

)
. (32)

Then, it follows that ρ̂n grows as

ρ̂n =

√
n · a1(Q)

2 logMn + log γn
+ σn, (33)

where σn is a term that vanishes as n→∞, implying that δn
defined in (21) satisfies limn→∞ δn = 0 as in the R > 0 case.

According to Theorem 1, with probability approaching one
as n → ∞, an i.i.d. code Ciid

n randomly generated from the
ensemble (25) has an error exponent (1) satisfying

En(Ciid
n ) ≥ Eiid

ex (2R,Q) +R− δn (34)

with vanishing δn. Particularizing (27) to the BSC case, it
follows that the bound (34) coincides with the TRC exponent
given by Barg and Forney in [4].

B. Constant-Composition Ensemble

For every n, let Q̂n be a type, or empirical distribution, such
that ‖Q̂n −Q‖∞ ≤ 1

n where ‖P‖∞ = maxx P (x). Then, the
constant-composition ensemble has codeword distribution

Qncc(x) =
1

|T n(Q̂n)|
1
{
x ∈ T n(Q̂n)

}
, (35)

where Tn(Q̂n) is the type class, i.e., the set of all sequences
of length n with empirical distribution Q̂n, while 1{.} is the
indicator function.

For the constant-composition ensemble (35), the normalized
multi-letter Gallager’s expurgated function Enx (ρ,Qn) reads

Enx (ρ,Qn) = − 1

n
log

(∑
x

Qn(x)
∑
x′

Qn(x′)

n∏
i=1

Z(xi, x
′
i)

1
ρ

)ρ
. (36)

In (36), we have used the fact that the channel is memoryless
to express Zn(x,x′) as a product, and we have also changed
the order of the summations over x and x′.

Since all codewords x′ have the same probability 1
|T n(Q̂n)| ,

the summation over x′ in (36) for a fixed x satisfies∑
x′

Qn(x′)

n∏
i=1

Z(xi, x
′
i)

1
ρ =

1

|T n(Q̂n)|

∑
x′

n∏
i=1

Z(xi, x
′
i)

1
ρ . (37)

Identifying gi(xi) = Z(xi, x
′
i)

1
ρ in [14, Eq. (2.4)], the

r.h.s. of (37) can be further upper bounded by

min
P̄

{
(n+ 1)|X |−1enD(Q̂n‖P̄ )

n∏
i=1

∑
x′

P̄ (x′)Z(xi, x
′)

1
ρ

}
, (38)



where P̄ is an auxiliary probability distribution and D(Q‖P̄ )
is the relative entropy between distributions Q and P̄ . Using
the upper bound (38) into (36) and arranging terms, we obtain

Enx (ρ,Qn) ≥ max
P̄

{
− 1

n
log

(
(n+ 1)|X |−1enD(Q̂n‖P̄ ) ·

·
∑
x

Qn(x)

n∏
i=1

∑
x′

P̄ (x′)Z(xi, x
′)

1
ρ

)ρ}
. (39)

Since, again, all codewords x have the same probability, (39)
simplifies to

Enx (ρ,Qn) ≥ max
P̄

{
− 1

n
log

(
(n+ 1)|X |−1enD(Q̂n‖P̄ ) ·

· 1

|T n(Q̂n)|

∑
x

n∏
i=1

∑
x′

P̄ (x′)Z(xi, x
′)

1
ρ

)ρ}
.

(40)

The sum over x in (40) has exactly |T n(Q̂n)| terms, hence,

Enx (ρ,Qn) ≥ max
P̄

{
− 1

n
log

(
(n+ 1)|X |−1enD(Q̂n‖P̄ ) ·

·
∏
x

(∑
x′

P̄ (x′)Z(x, x′)
1
ρ

)nQ̂n(x))ρ}
,

(41)

where we used elementary properties of constant-composition
sequences. Next, we rewrite the maximization over P̄ as
maximization over an auxiliary function a(x) [13] satisfying
P̄ (x) = Q(x)e

a(x)
ρ . Using this in (41), we find

Enx (ρ,Qn) ≥ max
a(x)

{
− 1

n
log

(
(n+ 1)|X |−1e−

n
ρ

∑
x Q̂n(x)a(x) ·

·
∏
x

(∑
x′

Q(x′)e
a(x′)
ρ Z(x, x′)

1
ρ

)nQ̂n(x))ρ}
, (42)

which, after some algebra, can be further simplified to

Enx (ρ,Qn) ≥ −ρ(|X |+ 1)

n
log(n+ 1) +

max
a(x)

{
−ρ log

∏
x

(∑
x′

Q̂n(x′)
(
Z(x, x′)ea(x′)−a(x)

)1
ρ

)Q̂n(x)}
.

(43)

We note that the the first term in the r.h.s. of (43) vanishes
with n. Using that ‖Q̂n −Q‖∞ ≤ 1

n , and further simplifying
the result, we obtain the constant-composition version of the
Gallager’s Ex-function, namely

Ecc
x (ρ,Q) = max

a(x)

{
−ρ
∑
x

Q(x)·

· log
∑
x′

Q(x′)
(
Z(x, x′)ea(x′)−a(x)

) 1
ρ

}
. (44)

According to Theorem 1, with probability approaching one as
n→∞, a constant-composition code Ccc

n randomly generated
from the ensemble (35) has an error exponent (1) satisfying
the typical random-coding lower bound [5]

En(Ccc
n ) ≥ Ecc

ex(2R,Q) +R, (45)

where

Ecc
ex(R,Q) = Ecc

x (ρ̂, Q)− ρ̂R (46)

is the constant-composition version of the expurgated exponent
with optimal parameter

ρ̂ = arg max
ρ≥1

{
Ecc

x (ρ,Q)− ρ2R
}
. (47)

IV. CONCLUSION

We studied the typical random-coding error exponent by
means of a refinement of a lemma by Gallager. We showed that
the probability that the exponent of a code from a pairwise-
independent ensemble is smaller than Enex(2R,Qn) +R van-
ishes with n. The method provides a new, dual-domain achiev-
ability of the typical random-coding exponent and explicitly
establishes a connection between typical random coding and
the expurgated method as pointed out in [4].

Theorem 1 is valid for pairwise-independent ensembles and
channels with arbitrary alphabets and memory, significantly
extending the results in the literature that are limited to
binary codes over the BSC [4] and constant-composition codes
over memoryless channels [5]. For memoryless channels, our
results in Section III hold for discrete or continuous inputs
and outputs, with the exception of the constant-composition
ensemble that requires a discrete input.
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