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Abstract—We derive a single-letter upper bound to the
mismatched-decoding capacity for discrete memoryless channels.
The bound is expressed as the mutual information of a transfor-
mation of the channel, such that a maximum-likelihood decoding
error on the translated channel implies a mismatched-decoding
error in the original channel. We show this bound recovers the
binary-input binary-output mismatch capacity which is known
to either be the channel capacity or zero. In addition, a strong
converse is shown for this upper bound: if the rate exceeds the
upper-bound, the probability of error tends to 1 exponentially
when the block-length tends to infinity.

I. INTRODUCTION AND PRELIMINARIES

We consider reliable communication over a discrete mem-
oryless channel (DMC) W defined over input and output
alphabets X = {1, 2, . . . , J} and Y = {1, 2, . . . ,K}. We
denote the channel transition probability by W (k|j) and
define W ∈ R

J×K as the matrix defined by the channel
W (j, k) = W (k|j). A codebook Cn is defined as a set of
M sequences Cn =

{
x(1),x(2), . . . ,x(M)

}
, where x(m) =(

x1(m), x2(m), . . . , xn(m)
)
∈ Xn, for m ∈ {1, 2, . . . ,M}.

A message m ∈ {1, 2, . . . ,M} is chosen equiprobably and
x(m) is sent over the channel. The channel produces a
noisy observation y = (y1, y2, . . . , yn) ∈ Yn according to
Wn(y|x) =

∏n
i=1W (yi|xi).

Upon observing y ∈ Yn the decoder produces an es-
timate of the transmitted message m̂ ∈ {1, 2, . . . ,M}.
The average and maximal error probabilities are respectively
defined as Pe(Cn) = P[m̂ 6= m] and Pe,max(Cn) =
maxi∈{1,2,...,M} P[m̂ 6= m|m = i]. The decoder that mini-
mizes the error probability is the maximum-likelihood (ML)
decoder, that produces the message estimate m̂ according to

m̂ = arg max
i∈{1,2,...,M}

Wn
(
y|x(i)

)
. (1)

Rate R > 0 is achievable if for any ε > 0 there ex-
ists a sequence of length-n codebooks {Cn}∞n=1 such that
|Cn| ≥ 2n(R−ε), and lim infn→∞ Pe(Cn) = 0. The capacity
of W , denoted by C(W ) or C(W ), is defined as the largest
achievable rate.

In certain situations, it is not possible to use ML decoding
and instead, the decoder produces the message estimate m̂ as

m̂ = arg max
i∈{1,2,...,M}

d
(
x(i),y

)
, (2)
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where d
(
x(i),y

)
=
∑n
`=1 d

(
x`(i), y`

)
and d : X × Y → R

is the decoding metric. We will refer to this decoder as d-
decoder. When d(x, y) = logW (y|x), the decoder is ML,
otherwise, for a general decoding metric d the decoder is
said to be mismatched [1]–[4]. We define the metric matrix
D ∈ RJ×K with entries D(j, k) = d(j, k). The average and
maximal error probabilities of codebook Cn under d-decoding
are respectively denoted by P de (Cn) and P de,max(Cn). The
mismatch capacity Cd(W ) or Cd(W ) is defined as supremum
of all achievable rates with d-decoding.

Deriving a single-letter expression for the mismatch capac-
ity is a long-standing open problem. Multiple achievability
results have been reported in the literature [1]–[4] (see also
[5] for an account of more recent progress). The only single-
letter converse was [6], where it was claimed that for binary-
input DMCs, the mismatch capacity was the achievable rate
derived in [1], [3]. Reference [7] provided a counterexample to
this converse invalidating its claim. Multiletter converse results
were proposed in [8]. In particular, for DMCs, [8] shows that
for rational decoding metrics, the probability of error cannot
decay faster than O(n−1) for rates above the achievable rate
in [1], [3].

In this paper, we introduce a new single-letter upper bound
to the mismatch capacity based on transforming the channel
in such a way that a ML error on the transformed channel
implies a mismatched-decoding error in the original channel.

A. Notation
The method of types [9] will be used extensively. We recall

some of the basic definitions and introduce some notation. The
type of a sequence x = (x1, x2, . . . , xn) ∈ Xn is a column
vector representing its empirical distribution, i.e., p̂x(j) =
1
n

∑n
i=1 1{xi = j}. The set of all types of Xn is denoted by

Pn(X ). For pX ∈ Pn(X ), the type class T n(pX) is set of all
sequences in Xn with type pX , T n(pX) = {x ∈ Xn | p̂x =
pX}.

The joint type of sequences x = (x1, x2, . . . , xn) ∈ Xn and
y = (y1, y2, . . . , yn) ∈ Yn is defined as a matrix representing
their empirical distribution p̂xy(j, k) = 1

n

∑n
i=1 1{xi =

j, yi = k}. The conditional type of y given x is the matrix

p̂y|x(j, k) =

{
p̂xy(j,k)

p̂x(j) p̂x(j) > 0

W (k|j) otherwise.
(3)

The set of all conditional types on Yn given Xn is de-
noted by Pn(Y|X ). For pY |X ∈ Pn(Y|X ) and sequence



x ∈ T n(pX), the conditional type class T nx (pY |X) is defined
as T nx (pY |X) = {y ∈ Yn | p̂y|x = pY |X}.

Similarly, we can define the joint type of x,y, ŷ, as the
empirical distribution of the triplet. For j ∈ X and k1, k2 ∈ Y ,

p̂xyŷ(j, k1, k2) =
1

n

n∑
i=1

1{xi = j, yi = k1, ŷi = k2}. (4)

We define the joint conditional type of y, ŷ given x ∈ T n(pX)
as

p̂yŷ|x(j, k1, k2) =

{
p̂xyŷ(j,k1,k2)

p̂x(j) p̂x(j) > 0

W (k1|j)1{k1 = k2} otherwise.
(5)

The set of all joint conditional types is denoted by Pn(YŶ|X ).
Additionally, for pY Ŷ |X ∈ Pn(YŶ|X ) we define:

T nyx(pY Ŷ |X) = {ŷ ∈ Yn | p̂yŷ|x = pY Ŷ |X} (6)

The l dimensional simplex is defined as ∆l =
{
x ∈ Rl |xi ≥

0,
∑l
i=1 xi = 1

}
. The mutual information I(V ;p) between

two random variables defined by a conditional probability
mass matrix V ∈ RJ×K and a marginal p ∈ ∆J is defined as

I(V ;p) =

J∑
j=1

K∑
k=1

p(j)V (j, k) log
V (j, k)∑J

j′=1 p(j′)V (j′, k)
. (7)

Definition 1: Let PY Ŷ |X be a joint conditional distri-

bution and define the set S(k1, k2)
∆
=

{
i ∈ X |i =

arg maxi′∈X D(i′, k2) − D(i′, k1)
}

. We say that PY Ŷ |X is
a maximal joint conditional distribution if for all (j, k1, k2) ∈
X×Y×Y , PY Ŷ |X(j, k1, k2) = 0 if j /∈ S(k1, k2). Moreover,
if p̂Y Ŷ |X ∈ Pn(YŶ|X ) satisfies the same condition, we call
it a maximal joint conditional type.

For a given decoding metric matrix D, we define the set of
maximal joint distributions to be Mmax(D).

The above definition will become helpful when relating
decoding errors in channel PY |X = W under d-decoding to
errors in channel PŶ |X under ML decoding.

Definition 2: Let Cn = {x(1), · · · ,x(M)} and m be the
transmitted message. We say that the decoder makes a type
conflict error for a given y ∈ Yn if there is at least one
codeword x(i) 6= x(m) such that that p̂y|x(i) = p̂y|x(m).

If there is a type conflict error, every α-decoder makes an
error, including ML and d-decoding; the converse is not true.
With the same method developed in the paper, it can be shown
that the type conflict error probability over channel W goes to
1 exponentially for R > C(W ); even with a genie-aided ML
decoder knowing the exact conditional type p̂y|x(m), the error
probability would still tend to 1 exponentially above capacity.

II. MAIN RESULT

In this section, we introduce the main result and discuss
some of its properties.

Theorem 1: Let W ,D be channel and decoding metric
matrices, respectively. We define R̄d(W ) as follows

R̄d(W ) = max
p∈∆J

min
PY Ŷ |X∈Mmax(D)

PY |X=W

I(PŶ |X ;p). (8)

If R > R̄d(W ), ∃N0 ∈ N and Edsc(R) > 0 such that for
n > N0, the error probability of codebook Cn of length n and
M ≥ 2nR codewords satisfies P de,max(Cn) ≥ 1− 2−nE

d
sc(R).

Proof: The proof is developed over the next sections of
the paper. The complete details can be found in [10]. The main
idea behind proof of Theorem 1 is that of lower-bounding
the error probability of a codebook Cn with d-decoding over
channel W by that of the same codebook over a different
channel V with ML decoding, with V = PŶ |X as per the
theorem statement. We will be able to construct a graph G
in the output space such that if ML decoding over V makes
a type conflict error for some y ∈ Yn, then, the d-decoder
makes an error for some ŷ ∈ Yn connected to y in G.

Theorem 1 implies that Cd(W ) ≤ R̄d(W ). Setting Y such
that PY |X = W and Ŷ = Y makes PY Y |X a maximal
joint conditional distribution (Def. 1). As a result, Cd(W ) ≤
C(PY |X) = C(W ). In addition, it is implied in Theorem 1
that for any PY Ŷ |X ∈Mmax(D) such that PY |X = W ,

R̄d(W ) ≤ C(PŶ |X). (9)

This result is derived by using the min-max inequality:

R̄d(W ) = max
p∈∆J

min
PY Ŷ |X∈Mmax(D)

PY |X=W

I(PŶ |X ;p) (10)

≤ min
PY Ŷ |X∈Mmax(D)

PY |X=W

max
p∈∆J

I(PŶ |X ;p) (11)

= min
PY Ŷ |X∈Mmax(D)

PY |X=W

C(PŶ |X). (12)

We thus get Cd(W ) ≤ C(PŶ |X). Theorem 1 characterizes
a family of bounds to the mismatch capacity, not only the
minimum in (8)). The above property is helpful to construct
bounds without necessarily performing the optimization. In
addition, it can be shown that the optimization problems in
(10) and (12) are convex (see [10] for details).

In the following, we discuss the applicability of our upper
bound to two relevant cases. First, we show that our bound
recovers known results on binary-input binary-output channels.
Next, we show that our bound makes a non-trivial improve-
ment over the channel-metric combination used in [7] to state
the counterexample to Balakirsky’s result [6].

Example 1 (Binary-input binary-output channels): Suppose
that the channel and decoding metric matrices of binary-input
binary-output channels are given by

W =

[
a b
c d

]
and D =

[
â b̂

ĉ d̂

]
. (13)

Without loss of generality we assume a+d ≥ b+ c. We show
the following known result [2]: if â+d̂ < b̂+ ĉ then R̄d(W ) =
0. On the other hand, if â+ d̂ ≥ b̂+ ĉ, then R̄d(W ) = C(W ).

Case 1: â+ d̂ < b̂+ ĉ
We choose the joint conditional distribution in Table I.
It can be checked that indeed it is a valid joint conditional

distribution for 0 ≤ r1 ≤ a and 0 ≤ r2 ≤ d, and that



TABLE I
JOINT CONDITIONAL DISTRIBUTION PY Ŷ |X FOR EXAMPLE 1

(j, k1, k2) PY Ŷ |X (j, k1, k2) PY Ŷ |X

(1, 1, 1) a− r1 (2, 2, 2) d− r2
(1, 1, 2) r1 (2, 2, 1) r2
(1, 2, 2) b (2, 1, 1) c
(1, 2, 1) 0 (2, 1, 2) 0∑

k2
PY Ŷ |X(j, k1, k2) = PY |X(j, k1) = W (k1|j). In order

to check its maximality, we first notice that for k1 = k2 we
always have that D(i, k2) − D(i, k1) = 0 for all i ∈ X ,
implying that S(k1, k2) = {1, 2}. Thus, since every j ∈ X
is such that j ∈ S(k1, k2), the corresponding four entries can
be nonzero. As for entry (1, 1, 2) (resp. (2, 2, 1)), using the
assumption â + d̂ < b̂ + ĉ we have that S(k1, k2) = {1}
(resp . S(k1, k2) = {2}), and thus they both can be nonzero.
Since by assumption â + d̂ < b̂ + ĉ, it can be checked
that for entry (2, 1, 2), S(k1, k2) = {1}, and thus we must
have PY Ŷ |X(j, k1, k2) = 0. Similarly for entry (1, 2, 1),
S(k1, k2) = {2}. Marginalizing the above over Y gives

PŶ |X =

[
a− r1 b+ r1

c+ r2 d− r2

]
. (14)

Without loss of generality assume that a is the largest element
of W . By setting r1 = r2 = a−c

2 = d−b
2 we obtain

PŶ |X =

[
a+c

2
b+d

2
a+c

2
b+d

2

]
. (15)

Since C(PŶ |X) = 0, we have that Cd(W ) ≤ 0.
Case 2: â+ ê ≥ b̂+ ĉ
In [3] it is shown that the LM achievable rate is equal to

C(W ). Therefore, our upper-bound also matches the achiev-
able rate (see discussion before (9).)

Example 2: In this example we consider the channel and
metric studied in [7] to show a counterexample to [6]

W =

[
0.97 0.03 0
0.1 0.1 0.8

]
and D =

[
1 1 1
1 0.5 1.36

]
. (16)

We choose the maximal PY Ŷ |X in Table II such that
PY |X = W . By marginalizing over Y we find that

PŶ |X =

[
0.5 0.5 0
0.1 0.1 0.8

]
. (17)

Using the above we have that C(PŶ |X) = 0.61 bits/use, while
the rate achieved in [7] is approximately 0.1991 bits/use; the
capacity is C(W ) = 0.71 bits/use.

TABLE II
NONZERO ENTRIES OF PY Ŷ |X FOR EXAMPLE 2

(j, k1, k2) PY Ŷ |X (j, k1, k2) PY Ŷ |X

(1, 1, 1) 0.5 (2, 1, 1) 0.1
(1, 1, 2) 0.47 (2, 2, 2) 0.1
(1, 2, 2) 0.03 (2, 3, 3) 0.8

In the above example, if we change d(2, 2) from 0.5 to
1, the same PY Ŷ |X in Table II remains maximal and gives
C(PŶ |X) = 0.61 bits/use, matching the LM rate [3].

III. GRAPH CONSTRUCTION

In this section, we outline how to construct a graph between
different conditional joint types.

Definition 3: Let G = {V1,V2, E} be a regular bipartite
graph with vertex sets V1 and V2, edge set E and degrees r1

on vertex set V1 and r2 on vertex set V2. For B ∈ V2 we
define the set of vertices in V1 connected to B as

Ψ21(B) =
{
v ∈ V1 | ∃b ∈ B; (b, v) ∈ E

}
. (18)

Lemma 1: Suppose G = {V1,V2, E} is a regular bipartite
graph with degrees r1 > 0, r2 > 0. Then, for any B ⊂ V2 we
have that

|Ψ21(B)|
|V1|

≥ |B|
|V2|

. (19)

Our aim is to construct a graph between different two
conditional type classes, in order to be able to relate type
conflict errors of codebook Cn over channel V and errors
of Cn over channel W under d-decoding. Suppose pY Ŷ |X ∈
Pn(YŶ|X ) is an arbitrary joint conditional type. In this section
we construct a graph between T nx (pY |X) and T nx (pŶ |X).

Definition 4: The graph

Gx(pY Ŷ |X) =
{
T nx (pY |X), T nx (pŶ |X), E

}
(20)

has the following edge set:

E =
{

(y, ŷ) | p̂yŷ|x = pY Ŷ |X
}
. (21)

Lemma 2: The graph Gx(pY Ŷ |X) is regular.
Proof: For a given x ∈ T n(pX), |T nx (pY |X)| is in-

dependent of the chosen x ∈ T n(pX), but dependent on
pX . Similarly, for a given y ∈ T nx (pY |X), |T nyx(pY Ŷ |X)| is
independent of the chosen x,y, but dependent on the joint type
pXY . Therefore, the total number of edges that are connected
to any given y ∈ T nx (pY |X) is equal to |T nyx(pY Ŷ |X)|
(see (6)). This proves the left-regularity, i.e., for vertex set
T nx (pY |X). The same argument holds for ŷ ∈ T nx (pŶ |X) and
therefore the graph is regular.

As we show next, the combination of Lemmas 1 and 2 will
prove to be helpful. Assume for a codeword x we find a set
of type conflict errors B ⊂ T nx (pŶ |X). Then, the probability
of an element ŷ ∈ B being the output of the channel when
conditional type pŶ |X happens, is

P
[
ŷ ∈ B | ŷ ∈ T nx (pŶ |X),x is sent

]
=

|B|
|T nx (pŶ |X)|

(22)

where equality holds because all members of T nx (pŶ |X) are
equally likely to appear at the output when x is sent. Now if
the graph Gx(pY Ŷ |X) is connecting a type conflict error to a
d-decoder error, by Lemma 1 we show the existence of a set
Ψ21(B) ⊂ T nx (pY |X) satisfying

|Ψ21(B)|
|T nx (pY |X)|

≥ |B|
|T nx (pŶ |X)|

. (23)



Now by the same argument as in (22) we have

P
[
y ∈ Ψ21(B) |y ∈ T nx (pY |X),x is sent

]
=
|Ψ21(B)|
|T nx (pY |X)|

.

(24)

Combining (24) and (23) we get

P[y ∈ Ψ21(B) |y ∈ T nx (pY |X),x is sent]

≥ P[ŷ ∈ B | ŷ ∈ T nx (pŶ |X),x is sent]. (25)

As a result, we get a lower bound on the probability of
error of d-decoder. In the next section, we prove that a graph
constructed based on a maximal joint conditional type has the
property of connecting type conflict errors to d-decoder errors.

IV. CONNECTING ERRORS

We next introduce a property of maximal joint conditional
types and use it to relate type conflict and d-decoding errors.

Lemma 3: Let pX ∈ Pn(X ), x, x̂ ∈ T n(pX), and pY Ŷ |X
be a maximal joint conditional type. If ŷ ∈ T nx (pŶ |X) ∩
T nx̂ (pŶ |X) is connected to y ∈ T nx (pY |X) in Gx(pY Ŷ |X)
then,

d(x,y) ≤ d(x̂,y). (26)

Proof: From the definition of type, for any x̄ ∈ Xn,

p̂yŷ(k1, k2) =
∑
j

p̂x̄yŷ(j, k1, k2). (27)

Now, if we use the above equation once by setting x̄ = x and
once by setting x̄ = x̂ we get∑

j

p̂xyŷ(j, k1, k2) =
∑
j

p̂x̂yŷ(j, k1, k2). (28)

We continue by bounding d(x̂, ŷ)− d(x̂,y) as

d(x̂, ŷ)− d(x̂,y)

= n
∑
j,k1,k2

p̂x̂yŷ(j, k1, k2)
(
D(j, k2)−D(j, k1)

)
(29)

≤ n
∑
k1,k2

(∑
j

p̂x̂yŷ(j, k1, k2)
)

max
j

(
D(j, k2)−D(j, k1)

)
(30)

= n
∑
k1,k2

(∑
j

p̂xyŷ(j, k1, k2)
)

max
j

(
D(j, k2)−D(j, k1)

)
(31)

= n
∑
k1,k2

∑
j

p̂xyŷ(j, k1, k2)
(
D(j, k2)−D(j, k1)

)
(32)

= d(x, ŷ)− d(x,y) (33)

where (29) follows from the definition of metric and type,
since for a joint type p̂xy we have that d(x,y) =
n
∑
j,k p̂xy(j, k)D(j, k), (30) follows from upper-bounding

(D(j, k2) − D(j, k1)) by maxj(D(j, k2) − D(j, k1)), (31)
follows from (28), (32) follows from the maximality of pY Ŷ |X
(see Definition (1)) and graph construction Gx(pY Ŷ |X) (see
Definition (4)) and (33) follows from the metric definition.

Now, using the fact that ŷ ∈ T nx (pŶ |X) ∩ T nx̂ (pŶ |X) we
get a type conflict error, i.e., p̂ŷ|x = p̂ŷ|x̂. Thus, d(x, ŷ) =
d(x̂, ŷ). Finally, combining with (33) we get the desired result
d(x,y) ≤ d(x̂,y), i.e., a d-decoding error.

The condition of the Lemma says that if ŷ ∈ T nx (pŶ |X) ∩
T nx̂ (pŶ |X) and if x, x̂ ∈ Cn, by observing ŷ when x is sent,
there would be a type conflict error. Moreover, if such a ŷ
is connected to y in Gx(pY Ŷ |X), then, based on (26), by
observing y when x is sent, the d-decoder makes an error.

In the next theorem, we show that if PY Ŷ |X is a maximal
joint conditional distribution and M is large enough, then we
will find many type conflict errors over conditional types close
to V = PŶ |X . These are then linked to d-decoding errors over
channel W = PY |X . The corresponding error probability is
lower bounded using (25).

Definition 5: Let W be a channel and pX an input type. We
define the channel type neighborhood as the set of conditional
types that are close to W ,

Nε,pX (W ) =
{
pY |X ∈ PY|X | |W − pY |X |∞ ≤ ε

}
. (34)

Theorem 2: Let Cn be a codebook with M codewords
and composition pX with pmin

∆
= minj,pX(j)>0 pX(j). Let

PY Ŷ |X be a maximal joint conditional distribution such that
and PY |X = W,PŶ |X = V . Let ε ≥ 2|Y|

npmin
and suppose

Nε,pX (V ) = {V 1,V 2 · · · ,V t}. Define qi = pTXV i. If for
some integer a ≥ 2, for every x ∈ T n(pX) and for all
i ∈ {1, . . . , t} we have that

M |T nx (V i)| ≥ a2(n+ 1)JK−1 max
1≤i′≤t

|T n(qi
′
)|, (35)

then, there exists a codeword x(m) ∈ Cn such that

P

[
m̂ 6= m

∣∣ p̂y|x(m) ∈ N ε
2 ,pX

(W ),x(m) is sent
]
> 1− 1

a
.

(36)

The above theorem (see [10] for details of the proof) gives
us a sphere-packing type of bound. From the method of types
approximations we know that |T nx (V i)| ≈ 2nH(V i|pX) ≈
2nH(V |pX) and that |T n(qi)| ≈ 2nH(qi) ≈ 2nH(pTXV ).
Therefore, the inequality (35) approximately implies that

2nR2nH(V |pX) > 2nH(pTXV ), (37)

or equivalently, R > I(V ;pX). The result of this theorem
states the error probability of one of the messages is large
under d-decoding.

The following result enables us to show p̂y|x is close to
channel W for large block-lengths. This is necessary because
the kind of result we have in (36).

Lemma 4: Let x ∈ T n(pX) be a codeword and y the output
when x is sent. Then, ∀γ > 0 we have:

P
[
|W − p̂y|x|∞ ≤ γ |x is sent

]
> 1− |X ||Y|e−2npminγ

2

.

(38)

Definition 6: Let Cn be a codebook. We say that Ĉn̂ is a
δ-reduction of Cn if there exist a sub-codebook Ĉn of Cn of



composition pX that Ĉn̂ is obtained by eliminating all symbols
in the set I = {j ∈ X |pX(j) < δ} from Ĉn.

Lemma 5: Let R > 0 be a rate, then for any ε > 0 there
exists a δ > 0 independent of n such that for any codebook
Cn of rate R there exists a δ-reduction constant composition
codebook Ĉn̂ with the following properties:

n̂ ≥
(
1− (|X | − 1)δ

)
n (39)

P de,max(Ĉn̂) ≤ P de,max(Cn) (40)
1

n̂
log(|Ĉn̂|) ≥

1

n
log(|Cn|)− ε+O

(
log(n)

n

)
. (41)

V. PROOF OF THE MAIN THEOREM

In this part we prove the final part of Theorem 1 using
the material developed in the previous sections. Assume R =
R̄d(W )+σ for some σ > 0. Now, choose ε > 0 small enough
such that if |V −V |∞ ≤ ε for conditional distribution V ,V ,
then for any distribution p on X we have that

|H(V |p)−H(V |p)| < σ

4
(42)

|H(pTV )−H(pTV )| < σ

4
. (43)

From Lemma 5 with ε = σ
4 , for any codebook Cn with

M ≥ 2nR codewords, there exists a δ-reduction constant
composition codebook Ĉn̂ of length n̂ and type p̂n̂ such that
(39)–(41) are satisfied. Since the required δ to satisfy the
above inequalities is independent of n, then choose N0 large
enough such that ε ≥ 2|Y|

N0(1−(|X |−1)δ)δ . Set n > N0. Now
choose a maximal joint conditional distribution PY Ŷ |X such
that I(PŶ |X ; p̂n̂) ≤ R̄d(W ) and let V = PŶ |X . Such a
minimizing PY Ŷ |X always exists because the domain of the
minimization in (8) Mmax(D) ∩ {PY Ŷ |X |PY |X = W} is a
compact set and the function I(V ;p) is continuous. Now, for
any conditional distributions V̂ such that |V̂ − V |∞ ≤ ε∣∣ max

V ∈Nε,p̂n (V )
H(p̂Tn̂V )−H(V̂ |p̂n̂)

∣∣ (44)

≤ |H(p̂Tn̂V )−H(V |p̂n̂)|+ σ

2
(45)

= I(V ; p̂n̂) +
σ

2
(46)

where (45) follows from (42) and (43).
Now suppose Nε,p̂n̂(V ) = {V 1,V 2, · · · ,V t} and qi =

p̂Tn̂V
i. Now for any 1 ≤ i ≤ t

1

n̂
log

max1≤s≤t |T n̂(qs)|
|T n̂x (V i)|

=
1

n̂
log

2n̂
(
H(qi

′
)+O
(

log(n̂)
n̂

))
2
n̂
(
H(V i|p̂n̂)+O

(
log(n̂)
n̂

))
(47)

≤ I(V ; p̂n̂) +
σ

2
+O

(
log(n̂)

n̂

)
(48)

where i′ = arg max1≤s≤t |T n̂(qs)| and (48) follows form
(46). Now, for n > N0 we have from (41) with ε = σ

4 , (48)
and the condition I(PŶ |X ; p̂n̂) ≤ R̄d(W ) that

|Ĉn̂|
|T n̂x (V i)|

max1≤s≤t |T n̂(qs)|
≥ 2

n̂
(
R−σ4−I(V ;p̂n̂)−σ2 +O

(
log(n̂)
n̂

))
.

(49)

As a result,

|Ĉn̂||T n̂x (V i)| ≥ 2
n̂
(
σ
4 +O

(
log(n̂)
n̂

))
max

1≤s≤t
|T n̂(qs)|. (50)

Setting a =
⌊

2
1
2
n̂

(
σ
4

+O

(
log(n̂)
n̂

))
(n̂+1)

1
2
(JK−1)

⌋
validates the conditions

of Theorem 2. As a result, there exists x(m) ∈ Ĉn̂ such that

P

[
m̂ 6= m|p̂y|x(m) ∈ N ε

2 ,p̂n̂
,x(m) is sent

]
> 1− 1

a
. (51)

Choosing N1 such that if n > N1 is large enough, we bound

a >
1

2
· 2

1
2 n̂
(
σ
4 +O

(
log(n̂)
n̂

))
(n̂+ 1)

1
2 (JK−1)

(52)

≥ 2
1
2 n̂
(
σ
4 +O

(
log(n̂)
n̂

)
−(JK−1)

log(n̂+1)
n̂ − log(2)

n̂

)
(53)

Finally, we write,

P de,max(Cn) ≥ P de,max(Ĉn̂) (54)

≥ P[m̂ 6= m |x(m) is sent] (55)
≥ P[m̂ 6= m | p̂y|x(m) ∈ N ε

2 ,p̂n̂
(W ),x(m) is sent]

· P[p̂y|x(m) ∈ N ε
2 ,p̂n̂

(W ),x(m) is sent] (56)

≥
(

1− 1

a

)(
1− |X ||Y|2−2n̂δ ε

2

4

)
(57)

≥ 1− 2−n̂E
d
sc(R) (58)

where Edsc(R)
∆
= min

{
δε2

2 − log |X ||Y|n̂ , 1
2

(
σ
4 +O

(
log(n̂)
n̂

))}
.

Setting n larger than max{N0, N1} we get the desired result.
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