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Abstract—We study mismatched sequential hypothesis testing.
We analyze the type-I and and type-II error exponents when the
actual distributions generating the observation are different from
those used in the test. We derive the worst-case error exponents
when the actual distributions generating the data are within a
relative entropy ball of the test distributions and show the error
exponent sensitivity of the test for small relative entropy balls.

I. INTRODUCTION AND PRELIMENARIES

Let X be a random variable distributed according to either
P0 or P1, where P0, P1 are probability measures on R.
Consider the binary hypothesis testing problem [1] where an
observation x = (x1, . . . , xn) is generated from one of the two
possible probability measures Pn0 and Pn1 where we assume
that Pn0 (x) =

∏n
i=1 P0(xi) and Pn1 (x) =

∏n
i=1 P1(xi). We

also assume that both P0 and P1 are absolutely continuous
with respect to each other which ensures that D(P0‖P1) <∞,
D(P1‖P0) <∞ where D(P‖Q) =

∫
log dP

dQdP is the relative
entropy between P and Q.

A sequential hypothesis test is a pair Φ = (φ : X τ →
{0, 1}, τ) where τ is a random variable denoting the stopping
time taking values on Z+; for every n ≥ 0 the event {τ ≤
n} ∈ Fn where Fn is the sigma algebra induced by random
variables X1, . . . , Xn, i.e., σ(X1, . . . , Xn). Moreover, φ is a
Fτ measurable decision rule, i.e., the decision rule determined
by causally observing the sequence Xi. In other words, at each
time instant, the test decides in favor of one of the hypotheses
or takes a new sample.

The two possible pairwise error probabilities measure the
performance of the test and are defined as

ε0(Φ) = P0

[
φ(Xτ ) 6= 0

]
, ε1(Φ) = P1

[
φ(Xτ ) 6= 1

]
. (1)

There are two possible definitions of achievable error expo-
nents. According to [2] the optimal error exponent is

E1(E0) , sup
{
E1 ∈ R+ : ∃Φ, ∃n ∈ Z+ s.t. EP0

[τ ] ≤ n,

EP1 [τ ] ≤ n, ε0(Φ) ≤ 2−nE0 and ε1(Φ) ≤ 2−nE1

}
. (2)

Alternatively, the expected stopping time can be different
under each hypothesis by design in order to increase the reli-
ability under one of the hypotheses. Accordingly, [3] defined
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the error exponent tradeoff as

E1(E0) , sup
{
E1 ∈ R+: ∃Φ,∃n0, n1 ∈ Z+, s.t. EP0 [τ ] ≤ n0,

EP1 [τ ] ≤ n1, ε0(Φ) ≤ 2−n0E0 , ε1(Φ) ≤ 2−n1E1

}
. (3)

In this work we will consider the performance of mismatched
sequential ratio test under both definitions.

The sequential probability ratio test was proposed by Wald
in [4]. For γ0, γ1 ∈ R+,

τ = inf{n ≥ 1 : Sn ≥ γ0 or Sn ≤ −γ1}, (4)

φ =

{
0 if Sτ ≥ γ0

1 if Sτ ≤ −γ1,
(5)

with Sn being the accumulated log-likelihood ratio of x,

Sn =

n∑
i=1

log
dP0(xi)

dP1(xi)
. (6)

It is shown in [3], [4] that the above test attains the optimal
error exponent tradeoff, i.e., as thresholds γ0, γ1 approach
infinity, the test achieves the best error exponent trade-off in
(2) and (3). It is known that the error probabilities of sequential
probability ratio test as a function of γ0 and γ1 are [5]

ε0 = c0 · e−γ1 , ε1 = c1 · e−γ0 , (7)

as γ0, γ1 →∞ where c0, c1 are positive constants. Moreover,
It can also be shown that,

EP0
[τ ] =

γ0

D(P0‖P1)
(1 + o(1)), (8)

EP1
[τ ] =

γ1

D(P1‖P0)
(1 + o(1)). (9)

Therefore, choosing the thresholds γ0, γ1 as

γ0 = n
(
D(P0‖P1)+o(1)

)
, γ1 = n

(
D(P1‖P0)+o(1)

)
, (10)

we find the optimal error exponent tradeoff according to (2),

E0 = D(P1‖P0), E1 = D(P0‖P1). (11)

Hence, the sequential probability ratio test achieves the opti-
mal error exponents tradeoff of the standard likelihood ratio
test [6] simultaneously. Moreover, according to definition (3)
the optimal error exponent tradeoff is given by

E0 = `D(P1‖P0), E1 =
1

`
D(P0‖P1), (12)



where ` = n1

n0
. Equivalently, we have

E0E1 = D(P0‖P1)D(P1‖P0). (13)

To achieve (13), thresholds γ0, γ1 should be chosen as

γ0 = n0

(
D(P0‖P1) + o(1)

)
, γ1 = `n0

(
D(P1‖P0) + o(1)

)
.

(14)
In this work, we define and analyze the worst case sensitiv-

ity (or robustness) of sequential probability ratio test under
distribution mismatch. The literature in robust hypothesis
testing (see e.g., [7]–[9] and references therein) consists of
designing tests that are robust to the inaccuracy of the distri-
butions generating the observation. Instead, we study the error
exponent tradeoff of the standard sequential probability ratio
test when the two probability measures used by the sequential
probability ratio test are not precisely known, and two fixed
probability measures P̂0 and P̂1 are used for testing; we
assume that P̂0, P̂1, P0, and P1 are all absolutely continuous
with respect to each other. In particular, we find the error
exponent tradeoff for fixed P̂0 and P̂1 and we study the
worst-case tradeoff when the true distributions generating the
observation are within a certain relative entropy “distance” of
the test distributions. Finally, we study the sensitivity of the
test, defined as the deviation of the worst-case error exponent
tradeoff for small relative entropy balls.

II. MISMATCHED SEQUENTIAL HYPOTHESIS TESTING

Let P̂0(x) and P̂1(x) be the mismatched measures used in
the sequential probability ratio test with thresholds γ̂0, γ̂1

τ̂ = inf{n ≥ 1 : Ŝn ≥ γ̂0 or Ŝn ≤ −γ̂1}, (15)

φ̂ =

{
0 if Ŝτ̂ ≥ γ̂0

1 if Ŝτ̂ ≤ −γ̂1,
(16)

where

Ŝn =

n∑
i=1

log
dP̂0(xi)

dP̂1(xi)
. (17)

In order to study the sensitivity of the mismatched sequential
ratio test, we first study the error exponents tradeoffs analo-
gous to (2) and (3). The next theorem provides the error ex-
ponents Ê0, Ê1 and the average stopping time EP0

[τ̂ ],EP1
[τ̂ ]

as the function of thresholds γ̂0, γ̂1.
Theorem 1: Let

0 < D(P0‖P̂1)−D(P0‖P̂0), 0 < D(P1‖P̂0)−D(P1‖P̂1).
(18)

Then, as γ̂0, γ̂1 →∞

ε̂0 = ĉ0 · e
− D(P0‖P1)

D(P0‖P̂1)−D(P0‖P̂0)
γ̂1
, (19)

ε̂1 = ĉ1 · e
− D(P1‖P0)

D(P1‖P̂0)−D(P1‖P̂1)
γ̂0
, (20)

where ĉ0, ĉ1 are positive constants. Furthermore, the expected
stopping times are given by

EP0 [τ̂ ] =
γ̂0

D(P0‖P̂1)−D(P0‖P̂0)
(1 + o(1)), (21)

EP1
[τ̂ ] =

γ̂1

D(P1‖P̂0)−D(P1‖P̂1)
(1 + o(1)). (22)

The next result states that if the average drift of the
likelihood ratio changes sign under mismatch, the probability
of error under that hypothesis tends to one.

Proposition 1: For fixed P̂0, P̂1, let

D(P0‖P̂1)−D(P0‖P̂0) < 0 , D(P1‖P̂0)−D(P1‖P̂1) < 0.
(23)

Then, as thresholds γ̂0, γ̂1 approach infinity,

ε̂0 → 1 , ε̂1 → 1. (24)

Corollary 1: Under the conditions of Theorem 1, the
achievable error exponent tradeoff analagous to (2) is given
by

Ê0 = D(P0‖P1)
D(P1‖P̂0)−D(P1‖P̂1)

D(P0‖P̂1)−D(P0‖P̂0)
, (25)

Ê1 = D(P1‖P0)
D(P0‖P̂1)−D(P0‖P̂0)

D(P1‖P̂0)−D(P1‖P̂1)
, (26)

where to achieve these exponents thresholds γ̂0, γ̂1 should be
chosen as

γ̂0 = n
(
D(P0‖P̂1)−D(P0‖P̂0) + o(1)

)
, (27)

γ̂1 = n
(
D(P1‖P̂0)−D(P1‖P̂1) + o(1)

)
. (28)

Moreover, the achievable error exponents analogous to (3)
satisfy

Ê0 = `D(P0‖P1), Ê1 =
1

`
D(P1‖P0), (29)

where ` = D(P1‖P̂0)−D(P1‖P̂1)

D(P0‖P̂1)−D(P0‖P̂0)

n1

n0
. Equivalently, we have that

Ê0Ê1 = D(P0‖P1)D(P1‖P0). (30)

To achieve (30), thresholds γ̂0, γ̂1 should be chosen as

γ̂0 = n0

(
D(P0‖P̂1)−D(P0‖P̂0) + o(1)

)
, (31)

γ̂1 = `n0

(
D(P0‖P̂1)−D(P0‖P̂0) + o(1)

)
. (32)

By comparing (13) and (30) we conclude that mismatched
sequential probability ratio test has the same performance as
the case with no mismatch, i.e., there exist thresholds γ̂0, γ̂1

such that the expected stopping time condition is met, and
the error exponents satisfy (30). However, choosing γ̂0, γ̂1

to achieve (30) requires the knowledge of true probability
measures P0, P1 by (31), (32), which might not be possible
in a realistic scenario. Having this in mind, we consider the
performance of the mismatched probability ratio test when
the thresholds are selected from (27), (28), (31) and (32) but
replacing P0, P1 by their mismatched counterparts P̂0, P̂1. In
this scenario, the mismatch in probability measures will induce
a mismatch both in expected stopping time and error expo-
nents. Consider the case where (10) is used with mismatched
measures P̂0, P̂1,

γ̂0 = n
(
D(P̂0‖P̂1)+o(1)

)
, γ̂1 = n

(
D(P̂1‖P̂0)+o(1)

)
. (33)



Using (33) and Theorem 1 we obtain

EP0
[τ̂ ] = n

D(P̂0‖P̂1)

D(P0‖P̂1)−D(P0‖P̂0)
(1 + o(1)), (34)

EP1
[τ̂ ] = n

D(P̂1‖P̂0)

D(P1‖P̂0)−D(P1‖P̂1)
(1 + o(1)). (35)

Therefore, the mismatch in the thresholds, induces expected
stopping times that may be larger than n. Letting η−1 =

max

{
D(P̂0‖P̂1)

D(P0‖P̂1)−D(P0‖P̂0)
, D(P̂1‖P̂0)

D(P1‖P̂0)−D(P1‖P̂1)

}
, and accord-

ing to definition (2) we have the following exponents,

Ê0 =
D(P0‖P1)D(P̂1‖P̂0)

D(P0‖P̂1)−D(P0‖P̂0)
η, (36)

Ê1 =
D(P1‖P0)D(P̂0‖P̂1)

D(P1‖P̂0)−D(P1‖P̂1)
η. (37)

Similarly to (14), for the second definition of exponent,
we need to multiply one of the thresholds by `, and the
corresponding exponents will be equal to ` and 1

` times the
above exponents.

We now analyze the worst-case error exponents, defined as

Êi(ri) , min
Pi∈B(P̂i,ri)

Êi , i = 0, 1 (38)

where B(Q, r) = {P ∈ P(X ) : D(Q‖P ) ≤ r} is a relative
entropy ball of radius r centered at distribution Q. From
(36), we observe error exponents of mismatched sequential
probability ratio test are a function of both testing distributions
P̂0, P̂1, as opposed to the fixed sample-size setting where Ê0 is
independent of P̂1 [10]. The next theorem shows the behavior
of the worst-case exponents when the true distributions are
within a small relative entropy ball of radii r0, r1 and center
P̂0, P̂1, respectively.

Theorem 2: Let Pi, P̂i are defined on the probability sim-
plex P(X ) and ri ≥ 0, for i ∈ {0, 1}. Define ı̄ = 1 − i
to be the complement of index i. Then, the worst-case error
exponents can be approximated as

Êi(ri) = Ei −min

{ 1∑
j=0

√
rj · θi,j(P̂0, P̂1),

√
rı̄ · θı̄(P̂0, P̂1)

}
+ o
(√
r0 +

√
r1

)
, (39)

where

θi,j(P̂0, P̂1) =

2VarP̂i

(
ρ log P̂i(X)

P̂ı̄(X)

)
i = j

2VarP̂j

(
ρ P̂i(X)

P̂j(X)

)
i 6= j

(40)

θı̄(P̂0, P̂1) = 2VarP̂ı̄

(
log

P̂i(X)

P̂ı̄(X)
+ ρ

P̂i

P̂ı̄

)
, (41)

ρ =
D(P̂1‖P̂0)

D(P̂0‖P̂1)
. (42)

Next assuming r0 = r1 = r, we obtain the following result.

Corollary 2: For every r = r0 = r1 ≥ 0, and i ∈
{0, 1}, ı̄ = 1− i,

Êi(ri) = Ei −
√
r · θı̄(P̂0, P̂1) + o

(√
r
)
, (43)

where

θı̄(P̂0, P̂1) = 2VarP̂ı̄

(
log

P̂i(X)

P̂ı̄(X)
+ ρ

P̂i

P̂ı̄

)
. (44)

As an example, consider P̂0 = Bern(0.1) , P̂1 = Bern(0.8),
and r = r0 = r1. Figure 1 shows the worst-case error
exponent given by solving non-convex optimization problem
in (38) with precision of 10−3 as well as the approximation
Ẽ0 obtained from (39) by ignoring the o(

√
r0 +

√
r1) terms.

Observe that there exists some gap between the approximation
Ẽ0 and the actual exponent Ê0 in (38). The approximtion
consists of a linear approximation of the objective and sec-
ond order approximation of constraints and computing it is
straightforward for arbitrary distributions and radii. Instead,
computing the exact optimization problem Ẽ0 (38) is difficult,
as it is a nonconvex optimization problem involving a highly
nonlinear objective, cf. Eqs. (36)–(38).

10−4 10−3 10−2
0.8

1

1.2

1.4

r

Ê
0

Ê0

Ẽ0

Fig. 1. Worst-case achievable type-I error exponent. The solid line is
by solving the optimization problems in (38), and the dashed line is the
approximated exponent using Theorem 2.

III. PROOF OF THEOREM 1
From the absolute continuity assumption, let the log-

likelihood ratio be bounded by a positive constant c, i.e.,∣∣∣∣ log
P̂0(x)

P̂1(x)

∣∣∣∣ ≤ c ∀x. (45)

We use the following results.
Theorem 3 ( [5]): Let Sn =

∑n
i=1 Zi be a random walk

where Zi is some non-lattice random variable1 generated in
the i.i.d fashion with E[Zi] > 0. For γ > 0, let

τ = inf{n ≥ 1 : Sn ≥ γ}. (46)

1A random variable Z is said to be lattice if and only if
∑∞

k=−∞ Pr[Z =
a+kd] = 1 for some non-negative a, d. Otherwise, it is said to be non-lattice.



Also, let Rγ , Sτ −γ. Then Rγ converges in distribution to a
random variable R with distribution Q as γ →∞. Moreover, if
Z is lattice random variable, then Rγ has a limiting distribution
Qd as γ →∞ through multiples of d.

The next result shows that under conditions (18), the mis-
matched sequential probability ratio test stops at a finite time.

Lemma 1: Let τ̂0 be the the smallest time that the mis-
matched sequential probability ratio test crosses threshold γ̂0,
i.e.,

τ̂0 = inf{n ≥ 1 : Ŝn ≥ γ̂0}. (47)

Also, assume that conditions (18) hold. Then,

P0[τ̂0 ≥ n] ≤ edγ̂0e−(n−1)E(0), (48)

where E(0), d > 0. Also, as γ̂0 →∞, τ̂0 →∞ almost surely.
We now proceed with the proof of the Theorem. We show

the result for the type-II error probability; a similar proof
holds for the type-I case. The type-II probability of error of
mismatched sequential probability ratio test is

ε̂1 = EP1

[
1{Ŝτ̂ ≥ γ̂0}

]
(49)

= EP0

[
e−Sτ̂1{Ŝτ̂ ≥ γ̂0}

]
, (50)

where Sτ̂ is the log-likelihood ratio under no mismatch in (6)
evaluated at the time where the mismatched test stops. Recall
the definition of τ̂0 in (47) and R̂γ̂0

= Ŝτ̂0 − γ̂0. Observe that,
if Ŝτ̂ ≥ γ̂0, then we have τ̂ = τ̂0. Multipling the exponent in
(50) by Ŝτ̂0

Ŝτ̂0
and substituting R̂γ̂0

we get

ε̂1 = EP0

[
e−Sτ̂01{Ŝτ̂ ≥ γ̂0}

]
(51)

= EP0

[
e
−
Sτ̂0
Ŝτ̂0

.Ŝτ̂0
1{Ŝτ̂ ≥ γ̂0}

]
(52)

= EP0

[
e
−
Sτ̂0
Ŝτ̂0

(R̂γ̂0
+γ̂0)

1{Ŝτ̂ ≥ γ̂0}
]
. (53)

Let µ =
Sτ̂0
τ̂0

, µ̂ =
Ŝτ̂0
τ̂0

. By Lemma 1, τ̂0 → ∞ as γ̂0 → ∞
a.s., and therefore by the WLLN

µ
p−→ D(P0‖P1), (54)

µ̂
p−→ D(P0‖P̂1)−D(P0‖P̂0). (55)

Also, since µ̂ > 0 almost surely, by using the continuous
mapping theorem [11] we have

µ

µ̂
=
Sτ̂0

Ŝτ̂0

p−→ D(P0‖P1)

D(P0‖P̂1)−D(P0‖P̂0)
. (56)

Moreover, by Theorem 3, R̂γ̂0
converges in distribution to

a random variable R̂0 with limiting distribution Q̂0 under P0

(through multiples of d in the lattice case). Again by Slutsky’s
theorem,

Sτ̂0

Ŝτ̂0
· R̂γ̂0

d−→ D(P0‖P1)

D(P0‖P̂1)−D(P0‖P̂0)
R̂0. (57)

Thus, letting γ̂0 →∞ in (53) we get

lim
γ̂0→∞

ε̂1 = EP0

[
e
− D(P0‖P1)

D(P0‖P̂1)−D(P0‖P̂0)
(R̂0+γ̂0)

]
(58)

= ĉ1 · e
− D(P0‖P1)

D(P0‖P̂1)−D(P0‖P̂0)
γ̂0
. (59)

To prove (21), we show the converges of τ̂0 in probability as
well as its uniform integrability. Therefore, we can conclude
its convergence in L1 norm (and hence in expectation). Finally,
from the convergence of τ̂0, we obtain the convergence of τ̂ .
First, by the finiteness of τ̂0 for every γ̂0 and definition of τ̂0,
there exist a finite τ̂0 with probability one such that

ŝτ̂0−1 < γ̂0 ≤ ŝτ̂0 w.p.1. (60)

Also, by the WLLN and Lemma 1 as γ̂0 →∞, we get

Ŝτ̂0
τ̂0

p−→ D(P0‖P̂1)−D(P0‖P̂0), (61)

Ŝτ̂0−1

τ̂0 − 1

p−→ D(P0‖P̂1)−D(P0‖P̂0). (62)

Therefore, by (60), (61), (62) we can conclude that

τ̂0
γ̂0

p−→ 1

D(P0‖P̂1)−D(P0‖P̂0)
(63)

as γ̂0 →∞.
To show the convergence in L1 we only need to prove the

uniform integrability of the sequence of random variables τ̂0
γ̂0

,
where τ̂0 is a random variable that depends on parameter γ̂0.
Equivalently, we need to show that,

lim
t→∞

sup
γ̂0

EP0

[
τ̂0
γ̂0
1
{ τ̂0
γ̂0
≥ t
}]

= 0. (64)

We can upper bound the given expectation in (64) as

EP0

[
τ̂0 − btγ̂0c

γ̂0
1
{
τ̂0 ≥ btγ̂0c

}]
︸ ︷︷ ︸

A

+ tEP0

[
1
{ τ̂0
γ̂0
≥ t
}]

︸ ︷︷ ︸
B

.

(65)

The second term can be upper bounded by (48) as

B = tP0[τ̂0 ≥ tγ̂0] ≤ teE(0)e−γ̂0(tE(0)−d). (66)

The first expectation can be also written as the following sum

A =
1

γ̂0

∞∑
m=1

P0

[
τ̂0 − btγ̂0c ≥ m

]
, (67)

and by (48)

A ≤ 1

γ̂0
te−γ̂0(tE(0)−d)

∞∑
m=1

e−(m−2)E(0). (68)

Hence A and B are vanishing as t→∞ for every γ̂0 giving
the uniform integrability of τ̂0

γ̂0
, and hence convergence in L1

[12], i.e,

lim
γ̂0→∞

EP0

[∣∣∣∣∣ τ̂0γ̂0
− 1

D(P0‖P̂1)−D(P0‖P̂0)

∣∣∣∣∣
]

= 0. (69)



Finally, we prove the convergence of τ̂ . By (19), (63) and
the union bound, we obtain

P0

[∣∣∣∣ τ̂γ̂0
− 1

D(P0‖P̂1)−D(P0‖P̂0)

∣∣∣∣ ≥ ε] (70)

≤ P0

[∣∣∣∣ τ̂γ̂0
− 1

D(P0‖P̂1)−D(P0‖P̂0)

∣∣∣∣ ≥ ε, φ̂ = 0

]
(71)

+ P0[φ̂ = 1] (72)

= P0

[∣∣∣∣ τ̂0γ̂0
− 1

D(P0‖P̂1)−D(P0‖P̂0)

∣∣∣∣ ≥ ε]+ ε̂0, (73)

which tends to 0 as γ̂0 →∞, establishing the convergence of
τ̂
γ̂0

in probability. Now, using that τ̂ ≤ τ̂0 we have

EP0

[
τ̂

γ̂0
1
{ τ̂
γ̂0
≥ t
}]
≤ EP0

[
τ̂0
γ̂0
1
{ τ̂0
γ̂0
≥ t
}]
. (74)

Therefore, uniform integrability of τ̂0 gives the uniform inte-
grability of τ̂ , and hence convergence in L1 norm and also
expectation of τ̂

γ̂0
, which concludes the proof.

IV. PROOF OF THEOREM 2
We show the result under hypothesis 0, and similar steps

are valid for hypothesis 1. Observe that (36) can be written as

Ê0 = D(P0‖P1)·

·min

{
D(P̂1‖P̂0)

D(P̂0‖P̂1)
,
D(P1‖P̂0)−D(P1‖P̂1)

D(P0‖P̂1)−D(P0‖P̂0)

}
.

(75)

From (38) and (75), we need to compute two minimizations,
the first of which over P0. To this end, we exchange the order
of these minimizations and apply a Taylor series expansion to
the first term of (75) around P0 = P̂0, P1 = P̂1 we obtain

Ê0 = D(P̂1‖P̂0) + min
{
ρdT0 θP0

+ ρdT1 θP1
,dT2 θP1

}
+ o(‖θP0‖∞ + ‖θP1‖∞), (76)

where for i = 0, 1,

θPi =
(
Pi(x1)− P̂i(x1), . . . , Pi(x|X |)− P̂i(x|X |)

)T
, (77)

d0 =

(
1 + log

P̂0(x1)

P̂1(x1)
, . . . , 1 + log

P̂0(x1)

P̂1(x1)

)T
, (78)

d1 =

(
− P̂0(x1)

P̂1(x1)
, . . . ,−

P̂0(x|X |)

P̂1(x|X |)

)T
, (79)

d2 =

(
1 + log

P̂1(x1)

P̂0(x1)
, . . . , 1 + log

P̂1(x1)

P̂0(x1)

)T
+ ρd1,

(80)

and ρ = D(P̂1‖P̂0)

D(P̂0‖P̂1)
. By substituting expansion (76) into (38)

we obtain

Ê0(r0) = D(P̂1‖P̂0) + min
{
ρ min
P0∈B(P̂0,r0)

P1∈B(P̂1,r1)

dT0 θP0
+ dT1 θP1

,

min
P0∈B(P̂0,r0)

P1∈B(P̂1,r1)

dT2 θP1

}
+ o(‖θP0

‖∞ + ‖θP1
‖∞). (81)

Now, we further approximate the outer minimization constraint
in (38), or, equivalently, the minimizations over the relative
entropy balls in (81). By approximating D(P̂i‖Pi) for i = 0, 1
up to second order we get [13]

D(P̂i‖Pi) =
1

2
θTPiJ(P̂i)θPi + o(‖θPi‖2∞), (82)

where

Ji = diag

(
1

P̂i(x1)
, . . . ,

1

P̂i(x|X |)

)
(83)

is the Fisher information matrix corresponding to hypothesis
i. For i = 0, 1, define the sets

B(P̂i, ri) =
{
θi ∈ R|X | : θTPiJiθPi ≤ 2ri,1

TθPi = 0
}
.
(84)

It is easy to show that the error term of Ê0(r0) caused by
approximating the constraints B(P̂i, ri) is o(‖θPi‖∞). Hence,
we can further approximate (81) as

Ê0(r0) = D(P̂1‖P̂0) + min
{
ρ min
P0∈B(P̂0,r0)

P1∈B(P̂1,r1)

dT0 θP0
+ dT1 θP1

,

min
P0∈B(P̂0,r0)

P1∈B(P̂1,r1)

dT2 θP1

}
+ o(‖θP0

‖∞ + ‖θP1
‖∞). (85)

The optimization problem in (85) is convex and hence the
KKT conditions are also sufficient. The corresponding La-
grangian for the first optimization is given by

L0(θP0 ,θP1 , λ0, λ1, ν0, ν1)

=

1∑
i=0

dTi θPi + λi

(1

2
θTPiJiθPi − ri

)
+ νi(1

TθPi). (86)

Differentiating with respect to θPi and setting to zero, gives

di + λiJiθPi + νi1 = 0. (87)

Therefore,

θPi = − 1

λi
J−1
i

(
di + νi1

)
. (88)

Observe that if λi = 0 then from (87) di = −νi1 which cannot
be true since P̂0 6= P̂1. Therefore, from the complementary
slackness condition [14] the inequality constraints (85) should
be satisfied with equality. By solving 1

2θ
T
Pi
JiθPi = ri and

1TθPi = 0 and substituting λi, νi in (88), we obtain

θPi = − ψi√
ψTi Jiψi

√
2ri, (89)

where

ψi = J−1
i

(
di − 1TJ−1

i di1
)
. (90)

The second optimization is solved similarly. Substituting (89)
into (85) yields (39).
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[3] Y. Polyanskiy and S. Verdú, “Binary hypothesis testing with feedback,”
Inf. Theory and Appl. Workshop, 2011.

[4] A. Wald and J. Wolfowitz, “Optimum character of the sequential
probability ratio test,” Ann. Math. Statist., vol. 19, pp. 326–339, 09
1948.

[5] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis.
Society for Industrial and Applied Mathematics, 1982.

[6] J. Neyman and E. S. Pearson, “On the problem of the most efficient
tests of statistical hypotheses,” Phil. Trans. R. Soc. Lond. A., vol. 231,
pp. 289–337, 1933.

[7] P. J. Huber, “A robust version of the probability ratio test,” Ann. Math.
Statist., vol. 36, pp. 1753–1758, 12 1965.

[8] S. A. Kassam and H. V. Poor, “Robust techniques for signal processing:
A survey,” Proc. IEEE, vol. 73, pp. 433–481, March 1985.

[9] H. V. Poor, An introduction to signal detection and estimation. Springer,
2013.

[10] P. Boroumand and A. Guillén i Fàbregas, “Error exponents of mis-
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