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Abstract—We show that a recursive cost-constrained random
coding scheme attains an error exponent that is at least as high as
both the random-coding exponent and the expurgated exponent.
The random coding scheme enforces that every pair of codewords
in the codebook meets a minimum distance condition, and is
reminiscent of the Gilbert-Varshamov construction, but with the
notable feature of permitting continuous-alphabet channels. The
distance function is initially arbitrary, and it is shown that the
Chernoff/Bhattacharrya distance suffices to attain the random
coding and expurgated exponents.

I. PROBLEM SETUP

We consider transmission over a memoryless channel de-
scribed by a conditional probability rule W (y|x), with input
x ∈ X and output y ∈ Y for arbitrary alphabets X and Y; in
particular, W (y|x) is a conditional probability mass function
(PMF) in the discrete case, and a conditional probability
density function (PDF) in the continuous case. We define
Wn(y|x) =

∏n
k=1W (yk|xk) for input/output sequences

x = (x1, . . . , xn) ∈ Xn and y = (y1, . . . , yn) ∈ Yn. The
corresponding random variables are denoted by X and Y .

An encoder maps a message m ∈ {1, . . . ,Mn} to a
channel input sequence xm ∈ X , where the number of
messages is denoted by Mn. The message, represented by the
random variable S, is assumed to take values on {1, . . . ,Mn}
equiprobably. This mapping induces an (n,Mn)-codebook
Mn = {x1, . . . ,xMn

} with rate Rn = 1
n logMn.

Upon observing the channel output y, the decoder produces
an estimate of the transmitted message m̂ ∈ {1, . . . ,Mn}.
We consider the family of type-dependent maximum-metric
decoders, for which the transmitted message is estimated as

m̂ = arg max
xi∈Mn

q(xi,y), (1)

where q(xi,y) is a certain decoding metric depending only
on the joint type [1, Ch. 2] of (xi,y). Maximum-likelihood
(ML) decoding is a special case of (1), but more generally,
the decoder may be mismatched [2]–[4].

Denoting the random variable corresponding to the de-
coded message by Ŝ, we define the probability of error as
Pe = Pr

[
Ŝ 6= S

]
. A rate-exponent pair (R,E) is said to
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be achievable for channel W if, for all ε > 0, there exists a
sequence of (n, en(R−ε))-codebooks such that

lim inf
n→∞

− 1

n
log Pr

[
Ŝ 6= S

]
≥ E − ε. (2)

Equivalently, we say that E is an achievable error exponent at
rate R if (R,E) is an achievable rate-exponent pair.

In the case of discrete memoryless channels (i.e., X and Y
are finite), using random selection and graph decomposition
techniques, Csiszár and Körner [5] studied the error exponents
of constant-composition codes under a decoder that uses a
type-dependent decoding metric, and derived the following
achievable exponent for an arbitrary input distribution P :

Eq(R,P,W ) = min
V ∈TI

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
,

(3)

where

TI ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), I(X; X̃) ≤ R
}

(4)

with P(·) denoting the set of probability distributions on the
given alphabet. This error exponent was shown to be at least
as high as both the expurgated and random coding exponents.

In this paper, we consider a generalization of (4) that we
recently gave in [6] (outlined below), with our main goal being
to provide an equivalent form and an alternative proof that
extends immediately to continuous-alphabet channels.

II. DISCRETE MEMORYLESS CHANNELS: EXPONENT AND
LAGRANGE DUALITY

In this section, we restrict ourselves to discrete memoryless
channels (DMCs). We overview a recursive construction that
we recently proposed [6] for attaining the Csiszár-Körner
exponent (3) based on analogies with the Gilbert-Varshamov
construction in Hamming spaces [7], [8].

The set of sequences with type Pn is denoted by T (Pn).
For i < j, we let xji denote (xi, . . . ,xj). Fixing n,Mn, an
input distribution P ∈ P(X ), a symmetric type-dependent
“distance” function d(·, ·),1 and constants δ > 0,∆ ∈ R, the
construction is described by the following steps:

1We use the terminology distance even though d need not be a distance
function in the topological sense.



1) The first codeword, x1, is drawn uniformly from T (Pn);
2) The second codeword x2 is drawn uniformly from

T (Pn,x1) , {x̄ ∈ T (Pn) : d(x̄,x1) > ∆} (5)
= T (Pn)\ {x̄ ∈ T (Pn) : d(x̄,x1) ≤ ∆} , (6)

the set of sequences of composition Pn whose distance
to x1 exceeds ∆;

3) The i-th codeword xi is drawn uniformly from

T (Pn,x
i−1
1 )

= {x̄ ∈ T (Pn) : d(x̄,xj) > ∆, j = 1 . . . , i− 1} (7)

= T (Pn,x
i−2
1 )\

{
x̄ ∈ T (Pn,x

i−2
1 ) : d(x̄,xi−1) ≤ ∆

}
. (8)

In order to ensure that the above procedure generates the
desired number of codewords Mn = enRn (i.e., the sets
T (Pn,x

i−1
1 ) are non-empty for all i = 1, . . . ,Mn), it suffices

to choose ∆ and δ such that [6]

en(Rn+δ)volx(∆) ≤ |T (Pn)| (9)

where volx(∆) = |{x̄ ∈ T (Pn) : d(x̄,x) ≤ ∆}| is the
volume of a ball of radius ∆ according to distance d(·, ·)
centered at some x ∈ T (Pn). Since d ∈ Ω is symmetric
and type-dependent, volx(∆) does not depend on the specific
choice of x ∈ T (Pn).

Let d(PXX̃) be a shorthand for d(x.x̃) when (x.x̃) ∈
T (PXX̃). It was shown in [6] that under the rate condition

R ≤ min
P
XX̃

: d(P
XX̃

)≤∆, PX=P
X̃

=P
I(X; X̃)− 2δ (10)

(which ensures that (9) holds), the ensemble average error
probability of the above recursive random code construction
attains the following exponent:

ERGV(R,P,W, q, d,∆)

= min
V
XX̃Y

∈TRGV

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
,

(11)

where

TRGV ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), d(PXX̃) ≥ ∆
}
. (12)

While we have stated the error exponent, the central part of the
analysis is in arriving at the following asymptotic expression
for the ensemble average probability of error (where .

= denotes
equality to first order in the exponent and Pn is a type
converging to P as n→∞):

P̄ (n)
e

.
=

∑
x∈T (Pn),y

1

|T (Pn)|
Wn(y|x)

·min

{
1, (Mn − 1)

∑
x′∈T (Pn) : qn(x′,y)≥qn(x,y)

d(x′,x)≥∆

1

|T (Pn)|

}
.

(13)

This can be interpreted as a stronger (albeit asymptotic)
analog of the random coding union bound [9] that achieves

not only the random coding exponent, but also the low-rate
improvements of the expurgated exponent.

It is also shown in [6] that ERGV(R,P,W, q, d,∆) =
Eq(R,P,W ) for certain choices of the distance function
d(·, ·), notably including the negative empirical mutual infor-
mation. Note that the above construction is only valid for finite
input alphabets, and the analysis of [5] relies on both the input
and output alphabets being finite.

Towards handling general alphabets, we begin by stating a
Lagrange dual form of the RGV exponent and rate condition in
(10)–(11). To facilitate this, we henceforth restrict our attention
to additive distances and decoding metrics:

d(x,x′) =
1

n

n∑
k=1

d(xk, x
′
k) (14)

for some single-letter function d(x, x′), and similarly

q(P̂x,y) =
1

n

n∑
i=1

q(xi, yi), (15)

for some single-letter function q(x, y) (abusing notation
slightly). While the additivity assumption is more restric-
tive than the assumption of being type-dependent, there are
many interesting examples of additive distances and metrics,
such as Hamming distance, Bhattacharrya distance, maximum-
likelihood decoding, and (single-letter) mismatched decoding.

Theorem 1. Under the preceding setup with an additive
distance function d and additive decoding metric q, the error
exponent (11) can be written as

ERGV(R,P,W, q, d,∆) = sup
ρ∈[0,1]

E0(ρ)− ρR, (16)

where

E0(ρ) = sup
r≥0,s≥0,a(·)

−
∑
x

P (x)

· log
∑
y

W (y|x)

(∑
x′ P (x′)esq(x

′,y)ea(x′)er(d(x,x′)−∆)

esq(x,y)ea(x)

)ρ
(17)

and rate condition (10) can be written as

R ≤ Ev(P, d,∆)− 2δ, (18)

where, defining φa = EP [a(X)], we have

Ev(P, d,∆) , sup
r≥0,a(·)

∑
x

P (x)

· log
∑
x′

P (x′)ea(x′)−φae−r(d(x,x′)−∆). (19)

Proof outline: The proof uses Lagrange duality analo-
gously to the corresponding statements for the random cod-
ing and expurgated exponents [10], [11]. Specifically, the
Lagrange dual of the rate condition (10) yields (18), and
the Lagrange dual of the exponent (11) yields (17). The
optimization parameters r, s, and a(·) correspond to Lagrange
multipliers.



For the latter of these, the exponent can alternatively be
attained directly by bounding the inner term in (13) as∑

x̄∈T (Pn)
q(x̄,y)≥q(xm,y)
d(x̄,xm)≥∆

1

|T (Pn)|

=
∑

x̄∈T (Pn)

1

|T (Pn)|
1{q(x̄,y) ≥ q(xm,y)}1{d(x̄,xm) ≥ ∆}

(20)

≤
∑

ȳ∈T (Pn)

1

|T (Pn)|
esq(x̄,y)+a(x̄)

esq(xm,y)+a(x)
er(d(x̄,xm)−∆) (21)

and then following the steps of Poltyrev [12].

The expression in (16) bears a strong resemblance to the
mismatched random coding exponent for constant-composition
coding [10]; in fact, the only difference is the presence of
additional term er(d(x,x′)−∆). Indeed, in order to prove the
achievability of the random coding exponent from (16), one
simply sets r = 0.

To show that (16) also achieves the expurgated exponent,
we first claim that the achievability of (11) (and hence its
equivalent expression (16)) for symmetric d implies the same
for non-symmetric d; the proof is deferred to the full version
due to space constraints [13, Cor. 1]. This fact allows us to
set ρ = 1 and choose the distance to be the Chernoff distance:

d(x, x′) = ds(x, x
′) = − log

∑
y

W (y|x)

(
eq(x

′,y)

eq(x,y)

)s
, (22)

which reduces to the Bhattacharrya distance in the matched
case q(x, y) = logW (y|x) when s = 1

2 . The preceding choice
d = ds yields for any s, r, and a(·) that

ERGV(R,P,W, q, d,∆)

≥ −
∑
x

P (x) log
∑
x′

P (x′)

·
∑
y

W (y|x)
esq(x

′,y)+a(x′)

esq(x,y)+a(x)
er(ds(x,x

′)−∆) −R (23)

= −
∑
x

P (x) log
∑
x′

P (x′)e−ds(x,x
′) ea(x′)

ea(x)
er(ds(x,x

′)−∆) −R.

(24)

Setting r = ρ′

1+ρ′ for some ρ′ ≥ 0 gives

ERGV(R,P,W, q, d,∆) ≥ −
∑
x

P (x)

· log
∑
x′

P (x′)e
− ds(x,x

′)
1+ρ′

ea(x′)

ea(x)
+ ∆

ρ′

1 + ρ′
−R. (25)

Then, choosing

∆ = −(1 + ρ′)

(∑
x

P (x) log
∑
x′

P (x′)e
− ds(x,x

′)
1+ρ′

ea(x
′)

ea(x)
+R+ 2δ

)
(26)

we obtain from (25) that

ERGV(R,P,W, q, d,∆)

≥ −
∑
x

P (x) log
∑
x′

P (x′)e
− ds(x,x

′)
1+ρ′

ea(x′)

ea(x)

− ρ′
(∑

x

P (x) log
∑
x′

P (x′)e
− ds(x,x

′)
1+ρ′

ea(x′)

ea(x)
+R+ 2δ

)
−R

(27)

= −(1 + ρ′)

(∑
x

P (x) log
∑
x′

P (x′)e
− ds(x,x

′)
1+ρ′

ea(x′)

ea(x)

)
− (1 + ρ′ + 2δρ′)R. (28)

Upon taking δ → 0 and optimizing ρ′ ≥ 0, s ≥ 0, and a(·),
this exponent is identical to the dual form of the mismatched
decoding expurgated exponent given in [11], which is known
to be equivalent to the primal form given in [5].

We also need to check that the choice of ∆ in (26) complies
with the rate condition in (18). We choose the same a(·) as
in the exponent, but a different value of r (note that the two
need not be the same). We simplify the condition as follows:

R ≤ −
∑
x

P (x) log
∑
x′

P (x′)ea(x′)−φae−r(ds(x,x
′)−∆) − 2δ

(29)

= −
∑
x

P (x) log
∑
x′

P (x′)ea(x′)−φae−rds(x,x
′) − r∆ − 2δ

(30)

= −
∑
x

P (x) log
∑
x′

P (x′)ea(x′)−φae−rds(x,x
′)

+ r(1 + ρ′)

(∑
x

P (x) log
∑
x′

P (x′)e
− ds(x,x

′)
1+ρ′

ea(x′)

ea(x)

+R+ 2δ

)
− 2δ, (31)

where we have substituted (26).
By setting r = 1

1+ρ′ and noting that
−
∑
x P (x) log

∑
x′ P (x′)ea(x′)−φae−rds(x,x

′) is identical to
−
∑
x P (x) log

∑
x′ P (x′) ea(x

′)

ea(x)
e−rds(x,x

′) (by expanding the
logarithms and using φa =

∑
x P (x)a(x)), we observe that

(31) reduces to R ≤ R, which is trivially satisfied.

III. COST-CONSTRAINED CODEBOOK AND EXPONENT

The preceding analysis is restricted to finite input alpha-
bets. In the following, we describe how to construct a cost-
constrained random code Mn with Mn codewords of length
n over an arbitrary input alphabet, while guaranteeing that the
minimum distance of the codebook exceeds ∆, in order to
attain the exponent stated in Theorem 1 more generally.

As outlined in the proof of Theorem 1, one way of un-
derstanding (16) is by noting that it is the exponent that
one obtains upon applying Gallager-type bounding techniques,
e.g., Markov’s inequality and min{1, α} ≤ minρ∈[0,1] α

ρ,
to the asymptotic multi-letter random coding union bound
expression in (13) for constant-composition random coding.
To our knowledge, the dual-domain analysis of constant-
composition coding was initiated by Poltyrev [12].



It turns out that we can attain an analog of (13) for a cost-
constrained coding scheme in which the input may also be
continuous. In this section, we describe the changes needed in
the code construction and analysis for this purpose. To simplify
the presentation, we still use summations to denote averaging,
but these can directly be replaced by integrals in continuous-
alphabet settings. A disadvantage of cost-constrained coding,
however, is that it is difficult to claim ensemble tightness; we
provide only achievability results.

A. Code construction

Fix an input distribution P and four auxiliary costs
a1(x), . . . , a4(x) (see, for example, [4], [10] for previous uses
of auxiliary costs) Let Pn be the n-fold product of P , let
aj(x) = 1

n

∑n
k=1 aj(xk) be the normalized additive extension

of aj , and define the cost-constrained distribution

PX(x) =
1

µ
Pn(x)1

{∣∣aj(x)− φj
∣∣ ≤ ε, j = 1, 2, 3, 4

}
,

(32)
where Pn(x) =

∏n
k=1 P (xk), φj = EP [aj(X)], ε > 0 is

a parameter, and µ is a normalizing constant. Note that the
auxiliary costs are intentionally introduced to improve the
performance (in terms of the error exponent) of the random-
coding ensemble. One can incorporate a system cost (e.g., a
power constraint) in exactly the same way to ensure a per-
codeword constraint of the form 1

n

∑n
k=1 c(xk) ≤ Γ for some

cost function c and threshold Γ; in such cases (which are
crucial for continuous-alphabet settings), all of the subsequent
analysis remains unchanged as long as P is chosen to satisfy
EP [c(X)] < Γ.

By definition, PX is i.i.d. conditioned on each aj being
close to its mean. Moreover, µ is the probability (under Pn) of
the event in the indicator function of (32), and we immediately
obtain limn→∞ µ = 1 by the law of large numbers.

In the following, Pr(xm) is a shorthand for Pr(Xm = xm),
and similarly for conditional and joint probabilities. With
the definition of PX in place, we recursively generate the
codewords in a similar manner to Section II:

Pr(x1) = PX(x1) (33)

Pr(x2|x1) =
1

µ2(x1)
PX(x2)1

{
d(x1,x2) > ∆

}
(34)

...

Pr(xm|xm−1
1 ) =

1

µm(xm−1
1 )

· PX(xm)1
{
d(xi,xm) > ∆, i < m

}
, (35)

where each µm(·) is a normalizing constant depending on all
of the previous codewords. Note that in the case of continuous
alphabets, each probability Pr(xi |, ·) should be replaced by
a conditional density function f(xi | ·).

B. Codebook Properties

Here we provide two lemmas that characterizes the key
properties of the recursive cost-constrained construction.

Lemma 1. For any x with PX(x) > 0, X ′ ∼ PX , and
sufficiently large n, we have

− 1

n
log Pr(d(x,X ′) ≤ ∆) ≥ Ev(P, d,∆)− δ (36)

under suitable choices of the auxiliary costs a1(·) and a2(·).

Proof: We bound the probability as follows:

Pr
(
d(x,X ′) ≤ ∆

)
=
∑
x′

PX(x′)1
{
d(x,x′) ≤ ∆

}
(37)

≤
∑
x′

PX(x′)e−nr(d(x,x′)−∆) (38)

≤
∑
x′

PX(x′)e−nr(d(x,x′)−∆)en(a1(x′)−φ1+ε) (39)

≤
∑
x′

Pn(x′)e−nr(d(x,x′)−∆)en(a1(x′)−φ1+2ε), (40)

where (38) uses Markov inequality with an arbitrary parameter
r > 0, (39) uses the fact that a1(x′) ≥ φ1−ε by construction,
and (40) holds for sufficiently large n because µ → 1 in
(32). Taking the logarithm and applying Gallager’s single-
letterization argument [14], we get

− log Pr
(
d(x,X ′) ≤ ∆

)
≥ −

n∑
k=1

log
∑
x′

P (x′)e−r(d(xk,x
′)−∆)ea1(x′)−φ1 − 2nε.

(41)

We now choose the second auxiliary cost as a2(x) =
− log

∑
x′ P (x′)er(d(x,x′)−∆)ea1(x′)−φ1 , which ensures that

the leading term on the right-hand side of (41) is equal to
nan2 (x). Hence, substituting the definition φ2 = EP [a2(X)]
and using a2(x) ≥ φ2 − ε by construction, we obtain

− 1

n
log Pr

(
d(x,X ′) ≤ ∆

)
≥ −

∑
x

P (x) log
∑
x′

P (x′)e−r(d(x,x′)−∆)ea1(x′)−φ1 − 3ε.

(42)

The proof is completed by choosing ε = δ
3 , and optimizing r

and a1(·).

Lemma 2. Under the above cost-constrained random coding
scheme with a given δ > 0, if (18) holds then

Pr(xm)
.
= PX(xm), (43)

Pr(xk,xm) ≤ 1

(1− e−nδ)2

· PX(xk)PX(xm)1{d(xk,xm) > ∆}. (44)



Proof: Letting X ′ ∼ PX , we have µm(xm−1
1 ) =

Pr(d(xi,X
′) > ∆, ∀i < m), and the union bound gives

1− µm(xm−1
1 ) ≤

∑
i<m

Pr
(
d(xi,X

′) ≤ ∆
)

(45)

≤ enRn Pr
(
d(xi,X

′) ≤ ∆
)

(46)

≤ e−nδ, (47)

where (47) follows from Lemma 1 and the rate condition (18).
Upper bounding the indicator functions in (33)–(35) by one

gives Pr(xm)
.
≤ PX(xm), thus proving one direction of the

dot-equality in the first property of the lemma. The other
direction requires more effort, and is deferred to [13].

For the second property of the lemma, we use (35) and the
fact that µm(xm−1

1 ) ≥ 1− e−nδ to obtain

Pr(xk,xm)

=
∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) Pr(xk|xk−1

1 )

· Pr(xm−1
k+1 |x

k
1) Pr(xm|xm−1

1 ) (48)

≤
∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) · PX(xk)

1− e−nδ
· Pr(xm−1

k+1 |x
k
1)

· PX(xm)1{d(xk,xm) > ∆}
1− e−nδ

(49)

=
1

(1− e−nδ)2
PX(xk)PX(xm)1{d(xk,xm) > ∆}. (50)

C. Error Probability and Exponent

For a fixed transmitted codeword xm and received sequence
y, we write that

Pr

(
Mn⋃
i=1
i 6=m

Ei
∣∣∣∣Xm = xm,Y = y

)

≤
Mn∑
i=1
i 6=m

Pr
(
Ei
∣∣Xm = xm,Y = y

)
(51)

=

Mn∑
i=1
i 6=m

∑
xi : q(xi,y)≥q(xm,y)

d(xi,xm)>∆

Pr(xi|xm,y) (52)

=

Mn∑
i=1
i 6=m

∑
xi : q(xi,y)≥q(xm,y)

d(xi,xm)>∆

Pr(xi|xm) (53)

=

Mn∑
i=1
i 6=m

∑
xi : q(xi,y)≥q(xm,y)

d(xi,xm)>∆

Pr(xi,xm)

Pr(xm)
(54)

.
≤ Mn − 1

(1− e−nδ)2

∑
x̄ : q(x̄,y)≥q(xm,y)

d(x̄,xm)≥∆

PX(x̄) (55)

where (53) follows since Xi − Xm − Y forms a Markov
chain, and (55) follows from Lemma 2. Taking the minimum

of this union bound and one, and averaging over all choices of
transmitted codeword xm and received sequence y, we obtain
an asymptotic upper bound that matches (13):

P̄ (n)
e

.
≤
∑
x,y

PX(x)Wn(y|x)

·min

{
1, (Mn − 1)

∑
x′ : q(x′,y)≥q(x,y)

d(x′,x)≥∆

PX(x′)

}
. (56)

Once (56) is established, the steps in deriving (16) are
standard. Such an analysis requires two additional auxiliary
costs, and these are given by a3 and a4 in (32). In particular,
we set a3(x) = a(x) in (16) and

a4(x) = − log
∑
y

W (y|x)

·
(∑

x′ P (x′)esq(x
′,y)ea(x′)er(d(x,x′)−∆)

esq(x,y)ea(x)

)ρ
. (57)

In fact, removing the constraint d(x,x′) > ∆ from the
pairwise error probability term in (56) recovers the stan-
dard random-coding union bound, which was already used
in [10] to establish the exponent in (16) without the term
er(d(x,x′)−∆). Hence, the change in the analysis compared to
[10] only amounts to an application of 1{d(x,x′) ≥ ∆} ≤
enr(d(x,x′)−∆). Due to this similarity, the details are omitted.
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