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Abstract—We derive a sphere-packing error exponent for
mismatched decoding over discrete memoryless channels. We
find a lower bound to the probability of error of mismatched
decoding that decays exponentially for coding rates smaller than
a new upper bound to the mismatch capacity. For rates higher
than the new upper bound, the error probability is shown to
be bounded away from zero. The new upper bound is shown to
improve over previous upper bounds to the mismatch capacity.

I. INTRODUCTION

Communication problems where the receiver needs to
employ a suboptimal decoder are typically cast within the
mismatched decoding framework [1]. These situations arise
when optimal maximum-likelihood decoding cannot be used:
a) the channel transition is unknown and imperfectly estimated
or, b) when, for complexity reasons, the channel likelihood is
too complex to compute and an alternative decoding metric is
needed. In addition, some important problems in information
theory like the zero-error or zero-undetected error capacities
can be cast as instances of mismatched decoding [2].

Finding a single-letter expression for the mismatch capacity
remains an open problem. A number of single-letter lower
bounds have been derived in the literature [2]–[5] (see also
[1] for a recent survey, including multiuser coding achievable
rates). Instead, up until recently, not much progress had been
made on upper bounds. Balakirsky [6] claimed that for binary-
input discrete memoryless channels (DMC), the mismatch
capacity coincided with the lower bound in [3], [4]. Reference
[7] provided a counterexample to this converse invalidating
its claim. In [8], we proposed a single-letter upper bound to
the mismatch capacity based on transforming the channel in
such a way that errors on the transformed channel with high
probability imply a mismatched-decoding error in the original
channel. Reference [9] derived a new single-letter upper bound
based on a multicast approach that improves over [8] for
some channel/metric pairs and remains valid for continuous
channels.

In this paper, we derive a sphere-packing upper bound to
the error exponent that yields a new upper bound on the
mismatch capacity. The new bound improves over known
bounds, subsumes that in [8], and provides significant gains.

This work was supported in part by the European Research Council under
Grant 725411.

II. PRELIMINARIES

We consider reliable communication over a DMC W
defined over input and output alphabets X = {1, 2, . . . , J}
and Y = {1, 2, . . . ,K}. We denote the channel transition
probability by W (k|j). A codebook Cn is defined as a
set of M sequences Cn =

{
x1, . . . ,xM

}
, where xm =(

x1,m, . . . , xn,m
)
∈ Xn, for m ∈ {1, . . . ,M}. A message

m ∈ {1, . . . ,M} is chosen equiprobably and xm is sent over
the channel. The channel produces a noisy observation y =
(y1, . . . , yn) ∈ Yn according to Wn(y|x) =

∏n
i=1W (yi|xi).

Upon observing y ∈ Yn the decoder produces an
estimate of the transmitted message m̂ ∈ {1, . . . ,M}.
The average and maximal error probabilities are respectively
defined as Pe(Cn) = P[m̂ 6= m] and Pe,max(Cn) =
maxm∈{1,...,M} P[m̂ 6= m|m is sent]. The decoder that
minimizes the error probability is the maximum-likelihood
(ML) decoder, that produces the message estimate m̂
according to

m̂ = arg max
m∈{1,...,M}

Wn
(
y|xm

)
. (1)

Rate R > 0 is achievable if for any ε > 0 there exists a
sequence of length-n codebooks {Cn}∞n=1 such that |Cn| ≥
2n(R−ε), and lim infn→∞ Pe(Cn) = 0. The capacity of W ,
denoted by C(W ), is defined as the largest achievable rate.

In situations with channel uncertainty, it is not possible
to use ML decoding and instead, the decoder produces the
message estimate m̂ as

m̂ = arg max
m∈{1,...,M}

qn
(
xm,y

)
, (2)

where qn
(
x,y

)
=
∑n
i=1 q

(
xi, yi

)
and q : X × Y → R is

the decoding metric. We refer to this decoder as q-decoder.
When q(x, y) = logW (y|x), the decoder is ML, otherwise,
the decoder is said to be mismatched [1]–[5]. The average and
maximal error probabilities of codebook Cn under q-decoding
are respectively denoted by P qe (Cn,W ) and P qe,max(Cn,W ).
The mismatch capacity Cq(W ) is defined as supremum of all
achievable rates with q-decoding.

The method of types [10, Ch. 2] will be used extensively
in this paper. We recall some of the basic definitions and
introduce some notation. The type of a sequence x =
(x1, x2, · · · , xn) ∈ Xn is a column vector representing its



empirical distribution, i.e., p̂x(j) = 1
n

∑n
i=1 1{xi = j}. The

set of all types of Xn is denoted by Pn(X ). For pX ∈ Pn(X ),
the type class T (pX) is set of all sequences in Xn with
type pX , T (pX) = {x ∈ Xn | p̂x = pX}. The joint
type of sequences x = (x1, x2, · · · , xn) ∈ Xn and y =
(y1, y2, · · · , yn) ∈ Yn is defined as a matrix representing their
empirical distribution p̂xy(j, k) = 1

n

∑n
i=1 1{xi = j, yi = k}.

The conditional type of y given x is the matrix

p̂y|x(k|j) =

{
p̂xy(j,k)

p̂x(j) p̂x(j) > 0
1
|Y| otherwise.

(3)

The set of all conditional types on Yn given Xn is denoted by
Pn(Y|X ). For pY |X ∈ Pn(Y|X ) and sequence x ∈ T (pX),
the conditional type class Tx(pY |X) is defined as Tx(pY |X) =
{y ∈ Yn | p̂y|x = pY |X}.

Similarly, we can define the joint type of x,y, ŷ, as the
empirical distribution of the triplet. For j ∈ X and k1, k2 ∈ Y ,

p̂xyŷ(j, k1, k2) =
1

n

n∑
i=1

1{xi = j, yi = k1, ŷi = k2}. (4)

We define the joint conditional type of y, ŷ given x ∈ T (pX)
as

p̂yŷ|x(k1, k2|j) =

{
p̂xyŷ(j,k1,k2)

p̂x(j) p̂x(j) > 0
1
|Y|1{k1 = k2} otherwise.

(5)

The set of all joint conditional types is denoted by Pn(YŶ|X ).
Additionally, for pY Ŷ |X ∈ Pn(YŶ|X ) we define:

Tyx(pY Ŷ |X) = {ŷ ∈ Yn | p̂yŷ|x = pY Ŷ |X}. (6)

The mutual information and conditional relative entropy are
respectively defined as

I(PX , PY |X) , E
[

log
PY |X(Y |X)∑

x′ PX(x′)PY |X(Y |x′)

]
,

(7)

D(PY ′|X‖PY |X |PX) ,
∑
x∈X

PX(x) ·D(PY ′|X=x‖PY |X=x).

(8)

Definition 1: Let Cn = {x1,x2, . . . ,xM} be a codebook
and W be a channel. The type-conflict error probability is
defined as

Pmax
tce (Cn,W )

∆
= max
m∈{1,...,M}

P
[
∪m̄ 6=m {p̂y|xm = p̂y|xm̄}|xm sent

]
(9)

where the probability is over Wn(y|xm).
Definition 2: Let Cn = {x1,x2, . . . ,xM} be a codebook

and W be a channel. Then, for ε ≥ 0, we define

P qe,max(Cn,W, ε)
∆
= max
m∈{1,...,M}

P
[
∪m̄6=m {qn(xm̄,y) ≥ qn(xm,y) + ε}|xm sent

]
(10)

where the probability is over Wn(y|xm), and
P qe,max(Cn,W ) = P qe,max(Cn,W, ε = 0).

Then, P qe,max(Cn,W, ε) is a generalization of the probability
of error of codebook Cn under mismatch decoding, as it allows
for some margin ε.

Similarly to [8], the main idea of this paper is to relate the
type-conflict error performance of a given codebook over an
auxiliary channel V with the q-decoding performance of the
same code over channel W . The main reason for studying
type-conflict errors is that an equation of the form p̂y|x2

=
p̂y|x1

provides more information about the properties of the
error than an ML error, where we simply have a likelihood
inequality. In addition, it can be shown that for rates R >
C(V ), then the probability of type-conflict errors tends to one
exponentially.

We proceed by introducing a few definitions. Recall the
definition of maximal set from [8]. Consider the set

Sq(k1, k2)
∆
=
{
j ∈ X |j = arg max

j′∈X
q(j′, k2)− q(j′, k1)

}
.

(11)
A joint conditional distribution PY Ŷ |X is said to be maximal
if for all (j, k1, k2) ∈ X × Y × Y ,

PY Ŷ |X(k1, k2|j) = 0 if j /∈ Sq(k1, k2). (12)

The set of maximal joint conditional distributions was defined
to be Mmax(q). In this work, for a given distribution PX1

,
we define the set of maximal joint conditional distributions
Mmax(q, PX1) as the set of all joint conditional distributions
PY Ŷ |X1

such that

min
PX2|X1Ŷ

:

X2−X1Ŷ−Y
PŶ X2

=PŶ X1

E[q(X2, Y )] ≥ E[q(X1, Y )] (13)

where the notation X2−X1Ŷ −Y denotes that X2, (X1Ŷ ) and
Y form a Markov chain. In addition, defineMδ

max(q, PX1) as
the set of all distributions satisfying

min
PX2|X1Ŷ

:

X2−X1,Ŷ−Y
PŶ X2

=PŶ X1

E[q(X2, Y )] ≥ E[q(X1, Y )] + δ (14)

so thatMδ
max(q, PX1

) is an approximation ofMmax(q, PX1
).

For types, M̂max and M̂δ
max are similarly defined.

We close this section by showing that Mmax(q) ⊂
Mmax(q, PX1

) for any input distribution PX1
. Assume that

PY Ŷ |X1
∈ Mmax(q). Then from [8, Lemma 3] we have for

any X2 such that PŶ X1
= PŶ X2

E[q(X2, Y )] ≥ E[q(X1, Y )] (15)

Therefore PY Ŷ |X1
satisfies (13) and as a result PY Ŷ |X1

∈
Mmax(q, PX1

). This enlarged set of maximal distributions
enables a better upper bound on the mismatch capacity.



III. SPHERE-PACKING EXPONENT

In this section, we derive a sphere-packing exponent for
mismatched decoding using the method developed in [8].

Theorem 1: Consider a fixed composition codebook Cn with
length n, rate R and composition pX . The error probability
of Cn with q-decoding over channel W satisfies

− 1

n
logP qe (Cn,W ) ≤ Eqsp(pX , R+ ζn)− δn, (16)

where

Eqsp(PX , R) = min
PY ′Ŷ |X∈Mmax(q,PX)

I(PX ,PŶ |X)≤R

D(PY ′|X‖PY |X |PX) (17)

and

ζn = (JK − 1)
log(n+ 1)

n
+

log 2

n
(18)

δn =
(
(JK − 1) + (J2K − 1)

) log(n+ 1)

n
+

log 2

n
. (19)

The derivation of the above exponent follows similar
footsteps as that in Gallager’s lecture notes on fixed
composition codes [11]. The proof is based on three lemmas.
The first lemma, shows a lower bound to the type-conflict
error probability of code Cn over an auxiliary channel. The
second lemma shows that if the outputs of W and those
of the auxiliary channel and connected by an appropriately
constructed graph, then a type-conflict error in the auxiliary
channel yields a q-decoding error in W . The third lemma
shows that if the joint conditional distribution that defines
W and the auxiliary channels is maximal according to (13),
then, the error probability of the q-decoder over channel W is
lower-bounded by the type-conflict error probability over the
auxiliary channel.

Lemma 1: Assume codebook Cn consists of M codewords
of composition pX used over a DMC PŶ |X . Assume that noise
composition pŶ |X1

is such that M |Tx(pŶ |X1
)| ≥ 2|T (pŶ )|.

Then, there exists a joint type pŶ X1X2
such that pŶ X1

=
pŶ X2

and

P
[
∃x2 ∈ Cn\{x1} s.t. p̂ŷx1x2

= pŶ X1X2
|x1

]
≥ 1

2(n+ 1)J2K−1
P
[
Tx1

(pŶ |X1
)|x1

]
(20)

where the probabilities are computed w.r.t. n uses of channel
PŶ |X .

Proof: From Gallager’s lecture notes on fixed
composition codes [11, Lemma 4] we conclude there
exists a codeword x1 ∈ Cn such that

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1

= p̂ŷx2
= pŶ X1

|x1

]
≥ 1

2
P
[
Tx1

(pŶ |X1
)|x1

]
(21)

where the probabilities are computed w.r.t. n uses of channel
PŶ |X . This implies that, assuming x1 ∈ Cn was transmitted,
for at least half of the ŷ ∈ Tx1

(pŶ |X1
) we can find a codeword

x2 6= x1 such that p̂ŷ|x1
= p̂ŷ|x2

. We now construct a joint

type Observe that there are at most (n+ 1)J
2K−1 joint types

p̂ŷx1x2
. Consider an arbitrary joint type p̃Ŷ X1X2

and define
the subset

Ex1(p̃Ŷ X1X2
,pŶ X1

)

=
{
ŷ ∈ Tx1

(pŶ |X1
) | ∃x2 ∈ Cn \ {x1},

p̂ŷx1x2
= p̃Ŷ X1X2

, p̃Ŷ X1
= p̃Ŷ X2

= pŶ X1

}
. (22)

In words, the set Ex1(p̃Ŷ X1X2
,pŶ X1

) is the set of outputs
ŷ ∈ Tx1(pŶ |X1

) such that the joint type of y,x1,x2 is equal
to p̃Ŷ X1X2

and the Ŷ X1 and Ŷ X2 marginal types are equal
to the given pŶ X1

. We now define the joint type p?
Ŷ X1X2

that
satisfies the following

p?
Ŷ X1X2

= arg max
p̃Ŷ X1X2

∈Pn(Y×X 2)

|Ex1
(p̃Ŷ X1X2

,pŶ X1
)|, (23)

i.e., the joint type p̃Ŷ X1X2
that induces the largest subset

Ex1
(p̃Ŷ X1X2

,pŶ X1
) for any given pŶ X1

. Out of all joint
types p̃Ŷ X1X2

, p?
Ŷ X1X2

is the one that contains the maximum
number of outputs ŷ that yield a type-conflict error.

Observe that the left hand side of (21) can be bounded as

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1

= p̂ŷx2
= pŶ X1

|x1

]
=

∑
p̃Ŷ X1X2

∈Pn(Y×X 2)

P[Ex1
(p̃Ŷ X1X2

,pŶ X1
)|x1]

(24)

≤ (n+ 1)J
2K−1P[Ex1

(p?
Ŷ X1X2

,pŶ X1
)] (25)

and thus, from (21), we get

P
[
∃x2 ∈Cn \ {x1} s.t. p̂ŷx1x2

= p?
Ŷ X1X2

]
≥ 1

2(n+ 1)J2K−1
P
[
Tx1

(pŶ |X1
)|x1

]
(26)

which completes the proof. The joint type p?
Ŷ X1X2

is the type
pŶ X1X2

whose existence is stated in the lemma.

Observe that the above statement implies that

|Ex1
(p?
Ŷ X1X2

,pŶ X1
)|

|Tx1
(pŶ |X1

)|
=

P
[
Ex1

(p?
Ŷ X1X2

,pŶ X1
)
]

P
[
Tx1(pŶ |X1

)|x1

] (27)

≥ 1

2(n+ 1)J2K−1
(28)

where (27) is true because all elements of Tx1
(pŶ |X1

) are
equiprobable when x1 is sent.

Similarly to [8], we construct a bipartite graph
Gx1

(pY ′Ŷ |X1
) in the following way (see [8] for details).

Vertices of this graph consists of elements of Tx1(pY ′|X1
)

and Tx1(pŶ |X1
). Moreover, y′ ∈ Tx1(pY ′|X1

) and
ŷ ∈ Tx1

(pŶ |X1
) are connected if p̂y′ŷx1

= pY ′Ŷ X1
.

Lemma 2: Consider a conditional joint type pY ′Ŷ |X ∈
M̂max(q,pX), for some composition pX , and construct a
graph Gx1

(pY ′Ŷ |X1
) between the type classes Tx1

(pŶ |X1
)

and Tx1
(pY ′|X1

) as described above. If y′ ∈ Tx1
(pY ′|X1

) is



connected to ŷ ∈ Tx1(pŶ |X1
) in graph Gx1(pY ′Ŷ |X1

), then,
for every x2 such that

p̂y′ŷx1x2
= p̂y′|ŷx1

p̂ŷx1x2
, (29)

p̂ŷx2
= p̂ŷx1

(30)

we have a q-decoding error

qn(x2,y
′) ≥ qn(x1,y

′). (31)

Proof: This is proven due to the fact that we know if
p̂y′ŷx1x2

= pY ′Ŷ X1X2
we can write the metric difference as

qn(x2,y
′)− qn(x1,y

′) = E[q(X2, Y
′)− q(X1, Y

′)] (32)

where the expectation is taken with respect to type pY ′Ŷ X1X2
.

Since pY ′Ŷ |X1
∈ M̂max(q,pX), and from (29) and (30) we

have that pŶ X1
= pŶ X2

and pY ′Ŷ X1X2
= pY ′|Ŷ X1

pŶ X1X2
,

i.e, X2−X1Ŷ −Y ′ form a Markov chain, based on definition
of M̂max(q,pX1

) we have

E[q(X2, Y
′)− q(X1, Y

′)] ≥ 0 (33)

and thus, from (32), we get the desired result.
The next lemma relates the q-decoding error probability

in channel PY ′|X with the type-conflict error probability in
channel PŶ |X by using the fact that in the conditions of the
maximal set we have included that X2−X1Ŷ −Y ′ is a Markov
chain.

Lemma 3: Let pY ′Ŷ |X1
∈ M̂max(q,pX1

) and x1 ∈
T (pX1

), then

P qe,max(Cn,W ) ≥ 1

2(n+ 1)J2K−1
P[Tx1

(pŶ |X1
)|x1] (34)

Where the probability of error is computed w.r.t channel W
and the second probability is computed w.r.t the channel PŶ |X .

Proof: Consider the bipartite graph Gx1
(pY ′Ŷ |X1

)
connecting elements of Tx1

(pY ′|X1
) and Tx1

(pŶ |X1
). As

described in [8], the graph is regular: for every y′ ∈
Tx1(pY ′|X1

) the number of ŷ ∈ Tx1(pŶ |X1
) such that

p̂y′ŷx1
= pY ′Ŷ X1

is the same; similarly, for every ŷ ∈
Tx1

(pŶ |X1
) the number of y′ ∈ Tx1

(pY ′|X1
) such that

p̂y′ŷx1
= pY ′Ŷ X1

is the same. For any B ⊂ Tx1
(pŶ |X1

)
we define Ψ(B) as

Ψ(B) = {y′ ∈ Tx1(pY ′|X1
) | y′ is connected to some

ŷ ∈ B in graph Gx(pY ′Ŷ |X1
)} (35)

As a result using the result stated in [8] we get that for any
B ⊂ Tx1

(pŶ |X1
)

|Ψ(B)|
|Tx1(pY ′|X1

)|
≥ |B|
|Tx1(pŶ |X1

)|
(36)

Now we let B be the set of all ŷ ∈ Tx1
(pŶ |X1

) such that there
exist a type-conflict error with another codeword x2 such that
p̂ŷx1x2

= pŶ X1X2
, i.e.,

B = Ex1(pŶ X1X2
,pŶ X1

). (37)

Therefore, from Lemma 2 we have for any y′ ∈ Ψ(B) there
exists a codeword x2 6= x1 such that

qn(x2,y
′) ≥ qn(x1,y

′) (38)

and we bound the probability of error as follows

P qe,max(Cn,W )

≥ P[∃x2 ∈ Cn\{x1}, qn(x2,y
′) ≥ qn(x1,y

′)] (39)
≥ P[∃x2 ∈ Cn\{x1}, qn(x2,y

′) ≥ qn(x1,y
′),y′ ∈ Tx1

(pY ′|X1
)]

(40)
≥ P[Tx1(pY ′|X1

)|x1]

· P[∃x2 ∈ Cn\{x1}, qn(x2,y
′) ≥ qn(x1,y

′)|y′ ∈ Tx1(pY ′|X1
)]

(41)
= P[Tx1

(pY ′|X1
)|x1]·

·
|{y′ ∈ Tx1

(pY ′|X1
) | ∃x2 ∈ Cn\{x1}, qn(x2,y

′) ≥ qn(x1,y
′)}|

|Tx1
(pY ′|X1

)|
(42)

≥ P[Tx1
(pY ′|X1

)|x1]

∣∣Ψ(Ex1
(pŶ X1X2

,pŶ X1
)
)∣∣

|Tx1
(pY ′|X1

)|
(43)

≥ P[Tx1
(pY ′|X1

)|x1]
|Ex1(pŶ X1X2

,pŶ X1
)|

|Tx1
(pŶ |X1

)|
(44)

≥ P[Tx1
(pY ′|X1

)|x1] · 1

2(n+ 1)J2K−1
(45)

where all of probabilities are computed with respect to channel
Wn, (43) follows from all elements of Ψ(B) satisfying (38),
(44) follows from (36) and (45) follows from (28).

Using a standard property of noise types we have that

P[Tx1
(pY ′|X1

)|x1] ≥ e−n
(
D(PY ′|X1

‖PY |X1
|pX1

)+ζn

)
(46)

with ζn = JK−1
n log(n+ 1). From standard arguments of the

method of types we obtain (16), where we have set pX = pX1
.

Again using standard arguments (see e.g. [11, Th. 2]) the
result of Theorem 1 is applicable to any code, and not only
constant composition codes. This is due to the fact that every
codebook Cn of rate R has a constant composition sub-
codebook C′n ⊆ Cn with rate R′ > R− J−1

n log(n+ 1) with

P qe,max(Cn,W ) ≥ P qe,max(C′n,W ). (47)

Additionally, a similar analysis would give an identical upper
bound to the error exponent using the maximal sets M̂max(q)
from [8].

As is well known, the exponent from Theorem 1 is
decreasing in R and Eqsp(pX , R) = 0 by choosing Y ′ = Y in
(17) at a rate equal to

R̄q(W,pX) , min
PY Ŷ |X∈Mmax(q,pX)

PY |X=W

I(pX , PŶ |X) (48)

We have shown that for rates R < R̄q(W,pX), the error
probability decays at most exponentially. In the next section,
we show that for rates R > R̄q(W,pX) the error probability
cannot decay sub-exponentially and is bounded away from
zero as n tends to infinity.



IV. MISMATCH CAPACITY UPPER BOUND

In this section, we show that for coding rates R

R > R̄q(W,PX) = min
PY Ŷ |X∈Mmax(q,PX)

PY |X=W

I(PX , PŶ |X) (49)

for a fixed input distribution PX , the error probability is
bounded away from zero as n tends to infinity. Proofs are not
included due to space limitations and can be found in [12].

Theorem 2: Let Cn = {x1, . . . ,xM} be a constant
composition codebook of composition pX and length n.
Assume PY Ŷ |X ∈ Mδ

max(q,pX) and PY |X = W . Then for
any ε > 0, there exists a constant γn(ε) that depends on n,W
and q, such that 0 < γn(ε) < 1 for every n,W and q, such
that

P qe,max(Cn,W, nε) ≥
(
1− γn(ε)

)
Pmax

tce (Cn, PŶ |X). (50)

The next result from [8] lower bounds the type-conflict error
probability.

Theorem 3: With the assumptions of Theorem 2, for every
PX , there exist n0, Ē(R) > 0 such that if n > n0 and
1
n log |Cn| > I(PX , PŶ |X)

Pmax
tce (Cn, PŶ |X) ≥ 1− 2−nĒ(R). (51)

The following result, also from [8] allows to establish
a connection between codes of arbitrary distributions and
constant composition codes.

Theorem 4: Let W, q be channel and decoding metric,
respectively. Define, for any input distribution PX ,

R̄q(W,PX) = min
PY Ŷ |X∈Mmax(q,PX)

PY |X=W

I(PX , PŶ |X) (52)

If R > R̄q(W,PX), ∃n0 ∈ N, 0 < γ < 1 and Ē(R) > 0 such
that for n > n0, the error probability of any codebook Cn of
length n, M ≥ 2nR codewords satisfies

P qe,max(Cn,W ) ≥ (1− γ)(1− 2−nĒ(R)). (53)

Proof: For any distribution PX , set the code rate to be
R > R̄q(W,PX). Similarly to the previous section, we know
that for any code Cn of length n and rate R, there exists
a constant composition subcode C′n ⊂ Cn with length n
satisfying, rate R′ > R − J−1

n log(n + 1), and composition
pX such that

P qe,max(Cn,W ) ≥ P qe,max(C′n,W ). (54)

Applying Theorems 2 and 3 to code C′n, we get that for any
δ > 0, if

R > R̄q(W,PX) > min
PY Ŷ |X∈M

δ
max(q,pX)

PY |X=W

I(pX , PŶ |X) (55)

we have that

P qe,max(C′n,W, nε) ≥
(
1− γn(ε)

)
Pmax

tce (C′n, PŶ |X) (56)

≥
(
1− γn(ε)

)
(1− 2−nĒ(R)) (57)

where (57) is bounded away from zero as n tends to infinity.
Now since the above inequality holds for any δ > 0 we get
the desired result.

Corollary 1: We have

Cq(W ) ≤ max
PX

min
PY Ŷ |X∈Mmax(q,PX)

PY |X=W

I(PX , PŶ |X) (58)

Corollary 2: If some joint conditional distribution PY Ŷ |X ∈
Mmax(q, PX) for all input distributions PX , then

Cq(W ) ≤ C(PŶ |X). (59)

In terms of computation, unlike the bound proposed in [8],
optimizing (58) is not a simple task. This observation stems
from the fact that the maximal set Mmax(q, PX) in (58)
depends on PX , unlike the maximal set Mmax(q) in [8].
In addition, the set Mmax(q, PX) is itself defined as an
optimization problem over distributions PX2|XŶ and this
makes the problem more difficult than [8]. As illustrated next,
the advantages of the new bound are potentially significant
even under the conditions of Corollary 2.

A. Example

In this part we show the application of our bound to the
counterexample in [7], where the channel and metric are

W =

[
0.97 0.03 0
0.1 0.1 0.8

]
, q =

[
0 0 0
0 log(0.5) log(1.36)

]
.

(60)

For this example C(W ) = 0.7133 bits/use, the rate achievable
by 2-letter superposition coding from [7] is R

(2)
sc (W, q) =

0.1991 bits/use and our previous converse [8] stated that
Cq(W ) ≤ R̄q(W ) = 0.6182 bits/use. By numerically
solving the optimization problem in (13) we observe the joint
conditional distribution given in Table I is maximal for all
input distributions PX .

TABLE I
NONZERO ENTRIES OF PY Ŷ |X FOR EXAMPLE 1

(j, k1, k2) PY Ŷ |X (j, k1, k2) PY Ŷ |X

(1, 1, 1) 0.3778 (2, 1, 1) 0.1000
(1, 1, 2) 0.5922 (2, 2, 2) 0.0911
(1, 2, 2) 0.0300 (2, 3, 3) 0.6956

(2, 3, 2) 0.1133

Marginalizing the above PY Ŷ |X over Y we obtain

PŶ |X =

[
0.3756 0.6244 0

0.1 0.2044 0.6956

]
. (61)

Therefore, by using Corollary 2 we have

Cq(W ) ≤ C(PŶ |X) (62)

= 0.4999 bits/use. (63)

Observe that the above result can be further improved by
solving the optimization problem in (58).
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