
Asymptotics of the Random Coding Error
Probability for Constant-Composition Codes
Josep Font-Segura

Universitat Pompeu Fabra
josep.font@ieee.org

Alfonso Martinez
Universitat Pompeu Fabra

alfonso.martinez@ieee.org

Albert Guillén i Fàbregas
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Abstract—Saddlepoint approximations to the error probability
are derived for multiple-cost-constrained random coding ensem-
bles where codewords satisfy a set of constraints. Constant-
composition inputs over a binary symmetric channel are studied
as a particular case. For codewords with equiprobable empirical
distribution, the analysis recovers the same error exponent and
pre-exponential polynomial decay as the uniform i.i.d. ensemble
and provides an explicit formula for the loss in prefactor (third-
order term) incurred by the constant-composition ensemble.

I. INTRODUCTION

We consider random coding over a discrete memoryless
channel W (y|x) with input x ∈ {0, . . . , J − 1} and output
y ∈ {0, . . . ,K−1}. Input sequences (codewords) x and output
sequences y of length n are probabilistically related by the
channel law Wn(y|x) =

∏n
i=1W (yi|xi).

For a given product distribution Qn(x) = Q(x1) · · ·Q(xn)
over the input alphabet, in the multiple-cost-constrained ran-
dom coding ensemble, the M codewords are randomly gener-
ated according to the probability distribution

P (x) =
1

µn
Qn(x)1{x ∈ D1} · · ·1{x ∈ DL}. (1)

Here, µn is a normalization factor and the indicator functions
1{·} enforce that codewords satisfy L constraints defined by
cost functions c`(x) and sets D` for ` = 1, . . . , L, i.e.,

D` = {x : |c`(x)| ≤ a`}. (2)

The constant-composition ensemble is a particular case of
the cost-constrained ensemble (1) when the constraint sets
(2) are chosen to contain all codewords having a given
empirical distribution [1, Ch. 2]. Both cost-constrained and
constant-composition ensembles usually lead to smaller error
probability than the i.i.d. ensemble [2]–[4]. However, for some
cases [5] such as the constant composition code discussed in
Sec. III there is a performance loss over the i.i.d. ensemble,
where no cost constraints are imposed.

To assess the performance of the ensemble (1), we study
the random coding union (RCU) bound to the average error
probability over the ensemble [6, Th. 16], given by

rcu =
∑
xy

P (x)Wn(y|x) min
{

1, (M − 1)pep(x,y)
}
, (3)
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where the pairwise error probability is the probability that of
randomly drawing a codeword x with larger likelihood than
the transmitted one, i.e.,

pep(x,y) =
∑
x

P (x)1
{
Wn(y|x) ≥Wn(y|x)

}
. (4)

Since the average error probability over all codes randomly
generated from (1) is upper bounded by the RCU, there must
exist a code of length n and M codewords satisfying the set
of conditions (2) whose error probability is at most (3).

For fixed code rate R = 1
n logM , refinements on the anal-

ysis of the decay of the vanishing error probability as n→∞
have received recent interest. For example, the works [7]–
[10] used Edgeworth expansions, saddlepoint approximations,
and large deviations methods to study the polynomial decay
of the error probability exponential prefactor. Our previous
results [11]–[13] differ from the aforementioned works in the
treatment of the coupling between (3) and (4). In this work
we assume that the channel W (y|x) is non-singular [8, Def.
1] and derive an asymptotic closed-form approximation of (3)
for the multiple-cost-constrained ensemble (1).

In Sec. III we apply our analysis to constant-composition
codes with empirical distribution 1

2 over the binary symmetric
channel. While the error probability of this ensemble has the
same exponential decay and pre-exponential polynomial decay
as the uniform i.i.d. ensemble, it has a larger prefactor (third-
order term or the constant in front of the exponential), and its
error probability is thus worse than that of the i.i.d. ensemble.

II. ERROR PROBABILITY ASYMPTOTICS

A. Main Result

Let us assume that all the constants a` in the set defin-
tions (2) do not depend on n, and that all the cost functions
c`(x) have zero mean under the i.i.d. probability distribu-
tion Q(x). Under maximum likelihood decoding, the RCU
bound (3) for the multiple-cost-constrained ensemble (1) with
fixed rate R is asymptotically approximated by

ˆrcucc = αcc(ρ̂) e−n(Ecc
0 (ρ̂)−ρ̂0R), (5)

where ρ = (ρ0, . . . , ρL) is a vector of parameters,

Ecc
0 (ρ) = − log

∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ0 e
∑L
`=1 ρ`c`(x)

)1+ρ0

(6)



is a multiple-cost-constrained Gallager function, the optimized
ρ̂ is given by the solution of

∂

∂ρ0
Ecc

0 (ρ)

∣∣∣∣
ρ0=ρ̂0

= R (7)

∂

∂ρ`
Ecc

0 (ρ)

∣∣∣∣
ρ`=ρ̂`

= 0, (8)

for ` = 1, . . . , L, and αcc(ρ̂) is the prefactor

αcc(ρ̂) =
1

µn

∑
m0∈F0

∑
m1∈F1

· · ·
∑

mL∈FL

q(φm) +

+
ψn(ρ̂)

µn

∑
m0∈Fc0

∑
m1∈F1

· · ·
∑

mL∈FL

eφm0 q(φm), (9)

with F0 and F` defined in (44) and (45). In (9), φm are the
(L+1)–dimensional lattice points φm of the random variables

Φ0 = nR− is(ρ̂)(X;Y ) (10)
Φ` = c`(X), (11)

where as usual capital letters indicate random variables,
is(x;y) is a generalized information density [6, Eq. (4)] for
the multiple-cost-constrained ensemble

is(x;y) = log
Wn(y|x)s0∑

xQ
n(x)Wn(y|x)s0es1c1(x) · · · esLcL(x)

,

(12)
with optimal tilting s(ρ̂) = (s0, . . . , sL) related to ρ̂ as
s0 = 1

1+ρ̂0
and s` = ρ̂`, and q(φm) is the saddlepoint

approximation to the probability mass at the lattice point φm,
given by

q(φm) = Γ · e
ξn(ρ̂)−ρ̂Tφm− 1

2nφ
T
mV

−1
ρ̂ φm√

(2π |det(nVρ̂)|
(13)

where Vρ̂ is the Hessian matrix of the multiple-cost-
constrained Gallager function Ecc

0 (ρ) at ρ = ρ̂. The details
on the computation of the remaining parameters, i.e., ψn(ρ̂),
ξn(ρ̂) and Γ can be found in equations (40), (42) and (47).

In Sec. II-B, we also show that the polynomial decay of
αcc(ρ̂) is n−(1+ρ̂0)/2 regardless the number of constraints L.
This result matches the behaviour of the unconstrained case
(see, e.g., the discussion in [8, Rem. 2]). We finally note
that setting L = 0 recovers our saddlepoint approximation of
the RCU bound for the unconstrained (i.i.d.) random coding
ensemble Q(x) reported in [12, Eq. (35)].

As anticipated in Sec. I, the multiple-cost-constrained Gal-
lager function (6) may have a higher error exponent than
that of the i.i.d. ensemble. However, for channels and cost
functions such that ρ̂` = 0 for ` = 1, . . . , L, the function
Ecc

0 (ρ) reduces to the i.i.d. E0(ρ) Gallager function [14],
implying that no gain or loss is attained using the cost
constrained ensemble over the i.i.d. ensemble in terms of
error exponent. Since the prefactor term αcc(ρ̂) has the same
polynomial decay as its i.i.d. counterpart αiid(ρ̂0) [12, Eq.
(36)], the difference in performance, a small loss in the binary-
symmetric channel, is fully characterized by the analysis of the
ratio of prefactors.

B. Proof

The method of proof extends the derivations in our previous
work on unconstrained strongly non-lattice [11], unconstrained
lattice [12] and cost-constrained strongly non-lattice [13] dis-
tributions to lattice distributions with multiple cost constraints.

We start by studying the pairwise error probability
pep(x,y). For sake of clarity, we may leave the dependence
on x and y implicit in some of the following derivations.
Combining (1) and (4), we have that

pep(x,y) =
1

µn

∑
x

Qn(x)1
{
x ∈ D1 ∩ · · · ∩ DL ∩ E(x,y)

}
(14)

where we defined the log-likelihood decoding error event

E(x,y) =
{
x : logWn(y|x) ≥ logWn(y|x)

}
. (15)

Let Z = (Z0, Z1, . . . , ZL) be the random vector given by

Z0 = logWn(y|X)− logWn(y|x), (16)

Z` = c`(X), (17)

for ` = 1, . . . , L. Since x belongs to a discrete alphabet,
the random variables Z0, . . . , ZL may lie in a lattice. For
each ` = 0, . . . , L, Z` is a lattice random variable with
support set L` = {b` + h`m : m ∈ Z} of span h` and offset
b` ∈ [0, h`), if Z` has strictly zero probability mass outside
L`, and h` is the largest value such that this condition is
satisfied. As a consequence, Z lies in an (L+ 1)-dimensional
lattice. Let m = (m0, . . . ,mL) ∈ ZL+1. We denote by
p(zm) the probability mass of the lattice point zm, i.e., the
point z = (z0, . . . , zL) where z` = b` + h`m` for every
` = 0, . . . , L. Using the definition of the cost-constraint sets
(2) and the error event set (15), equation (14) reads

pep(x,y) =
1

µn

∑
m0∈M0

· · ·
∑

mL∈ML

p(zm) (18)

where the summation sets M0, . . . ,ML are given by

M0 = {m ∈ Z : b0 + h0m ≥ 0} (19)
M` = {m ∈ Z : |b` + h`m| ≤ a`} (20)

for ` = 1, . . . , L. The strongly lattice random variable Z has
a periodic characteristic function [15], given by

ϕ(t) =
∑
m0

· · ·
∑
mL

p(zm)ejt
T zm (21)

where j =
√
−1, and for convenience, we defined the column

vector t = (t0, . . . , tL). We note that in (21), the summations
are over all integers. By Fourier inversion [16], we have

p(zm) =
Ω

(2πj)L+1

∫ + π
h0

− π
h0

dt0 · · ·
∫ + π

hL

− π
hL

dtLϕ(t) e−jt
T zm ,

(22)
where Ω is the volume of the lattice fundamental cell in the
Fourier domain. For sake of simplicity we assume that the fun-
damental cell is the hypercube of hypervolume Ω =

∏L
`=0 h`.



Making the change of variable s = jt, the equation (22) can
be written in terms of the inverse Laplace transformation [17]

p(zm) =
Ω

(2π)L+1

∫ +j πh0

−j πh0

ds0 · · ·
∫ +j π

hL

−j π
hL

dsL e
κ(s)−sT zm

(23)
where κ(s) is the cumulant generating function of the vector
random variable Z, defined as

κ(s) = log
∑
m0

· · ·
∑
mL

p(zm)es
T zm . (24)

Under the convergence conditions, the Cauchy’s integral the-
orem [18] allows us to move the integration paths in (23) to
the imaginary lines centered at a new point ŝ ∈ RL+1. We
now perform a Taylor expansion of κ(s) around s = ŝ, i.e.,

κ(s) ' κ(ŝ)+(s− ŝ)Tκ′(ŝ)+
1

2
(s− ŝ)Tκ′′(ŝ)(s− ŝ), (25)

where κ′(s) and κ′′(s) are the gradient and the Hessian matrix
of κ(s), and extend the integration limits to

(
ŝ`−j∞, ŝ`+j∞)

for every `. With these new integration limits, we further make
the change of variable ŝ+ ju = s and combine the expansion
(25) with the inversion formula (23) to obtain that

p(zm) ' eκ(ŝ)−ŝT zm Ω

(2π)L+1
·

·
∫ +∞

−∞
du0 · · ·

∫ +∞

−∞
duL e

−juT zmψ(u) (26)

where ψ(u) is the characteristic function of an (L + 1)–
dimensional Gaussian random variable with vector mean κ′(ŝ)
and covariance matrix κ′′(ŝ).

The r.h.s. of (26) is only an asymptotic approximation of the
probability mass p(zm) due to the Taylor expansion (25) and
the extension of the integration limits to ±j∞. Solving (26),
we obtain a saddlepoint approximation of the probability mass
of the (L+ 1)–dimensional strongly lattice random variable

p(zm) ' Ω · eκ(ŝ)−ŝT zm · e−
1
2z

T
mκ
′′(ŝ)−1zm√

(2π)(L+1) detκ′′(ŝ)
. (27)

The approximation (27) is a generalization of the saddlepoint
approximation [16, Eq. (2.2.3)] to the sum of non i.i.d. terms.
Contrary to our previous works [11]–[13] where ŝ was chosen
constant for every channel input and channel output pair, here
we considered only the values of ŝ such that κ′(ŝ) = 0, the
unique saddle point that minimizes the cumulant generating
function. When Z is the a sequence of i.i.d. terms, the choice
of ŝ leads to approximation error terms of order O(n−1) that
hold uniformly for ŝ within the region of convergence of (24).

Taking into account that Z is given by (16) and (17), we
can write the cumulant generating function (24) as

κ(s) = log
∑
x

Qn(x)

(
Wn(y|x)

Wn(y|x)

)s0
es1c1(x) · · · esLcL(x),

(28)

giving rise to a linear growth with n of κ(s) and κ′′(s)
by extension. Hence, it is safe to further approximate the
r.h.s. of (27) as n→∞ by

p(zm) ' Ω · eκ(ŝ)−ŝT zm√
(2π)(L+1) detκ′′(ŝ)

. (29)

Finally using the approximation (29) in (18) and bringing
back the explicit dependence on x and y, we obtain that

pep(x,y) ' γŝ(x,y) · e−iŝ(x;y), (30)

where iŝ(x;y) is the information density given by (12), the
term γŝ(x,y) is a pre-exponential factor given by

γŝ(x,y) =
Ω

µn
· 1√

(2π)(L+1) detκ′′(ŝ)
·

·
∑

m0∈M0

· · ·
∑

mL∈ML

e−ŝ
T zm , (31)

and zm are the lattice points of the random variable Z defined
in (16) and (17). We remark that the terms γŝ(x,y) and
iŝ(x;y) depend on x and y in various ways. For both terms,
ŝ = ŝ(x,y) is the unique saddle point satisfying κ′(ŝ) = 0.
The term κ′′(ŝ) in (31) depends on y through the definition
of κ(s) in (28). Lastly, even though the offset b0 depends on
x and y, we consider channels such as the binary symmetric
channel for which M0 does not depend on x and y.

As shown in [7, Prop. 1], under mild assumptions of the
constraint sets (2), the normalizing factor µn decays as n−L/2.
Since the term detκ′′(ŝ) grows as nL+1, the factor γŝ(x,y) is
sub-exponential with n and asymptotically behaves as n−1/2.

We now proceed to study the RCU itself. Let Θ =
(Θ0,Θ1, . . . ,ΘL) be Θ` = c`(X) for each ` = 1, . . . , L and

Θ0 = log(M − 1) + log pep(X,Y ). (32)

We first split the RCU expression (3) into two sums

rcu =
∑
xy

P (x)Wn(y|x)1
{

Θ0 ≥ 0
}

+

+
∑
xy

P (x)Wn(y|x)eΘ01
{

Θ0 < 0
}
, (33)

and use the multiple-cost-constrained distribution (1) to ex-
press (33) as (34) given at the bottom of the next page. The
cumulant generating function of the underlying vector random
variable Θ is given by

φ(ρ) = log
∑
xy

Qn(x)Wn(y|x)(M − 1)ρ0pep(x,y)ρ0 ·

· es1c1(x) · · · esLcL(x) (35)

for the parameter vector ρ = (ρ0, . . . , ρL).
Following similar steps as in [12, Sec. III.D], which are

omitted for sake of space, we use the saddlepoint approxima-
tion of the pairwise error probability (30) in the r.h.s. of (32)
to express the cumulant generating function (35) as the sum
of two functions, namely

φ(ρ) ' χn(ρ) + πn(ρ). (36)



In (36), the function χn(ρ) accounts for the terms of Θ that
grow linearly with n, and hence contributes to the exponential
part of the RCU bound, and is given by

χn(ρ) = ρ0nR− nE0(ρ) (37)

where we used that log(M−1) ' nR and defined the multiple-
cost-constrained Gallager function as (6). We also defined
single-letter cost functions c`(x) such that

c`(x) =

n∑
i=1

c`(xi). (38)

In contrast, the sub-linear terms in n that essentially arise
from the pairwise error probability sub-exponential term (31)
and from the implicit randomness of the pairwise-error-
probability saddle point ŝ are collected in πn(ρ) as

πn(ρ) = ρ0 logψn(ρ) + ξn(ρ). (39)

Defining the vector s(ρ) as s0 = (1 + ρ0)−1 and s` = ρ`
for ` = 1, . . . , L, the quantity ψn(ρ) accounts for the average
contribution of γŝ(x,y) into the RCU and is given by

ψn(ρ) =
Ω

µn
· 1√

(2π)(L+1) detκ′′(s(ρ))
·

·
∑

m0∈M0

· · ·
∑

mL∈ML

e−s(ρ)T zm , (40)

where detκ′′(s(ρ)) is the determinant of the Hessian matrix
of the cumulant generating function (28) averaged over the
tilted distribution

Qnρ(x)Wn
ρ (y|x) ∝ Qn(x)Wn(y|x)e−ρ0is(ρ)(x,y)+

∑
` ρ`c`(x).

(41)
On the other hand, the quantity ξn(ρ) in (39) evaluates
the deviation of the saddlepoint exponent iŝ(x;y) from the
Gallager exponent is(ρ)(x;y) as

ξn(ρ) = log
∑
xy

Qnρ(x)Wn
ρ (y|x)eρ0(is(ρ)(x;y)−iŝ(x;y)). (42)

Equation (36) also implies that the random variable Θ
is exponentially equivalent to the random variable Φ =
(Φ0,Φ1, . . . ,ΦL) as n → ∞, where now Φ` are given by
(10)–(11). Clearly, for discrete alphabets, Φ may lie in a
lattice. We define for each ` = 0, . . . , L the span and offset
of Φ` as g` and d` respectively, and use the notation φm to
represent the lattice point given by m = (m0, . . . ,mL), i.e.,
the point φ whose elements satisfy φ` = d` +m`g`.

We observe in the expression (34) at the bottom of the
page that the RCU bound is a probability measure of the
random variable Θ0, while the random variables Θ` only
define the set over which the probability measure is computed.
Noting the relation between Θ0 and Φ0 given in (32) and (10)
respectively, the RCU (34) bound satisfies

rcu =
1

µn

∑
m0∈F0

∑
m1∈F1

· · ·
∑

mL∈FL

p(φm) +

+
ψn(ρ)

µn

∑
m0∈Fc0

∑
m1∈F1

· · ·
∑

mL∈FL

eφm0p(φm), (43)

where the summation intervals are now given by

F0 = {m ∈ Z : d0 + g0m+ logψn(ρ) ≥ 0} (44)
F` = {m ∈ Z : |d` + g`m| ≤ a`}, (45)

Fc0 is the complement of the set F0, and with some abuse of
notation we employed φm0 to denote the first component of
φm, i.e., the lattice point d0 + g0m0 of the lattice random
variable Φ0 given by (10). The probability mass p(φm) can
be written in terms of the cumulant generating function φ(ρ)
using the inverse Laplace transformation, similarly to (23), as

p(φm) =
Γ

(2π)L+1

∫ +j πg0

−j πg0

· · ·
∫ +j πgL

−j πgL

dρ eξn(ρ)+χn(ρ)−ρTφm

(46)
where we used again the relation between the cumulant
generating functions of Φ0 and Θ0 given in equations (36),
(37) and (39), and defined Γ as

Γ =

L∏
`

g`. (47)

At this point, we perform the saddlepoint approximation of
(46) by expanding the cumulant generating function χn(ρ)
around the parameter ρ = ρ̂ satisfying the set of conditions
(7)–(8), for ` = 1, . . . , L. Hence, plugging

1

n
χn(ρ) ' ρ̂0R− Ecc

0 (ρ̂) +
1

2
(ρ− ρ̂)TVρ̂(ρ− ρ̂) (48)

into (46), where Vρ̂ is the Hessian matrix of −Ecc
0 (ρ),

solving the complex integration similarly to (26)–(27), and
using this approximation on p(φm) in (43), we finally obtain
the approximation (5). Analogously to the discussion after
equation (31), the polynomial decays of µn and det(nVρ̂)
lead to a polynomial decay of n−1/2 in p(φm). Therefore,
with similar arguments to those in [12, Eq. (37)], we obtain
that the overall polynomial decay of αcc(ρ̂) is n−(1+ρ̂0)/2.

rcu =
1

µn

∑
xy

Qn(x)Wn(y|x)1
{

Θ0 ≥ 0
}
1
{
|Θ`| ≤ a`,∀`

}
+

1

µn

∑
xy

Qn(x)Wn(y|x)eΘ01
{

Θ0 < 0
}
1
{
|Θ`| ≤ a`,∀`

}
(34)

is0s1(x;y) = s0txy log δ+s0(n−txy) log(1−δ)−(n−ty) log

[
1

2
(1−δ)s0e−

s1
2 +

1

2
δs0e

s1
2

]
−ty log

[
1

2
δs0e−

s1
2 +

1

2
(1−δ)s0e

s1
2

]
(48)



III. BINARY SYMMETRIC CHANNEL

We evaluate the RCU bound for a binary symmetric channel
(BSC) with crossover probability δ < 1

2 . We study both an
i.i.d. ensemble with Q(x) = 1

2 and a constant-composition
ensemble with empirical distribution Q̂(x) = 1

2 . In the latter,
codewords are uniformly drawn from the type class T n(Q̂)
[1], the set of all sequences of length n with Q̂(x) = 1

2 , i.e,
the same number of zeroes and ones.

The constant composition ensemble is a particular case of
the multiple cost constrained ensemble (1) for L = 1, auxiliary
distribution Q(x) = 1

2 , and cost function

c1(x) =

n∑
i=1

(
xi −

1

2

)
. (49)

Clearly, the ensemble (1) with a1 = 1 is uniform over the type
class T n(Q̂) with Q̂(x) = 1

2 .
Computing the saddlepoint approximation (5) requires the

evaluation of two important quantities: the Gallager function
(6) and the information density (12), respectively given by

Ecc
0 (ρ0, ρ1) = − log

[(
1

2
(1−δ)

1
1+ρ0 e−

ρ1
2 +

1

2
δ

1
1+ρ0 e

ρ1
2

)1+ρ0

+

(
1

2
δ

1
1+ρ0 e−

ρ1
2 +

1

2
(1− δ)

1
1+ρ0 e

ρ1
2

)1+ρ0
]

(50)

and (48) at the bottom of the page. For this channel, we defined
ty and txy as the Hamming weight of y and the Hamming
distance between x and y respectively.

We depict the saddlepoint approximation of the RCU bound
for both constant-composition ˆrcucc (5) and i.i.d. ˆrcuiid [12,
Eq. (35)] ensembles with code rate of Rb = 0.2 bits per
channel use and crossover probability δ = 0.11 in Fig. 1.
We have also included the Gallager bound [14, Eq. (5.6.18)],
the metaconverse lower bound [6, Eq. (137)], and the exact
expressions of the RCU bounds as reference. We observe that
both ensembles lead to the same exponential decay, and that
the saddlepoint expression (5) accurately approximates the
RCU bound for both ensembles.

Fig. 1 also reveals a gap between the constant-composition
and the i.i.d. RCU bounds. We study this loss by means
of the ratio ωn = rcucc

rcuiid
. Removing the quadratic terms in

αcc(ρ̂) analogously to the steps in [12, Eq. (37)] and noting
that µn '

√
2/(πn), one can show after some mathematical

manipulations that the ratio of saddlepoint approximations
ω̂n = ˆrcucc/ ˆrcuiid is asymptotically equivalent to

ω̂n �
√

1 + ρ̂0

2

(√
n2κ′′iid(ŝ0)

detκ′′(ŝ0, ŝ1)

1− e−g0
1− e−2g0

)̂ρ0 √
Viid(ρ̂0)

|det(Vρ̂)|
,

(52)
where κ′′iid(ŝ0) and Viid(ρ̂0) are i.i.d. terms respectively given
by [12, Eq. (29)] and [12, Eq. (31)], and g0 is the span
of the tilted information density (12). For the example in
Fig. 1, constant-composition codes with empirical distribution
1
2 converge to an error probability that is around a factor
1.45793 times that of equiprobable i.i.d. codes.
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Fig. 1. Error probability vs code length n for code rate Rb = 0.2 bits per
channel use and BSC with crossover probability δ = 0.11.
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