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Abstract—This paper studies the random-coding exponent of
joint source-channel coding for the multiple-access channel with
correlated sources. For each user, by defining a threshold, the
messages of each source are partitioned into two classes. The
achievable exponent for correlated sources with two message-
dependent input distributions for each user is determined and
shown to be larger than that achieved using only one input
distribution for each user. A system of equations is presented
to determine the optimal thresholds maximizing the achievable
exponent. The obtained exponent is compared with the one
derived for the MAC with independent sources.

I. INTRODUCTION

Some studies show that for point-to-point communication,
using a partition of the message set into source-type classes
and assigning one input distribution for each class leads to a
larger exponent than having codewords drawn from a single
product distribution [1], [2]. Recent studies generalize this
result to the multiple-access channel (MAC) [3]. In [4], the
exponent with message-dependent random-coding across two
classes is found to beat independent identically distributed (iid)
random-coding for a two-user MAC with independent sources.

For a two-user MAC with correlated sources, [5] studied a
message-dependent ensemble where codewords are generated
by a symbol-wise conditional probability distribution that de-
pends on the instantaneous source symbol and on the empirical
distribution of the source sequence. The derived exponent
were given as a multidimensional optimization problem over
distributions i.e., primal domain [5]. In this paper, we apply
Lagrange duality theory to the results in [5] and find the
exponent in the dual domain, i.e. as a lower dimensional
problem over parameters in terms of Gallager functions. We
show that the obtained exponent is larger than that achieved
using only one input distribution for each user.

A. System Model, Definitions and Notations

Using the convention that scalar random variables are de-
noted by capital letters, we consider two correlated sources
characterized by PU1U2 ∈ PU1U2 on the alphabet U1 × U2,
where U1 and U2 are the respective source alphabets, and
PU1U2

is the set of all possible distributions of (U1, U2). In
addition, the set of all empirical distributions on a joint vector
in Un1 × Un2 (i.e. types) is denoted by PnU1U2

.
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Encoder ν = 1, 2 maps a length-n source message uν
to the length-n codeword xν(uν) drawn from the codebook
Cν = {xν(uν);uν ∈ Unν }. To simplify some expressions, we
use underline to represent a pair of quantities for users 1 and
2, such as

¯
u = (u1, u2),

¯
u = (u1,u2) or Ū = U1 × U2.

Both users send their respective codewords over discrete
memoryless MAC with transition probability W (y|

¯
x), input

alphabets X1 and X2, and output alphabet Y . By receiving
the sequence y, the decoder estimates the transmitted pair
messages

¯
u based on the maximum a posteriori criterion:

ˆ
¯
u = arg max

¯
u∈

¯
Un

Pn
¯
U (

¯
u)Wn

(
y |x1(u1),x2(u2)

)
. (1)

An error occurs if the decoded messages ˆ
¯
u differ from

the transmitted
¯
u; the error probability for a given pair of

codebooks is thus given by

εn(C1, C2) , P
[

ˆ
¯
U 6=

¯
U
]
. (2)

The error event ˆ
¯
U 6=

¯
U can be split into three disjoint types

of error events, namely (Û1,U2) 6= (U1,U2), (U1, Û2) 6=
(U1,U2) and (Û1, Û2) 6= (U1,U2). These events are respec-
tively labeled by τ , with τ ∈ {{1}, {2}, {1, 2}}. To further
simplify some expressions, we adopt the following convention,

uτ =


∅ τ = ∅
u1 τ = {1}
u2 τ = {2}

¯
u τ = {1, 2}

, (3)

for the variable uν , and similarly for the probability distribu-
tion Qν and the set Xν . We denote the complement of ν (or
τ ) in the set {1, 2} (or the subsets of {1, 2}) by νc (or τ c),
e.g. τ c = {2} for τ = {1} and τ c = ∅ for τ = {1, 2}.

The pair of sources (U1, U2) is transmissible over the
channel if there exists a sequence of codebooks (C1

n, C2
n) such

that limn→∞ εn(C1
n, C2

n) = 0. An exponent E(P
¯
U ,W ) is

achievable if there exists a sequence of codebooks such that

lim inf
n→∞

− 1

n
log
(
εn(C1

n, C2
n)
)
≥ E(P

¯
U ,W ). (4)

II. JOINT SOURCE-CHANNEL RANDOM-CODING

For point-to-point transmission of a discrete memoryless
source PU over a discrete memoryless channel W , the joint
source-channel iid random-coding with input distribution Q is
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expressed in terms of Gallager source and channel functions,
respectively given by [6]

Es(ρ, PU ) = (1 + ρ) log

(∑
u

PU (u)
1

1+ρ

)
, (5)

E0(ρ,Q,W ) = − log
∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ

. (6)

For a two-user MAC with two correlated sources P
¯
U ,

transition probability W and given input distributions Q1 and
Q2, the i.i.d random-coding exponent is given by

Ei.i.d(P
¯
U ,W ) = min

τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

E0(ρ,Qτ ,WQτc)− Es,τ (ρ, P
¯
U ), (7)

where E0(·) is given by (6), and Es,τ (·) is the generalized
Gallager’s source functions for error type τ where

Es,τ (ρ, P
¯
U ) = log

∑
uτc

(∑
uτ

P
¯
U (

¯
u)

1
1+ρ

)1+ρ

. (8)

Another possible strategy, known as message-dependent
random-coding [4], is to assign source messages to disjoint
classes, and to use codewords generated according to a distri-
bution that depends on the class index. The primal form of the
message-dependent exponent for the MAC with two correlated
sources has been given by [5, Eq. (9)] where codewords
are generated according to conditional input distributions that
depend on the composition of the source message.

For user ν = 1, 2, let the set of input distributions
{
Qν,P̂Uν

}
be given. By applying the same approach in [5], the achievable
exponent of [5, Eq. (9)] for statistically independent messages
and codewords is simplified to (9) at the bottom of the page,
where [x]+ = max{0, x}. In order to find the dual-domain
version of (9), we firstly analyze the source-exponent terms.

A. Source exponent function

In [4], for each user, a fixed threshold was considered to
partition the source-message set into two classes, i.e.,

A1
ν(γν) =

{
uν ∈ Unν : PnUν (uν) ≥ γnν

}
, (10)

A2
ν(γν) =

{
uν ∈ Unν : PnUν (uν) < γnν

}
. (11)

Here, we use the same idea in the primal domain. Exploiting
that the source messages are encoded independently for each
user in distributed source coding [7], the following Lemma
gives the asymptotic form of (10) and (11) for correlated
sources.

Lemma 1: Let P
¯
U be a probability distribution of two

correlated sources and PUν be the marginal distribution for
source ν = 1, 2. Given partitioning thresholds γν ∈ [0, 1],
the set of probability distributions P

¯
U can be partitioned into

disjoint classes B1
ν(γν) and B2

ν(γν) where

B1
ν(γν) =

P̂¯
U ∈ P

¯
U :
∑

¯
u

P̂
¯
U (

¯
u) logPUν (uν) ≥ log(γν)

 ,

(12)

B2
ν(γν) =

P̂¯
U ∈ P

¯
U :
∑

¯
u

P̂
¯
U (

¯
u) logPUν (uν) < log(γν)

 .

(13)

Proof: See Appendix A in [8].
Roughly speaking, B1

ν(γν) in (12), can be interpreted as the
asymptotic limit of the union of sequences (u1,u2) with type
P̂n

¯
U , where as long as the marginal probability PnUν (uν) is not

less than the threshold γnν , the empirical distribution of uνc

can be arbitrary (similarly for B2
ν(γν) in (13)). The following

Proposition finds the Gallager source exponent function for
the messages corresponding to B1

ν(γν) and B2
ν(γν).

Proposition 1: For given γν ∈ [0, 1] and iν ∈ {1, 2}, in
view of Biνν (γν) given by (12) and (13), we have

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U )− ρH(P̂Uτ |Uτc ) =

−Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ),
(14)

where

Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ) = min

λ1≥0,λ2≥0
log
∑
uτc

(∑
uτ

P
¯
U (

¯
u)

1
1+ρ

×
(
PU1

(u1)

γ1

)− (−1)i1λ1
1+ρ

(
PU2

(u2)

γ2

)− (−1)i2λ2
1+ρ

)1+ρ

.

(15)

Proof: See Appendix B in [8].
In fact, in (15), the objective function is a convex function with
respect to λν for ν = 1, 2, and the optimal λν minimizing (15)
are the solution of an implicit equation obtained by setting the
partial derivative of the objective function of (15) with respect
to λν equal to zero. To be precise, for the cases where both
constraints P̂

¯
U ∈ Bi11 (γ1) and P̂

¯
U ∈ Bi22 (γ2) are active, λ1 and

λ2 derived as the solution of the implicit equation, are greater
than zero. Otherwise, the solution of the implicit equation is
negative and the optimal λν is zero.

E1(P
¯
U ,W ) = min

τ∈{{1},{2},{1,2}}
min

P̂
¯
U∈P

¯
U

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
U ||P

¯
U ) +D(P̂

¯
XY ||Q1,P̂U1

Q2,P̂U2
W )

+

 min
P̃

¯
U∈P

¯
U :P̃Uτc=P̂Uτc ,

EP̃ logP
¯
U≥EP̂ logP

¯
U

min
P̃

¯
XY ∈P

¯
X×Y :P̃XτcY =P̂XτcY ,

EP̃ logW≥EP̂ logW

D(P̃
¯
XY ||Qτ,P̃Uτ P̂XτcY )−H(P̃Uτ |Uτc )


+

(9)
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Here, we compare the result given by (15) with that for
independent sources. In [2], [4], it was shown that the exponent
is expressed in terms of two Es,iν (·) functions, namely

Es,1(ρ, PUν , γν) ={
Es(ρ, PUν ) 1

1+ρ ≥
1

1+ργν
,

Es(ργν , PUν ) + E′s(ργν )(ρ− ργν ) 1
1+ρ <

1
1+ργν

,

(16)

and a similar definition for Es,2(ρ, PUν , γν), with the two
conditions swapped. In the definition of the Es,iν (·) functions,
the parameter ργν is the solution of the implicit equation∑

u PUν (uν)
1

1+ρ logPUν (uν)∑
uν
PUν (uν)

1
1+ρ

= log(γν), (17)

as long as minuν PUν (uν) ≤ γν ≤ maxuν PUν (uν). If
γν ∈ [0,minuν PUν (uν)), we have ργν = −1− and if
γν ∈ (maxuν PUν (uν), 1], we have ργν = −1+.

Additionally, from [9, Lemma 3], for each source ν = 1, 2
with distribution PUν , threshold γν , and iν = 1, 2, we have

Es,iν (ρ, PUν , γν) =

min
λν≥0

log
∑
uν

PUν (uν)
1

1+ρ

(
PUν (uν)

γν

)− (−1)iν λν
1+ρ

. (18)

For independent sources, by applying P
¯
U (

¯
u) =

PU1
(u1)PU2

(u2) in (15), and in view of (18), the function
Es,τ,i1,i2(ρ, P

¯
U ,

¯
γ) is simplified as

Es,τ,i1,i2(ρ, PU1
(u1)PU2

(u2),
¯
γ) =

Es,iτ (ρ, PUτ , γτ ) + Es,iτc (0, PUτc , γτc), (19)

where as discussed in [4, Eq. (15)], for τ = {1, 2},
Es,i{1,2}(ρ, P

¯
U ,

¯
γ) = Es,i1(ρ, PU1 , γ1) + Es,i2(ρ, PU2 , γ2). In

fact, depending on the tangent points in (17), Es,{1,2},i1,i2(·)
as a function of ρ is either Es(ρ, PUν ) + Es(ρ, PUνc ) or
Es(ρ, PUν ) +Es,iνc (ρ, PUνc , γνc) where ν can be 1 or 2, and
νc denotes the complement index of ν among the set {1, 2}.

For error type τ ∈ {{1}, {2}} and for the four combinations
of i1, i2 ∈ {1, 2}, Fig. 1 shows (19) for two independent
sources with given γ1, γ2. As shown in (19) and for Fig.
1, the functions Es,τ,1,1(·) and Es,τ,2,1(·) follow Es(ρ, PUτ )
given by (5), for an interval of ρ, while they are the straight
line tangent to Gallager’s source function beyond that interval.
However, the functions Es,τ,1,2(·) and Es,τ,2,2(·) are either the
Gallager’s source function shifted by Es,iτc (0, PUτc , γτc) or
the straight line tangent to it.

On the other hand, for correlated sources with four combi-
nations of i1, i2 ∈ {1, 2}, Fig. 2 shows (15) for two correlated
sources with given γ1, γ2 and error type τ . It can be seen
that for the example of Fig. 2, the functions Es,τ,1,1(·) and
Es,τ,2,1(·) are the generalized Gallager’s source function (8)
for an interval of ρ, while they are a curve tangent to Es,τ (·)
beyond that interval. Thus, unlike the independent sources,
instead of a straight line tangent to Gallager’s source function,
for correlated sources, a curve is tangent to Es,τ (·). The reason
for this is explained in the following.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

ρ

Independent sources

Eq. (5)
Es,τ,1,1(·)
Es,τ,2,1(·)

Es,τ,1,2(·)
Es,τ,2,2(·)

Fig. 1. Es,τ,i1,i2(·) in (19) for two independent sources versus
ρ, for fixed γ1 and γ2 where i1, i2 = 1, 2. For error type
τ ∈ {{1}, {2}}, the solid red and blue curves are respectively
Es(ρ, PUτ ) and Es(ρ, PUτ ) + Es,iτc (0, PUτc , γτc).

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8
·10−2

ρ

Correlated sources

Eq. (8)
Es,τ,1,1(·)
Es,τ,2,1(·)

Eq. (21)
Es,τ,1,2(·)
Es,τ,2,2(·)

Fig. 2. Es,τ,i1,i2(·) in (15) for two correlated sources versus
ρ, for fixed γ1 and γ2 where i1, i2 = 1, 2. The solid red and
blue curves are respectively given by (8) and (21).

In Fig. 2, consider Es,τ,2,1(·) where i1 = 2 and i2 = 1.
For the region of ρ where Es,τ,2,1(·) equals to Es,τ (·), both
constraints P̂

¯
U ∈ B2

1(γ1) and P̂
¯
U ∈ B1

2(γ2) are inactive, while
for the region of ρ where Es,τ,2,1(·) equals to the curve tangent
to Es,τ (·), only one of the constraints P̂

¯
U ∈ B2

1(γ1) or P̂
¯
U ∈

B1
2(γ2) is active (similarly for Es,τ,1,1(·)). For given i1, i2, let

ν ∈ {1, 2} correspond to the active constraint. For example, in
Fig. 2, for the region of ρ where Es,τ,2,1(·) equals the tangent
curve, only the constraint P̂

¯
U ∈ Biνν (γν) is active. Then, the

primal form of the curve is

− min
P̂

¯
U∈P

¯
U :∑

¯
u P̂

¯
U (

¯
u) logPUν (uν)=log(γν)

D(P̂
¯
U ||P

¯
U )− ρH(P̂Uτ |Uτc ),

(20)

as corresponds to the Gallager’s source exponent function of
messages source ν whose empirical distributions are fixed, i.e.,{
P̂

¯
U ∈ P

¯
U :
∑

¯
u P̂

¯
U (

¯
u) logPUν (uν) = log(γν)

}
.
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We note that (20) describes the situation where only the type
class of one source is fixed. Thus, we have more freedom in
the source type class of the other source. This implies that for
correlated sources the joint type class is not fixed, but rather
contains the union of joint type classes whose type class of
one of the sources is fixed. Unlike for independent sources, for
correlated sources (20) is a curve rather than a straight line.

Coming back to Fig. 2, for an interval of ρ, the function
Es,τ,1,2(·) (Es,τ,2,2(·)) is

min
λν≥0

log
∑
uτc

(∑
uτ

P
¯
U (

¯
u)

1
1+ρ

(
PUν (uν)

γν

)− (−1)iν λν
1+ρ

)1+ρ

,

(21)

where ν ∈ {1, 2} indicates that only the constraint P̂
¯
U ∈

Biνν (γν) is active. In addition, beyond that interval of ρ, the
functions Es,τ,1,2(·) (Es,τ,2,2(·)) is (15) where both constraints
P̂

¯
U ∈ Bi11 (γ1) and P̂

¯
U ∈ Bi22 (γ2) are active.

B. Error Exponent Analysis

The primal form of the message-dependent exponent for the
MAC with two correlated sources is given by (9). To find the
dual-domain of (9), we use the following Lemma.

Lemma 2: E1(P
¯
U ,W ) given by (9) is bounded as

E1(P
¯
U ,W ) ≥ min

τ
min

P̂
¯
U∈P

¯
U

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
U ||P

¯
U )

+D(P̂
¯
XY ||Q1,P̂U1

Q2,P̂U2
W )

+ max
ρ∈[0,1]

ρD(P̂
¯
XY ||Qτ,P̂Uτ P̂XτcY )− ρH(P̂Uτ |Uτc ). (22)

Proof: See Appendix C in [8].
The optimization problem over P̂

¯
X,Y in (22) is coupled

with the minimization problem over P̂
¯
U through Qν,P̂Uν

for
ν = 1, 2. In view of classes defined by (12) and (13), we ex-
press the dependency of the input distribution Qν,P̂Uν on P̂Uν ,
through the class index. In other words, for P̂Uν ∈ B1

ν(γν),
we let Qν,P̂Uν = Qν,1 and similarly for P̂Uν ∈ B2

ν(γν), we
let Qν,P̂Uν = Qν,2. Applying this to (22), and splitting the
minimization over P̂

¯
U into minimization over disjoint classes

as mini1,i2=1,2 min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

, we find that

E1(P
¯
U ,W ) ≥

min
τ

min
i1,i2=1,2

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U )

+ min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
XY ||Q1,i1Q2,i2W )

+ max
ρ∈[0,1]

ρD(P̂
¯
XY ||Qτ,iτ P̂XτcY )− ρH(P̂Uτ |Uτc ). (23)

By using the min-max inequality, we swap the maximization
over ρ with the minimizations over P̂

¯
XY ∈ P

¯
X×Y and P̂

¯
U

in (23), i.e., E1(P
¯
U ,W ) ≥ E(P

¯
U ,W ) where E(P

¯
U ,W ) is

given by (24) at the bottom of the page. In (24), the inner
minimization problems over P̂

¯
XY ∈ P

¯
X×Y and P̂

¯
U ∈ P

¯
U ,

respectively lead to the channel and source exponent functions.
The minimization over P̂

¯
U is discussed in Proposition 1, while

to find channel exponent function, we use [8, Lemma 5]. By
setting P̂XY = P̂

¯
XY and Q = Qτ,iτ in [8, Lemma 5], the

minimization over P̂
¯
XY in (24), is solved as

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
XY ||Q1,i1Q2,i2W )

+ρD(P̂
¯
XY ||Qτ,iτ P̂XτcY ) = E0(ρ,Qτ,iτ ,WQτc,icτ ), (25)

where E0(·) is given by (6).
Now, putting back the results obtained in equations (25) and

(14) into the respective minimization problems over P̂
¯
XY and

P̂
¯
U of (24), and defining

fi1,i2(γ1, γ2) = min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )

−Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ),

(26)

an alternative expression for (24) is derived as

E(P
¯
U ,W ) = max

γ1,γ2∈[0,1]
min

i1,i2=1,2
fi1,i2(γ1, γ2), (27)

where in (27), we optimized the exponent over γν for ν =
1, 2. We recall that since two source-message classes namely
B1
ν(γν), B2

ν(γν) and two input distributions Qν,1, Qν,2 are
considered for each user ν = 1, 2, there are four possible
assignments where in (27) the optimal assignment of input
distributions is considered.

In [8, Appendix D], we show that for ν = 1, 2, the func-
tion maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,icτ )−Es,τ,i1,i2(ρ, P

¯
U ,

¯
γ) is

non-decreasing with respect to γν when iν = 1 and is non-
increasing with respect to γν when iν = 2. Considering this
fact, to find the optimal

¯
γ maximizing (27), we can use the

same approach proposed in [4, Proposition 2]. In other words,
the optimal γ1 and γ2 are the points where the minimum of
all non-decreasing functions with respect to γν are equal with
the minimum of all non-increasing functions.

Proposition 2: The optimal γ?1 and γ?2 maximizing (27)
satisfy  min

i2=1,2
f1,i2(γ?1 , γ

?
2 ) = min

i2=1,2
f2,i2(γ?1 , γ

?
2),

min
i1=1,2

fi1,1(γ?1 , γ
?
2) = min

i1=1,2
fi1,2(γ?1 , γ

?
2).

(28)

If (28) has no solutions, γ?ν ∈ {0, 1}: if f1,i2(0, γ2) >
f2,i2(0, γ2) then γ?1 = 0, otherwise γ?1 = 1; and if
fi1,1(γ1, 0) > fi1,2(γ1, 0), we have γ?2 = 0, otherwise γ?2 = 1.

Proof: See Appendix D in [8].

E(P
¯
U ,W ) = min

i1,i2=1,2
min

τ∈{{1},{2},{1,2}}
max
ρ∈[0,1]

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
XY ||Q1,i1Q2,i2W ) + ρD(P̂

¯
XY ||Qτ,iτ P̂XτcY )

+ min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U )− ρH(P̂Uτ |Uτc ) (24)
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III. NUMERICAL EXAMPLE

In this section, we present an example showing that using
two input distributions for each user attains larger achievable
exponent than the case where each user uses one input
distribution, a case whose exponent is given by

max
i1∈{1,2}

max
i2∈{1,2}

min
τ
FL
τ,iτ ,iτc

, (29)

where

FL
τ,iτ ,iτc

= max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,τ (ρ, P
¯
U ).

(30)
We consider two correlated discrete memoryless sources

with alphabet Uν = {1, 2} for ν = 1, 2 where

P
¯
U =

(
0.0005 0.0095
0.0005 0.9895

)
. (31)

We also consider a discrete memoryless MAC, similar to the
one given by [4, Eq. (31)], with X1 = X2 = {1, . . . , 6} and
|Y| = 4. Let W be the transition probability of this channel,

W =
(
WT

1 ,W
T
2 ,W

T
3 ,W

T
4 ,W

T
5 ,W

T
6

)T
, (32)

where

W1 =


1− 3k1 k1 k1 k1

k1 1− 3k1 k1 k1

k1 k1 1− 3k1 k1

k1 k1 k1 1− 3k1

0.5− k20.5− k2 k2 k2

k2 k2 0.5− k20.5− k2

 , (33)

for k1 = 0.045 and k2 = 0.01. W2 and W3 are 6×4 matrices
whose rows are all the copy of 5th and 6th row of matrix W1,
respectively. W4 is a 6× 4 matrix with rows numbers 2, 3, 4,
1, 6, and 5 of W1. Similarly, W5 is a 6× 4 matrix with rows
numbers 3, 4, 1, 2, 5, and 6 of W1 and W6 is a 6×4 matrices
with rows numbers 4, 1, 2, 3, 6, and 5 of W1.

We observe that W is a 36× 4 matrix where the transition
probability W (y|x1, x2) is located at row x1 + 6(x2 − 1)
of matrix W , for (x1, x2) ∈ {1, 2, ..., 6} × {1, 2, ..., 6}.
Recalling that each source has two classes and that four
input distributions generate codewords, there are four possi-
ble assignments of input distributions to classes. Among all
possible permutations, we select the one that gives the highest
exponent. Here, for user ν = 1, 2, we consider the set of input
distributions

{
[0 0 0 0 0.5 0.5], [0.25 0.25 0.25 0.25 0 0]

}
.

For the channel given in (32), the optimal assignment is

Qν,1 = [0 0 0 0 0.5 0.5], (34)
Qν,2 = [0.25 0.25 0.25 0.25 0 0], (35)

for both ν = 1, 2.
For this example, from (28), we numerically compute the

optimal γ?1 and γ?2 maximizing (27) leading to γ?1 = 0.8469
and γ?2 = 0.6581. The message-dependent exponent is derived
as E(P

¯
U ,W ) = 0.2611, while i.i.d. exponent for the best as-

signment is derived as 0.2503. Fig. 3 shows mini1,i2 fi1,i2(
¯
γ)

with respect to γ1 and γ2. It can be seen that the maximum
of mini1,i2 fi1,i2(

¯
γ) is derived at (0.8469, 0.6581); however,

the lower bound is obtained at (1, 0).

Table I: Values of maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,icτ ) −
Es,τ,i1,i2(ρ, PU , γ) with optimal thresholds γ?1 = 0.8469
γ?2 = 0.6581, for types of error τ , and user classes iτ , iτc .

(i1, i2)
(1,1) (1,2) (2,1) (2,2)

τ = {1} 0.3172 0.2735 0.3120 0.2611
τ = {2} 0.3986 0.4372 0.2611 0.4119
τ = {1, 2} 0.2611 0.2972 0.2630 0.2883

Table II: Values of FL
τ,iτ ,iτc

in (30) for types of error τ , and
input distribution Q1,i1 , Q2,i2 .

Q1,1,Q2,1 Q1,1,Q2,2 Q1,2,Q2,1 Q1,2,Q2,2

τ = {1} 0.2682 0.0642 0.3120 0.0879
τ = {2} 0.3986 0.3986 0.2503 0.3696
τ = {1, 2} 0.2097 0.2097 0.2630 0.2360
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Fig. 3. mini1,i2 fi1,i2(γ1, γ2) with respect to γ1 and γ2.
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