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Abstract— This work contains two main contributions con-
cerning the large deviations behavior of randomly chosen fixed
composition codes over a discrete memoryless channel (DMC).
The first is an exponentially tight expression for the probability
of randomly drawing a codebook that performs worse than
the typical random coding (TRC) error exponent, which is
proved to be exponentially small. The second is lower and upper
bounds on the probability of randomly selecting a codebook
that outperforms the TRC error exponent, which turn out to
be double–exponentially small, suggesting that relatively good
codebooks are extremely rare. The key ingredient in the proofs
is a new large deviations result of type class enumerators with
dependent variables.

I. INTRODUCTION

The first to show that below capacity, the probability of error
decays exponentially with the block length, for a sequence
of good codes, was Feinstein [1] in 1955. Already in the
same year, Elias [2] derived the random coding bound and the
sphere–packing bound, and he observed that they exponen-
tially coincide at high rates, for the cases of the binary sym-
metric channel (BSC) and the binary erasure channel (BEC).
Six years later, Fano [3] derived the random coding exponent,
which is the limit of the negative normalized logarithm of
the expectation (with respect to the ensemble of randomly
generated codes) of the error probability, namely,

Er(R) = lim
n→∞

{
− 1

n logE [Pe(Cn)]
}
, (1)

and heuristically also the sphere–packing bound for the general
DMC. In 1965, Gallager [4] derived Er(R) in a much simpler
way and improved on Er(R) at low rates by the idea of
expurgation of randomly selected codes.

The typical random coding (TRC) error exponent is defined
as the long–block limit of the negative normalized expectation
of the logarithm of the error probability, i.e.,

Etrc(R) = lim
n→∞

{
− 1

nE [logPe(Cn)]
}
. (2)

We believe that the TRC exponent is the more relevant perfor-
mance metric as it captures the most likely error exponent of a
randomly selected code, as opposed to the random coding error
exponent, which is dominated by the relatively poor codes of
the ensemble, rather than the channel noise, at relatively low
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coding rates. In addition, since in random coding analysis,
the code is selected at random and remains fixed, it seems
reasonable to study the performance of the very chosen code
instead of directly considering the ensemble performance.
Therefore, it is natural to ask what would be the error exponent
associated with the typical randomly selected code.

To the best of our knowledge, not much is known on typical
random codes. In [5], Barg and Forney considered typical
random codes with independently and identically distributed
codewords as well as typical linear codes, for the special case
of the BSC with maximum likelihood (ML) decoding. It was
also shown that at a certain range of low rates, Etrc(R) lies
between Er(R) and the expurgated exponent, Eex(R). In [6]
Nazari et al. provided bounds on TRC error exponents for both
DMCs and multiple–access channels. In a recent article by
Merhav [7], an exact single–letter expression has been derived
for the error exponent of typical, random, fixed composition
codes, over DMCs, and a wide class of (stochastic) decoders,
collectively referred to as the generalized likelihood decoder
(GLD), which includes the ML decoder as a special case.
For such decoders, the probability of deciding on a given
message is proportional to a general exponential function
of the joint empirical distribution of the codeword and the
received channel output vector.

Note that the TRC exponent can be viewed as the limit of
the expectation of the random variable

E(Cn) = − 1
n logPe(Cn), (3)

where Pe(Cn) is the error probability of a given code Cn,
governed by the randomness of the ensemble of codebooks
{Cn}. Having defined this random variable, it is interesting to
study, not only its expectation, but also other, more refined,
quantities associated with its probability distribution. One
of them is the tail behavior, i.e., the large deviations (LD)
rate functions. In particular, as was shown in [7], while
E(Cn) concentrates at the TRC exponent, Etrc(R), here we are
interested in probabilities of large fluctuations around Etrc(R).

Specifically, for a given E0 < Etrc(R), we assess the
probability of P {E(Cn) < E0} and provide an exponentially
tight expression for it, which proves that bad codebooks
are quite rare. In addition, we calculate the probability of
P {E(Cn) > E0}, where E0 > Etrc(R), and derive a double–
exponentially small lower and upper bounds on it. We find the
largest value E0, for which P {E(Cn) > E0} is strictly positive,
by that proving the existence of exceptionally good codebooks.



Due to the space limitation, technical details and proofs are
omitted, but can be found in [9].

II. NOTATION CONVENTIONS

Throughout the paper, random variables will be denoted by
capital letters, realizations will be denoted by the correspond-
ing lower case letters, and their alphabets in calligraphic font.
Random vectors and their realizations will be denoted, respec-
tively, by boldfaced capital and lower case letters. Their alpha-
bets will be superscripted by their dimensions. For a generic
joint distribution QXY = {QXY (x, y), x ∈ X , y ∈ Y}, which
will often be abbreviated by Q, information measures will be
denoted in the conventional manner, but with a subscript Q,
that is, IQ(X;Y ) is the mutual information between X and
Y , and similarly for other quantities. Logarithms are taken
to the natural base. The probability of an event E will be
denoted by P{E}, and the expectation operator will be denoted
by E[·]. For two positive sequences an and bn, the notation
an

.
= bn will stand for equality in the exponential scale, that is,

limn→∞(1/n) log an/bn = 0, and similarly for an
·
≤ bn and

an
·
≥ bn. The indicator function of an event E will be denoted

by I{E}. The notation [x]+ will stand for max{0, x}.
The empirical distribution of a sequence x ∈ Xn, which

will be denoted by P̂x, is the vector of relative frequencies,
P̂x(x), of each symbol x ∈ X in x. The joint empirical dis-
tribution of a pair of sequences, denoted by P̂xy , is similarly
defined. The type class of QX , denoted T (QX), is the set of
all vectors x ∈ Xn with P̂x = QX .

III. PROBLEM FORMULATION

Consider a DMC W = {W (y|x), x ∈ X , y ∈ Y}, where
X and Y are the finite input and output alphabets, respectively.
When the channel is fed with a sequence x = (x1, . . . , xn) ∈
Xn, it produces y = (y1, . . . , yn) ∈ Yn according to

W (y|x) =

n∏
t=1

W (yt|xt). (4)

Let Cn be a codebook, i.e., a collection {x0,x1, . . . ,xM−1}
of M = enR codewords, n being the block–length and R
the coding rate in nats per channel use. When the transmitter
wishes to convey a message m ∈ {0, 1, . . . ,M − 1}, it feeds
the channel with xm. We assume that messages are chosen
with equal probability. We consider the ensemble of fixed
composition codes: for a given distribution QX , all of the
vectors in Cn are uniformly and independently drawn from
the type class T (QX). As in [7], [8], we consider here the
GLD, which is a stochastic decoder, that chooses the estimated
message m̂ according to the following posterior probability
mass function, induced by the channel output y:

P {m̂ = m|y} =
exp{ng(P̂xmy)}∑M−1

m′=0 exp{ng(P̂xm′y)}
, (5)

where P̂xmy is the empirical distribution of (xm,y), and g(·)
is a given continuous, real–valued functional of this empirical
distribution. The GLD provides a unified framework which

covers several important special cases, e.g., matched likelihood
decoding, mismatched decoding, ML decoding, and universal
decoding (similarly to the α–decoders described in [10]). A
more detailed discussion is given in [8].

Let Y ∈ Yn be the random channel output resulting from
the transmission of xm. For a given code Cn, define the error
probability as

Pe(Cn) =
1

M

M−1∑
m=0

P{m̂(Y ) 6= m|m sent}, (6)

where P{·} designates the probability measure associated with
the randomness of the channel output given its input, and the
randomness of the stochastic decoder.

For the fixed composition ensemble, Merhav [7] has derived
a single–letter expression for

Etrc(R,QX) = lim
n→∞

{
− 1

nE [logPe(Cn)]
}
. (7)

In order to present the main result of [7], we define first a few
quantities. Define the set Q(QX) = {QX′|X : QX′ = QX}
and

α(R,QX , QY ) = sup
S(QX ,QY )

[g(QX̃Y )− IQ(X̃;Y )] +R, (8)

where S(QX , QY ) = {QX̃|Y : IQ(X̃;Y ) ≤ R, QX̃ = QX},
as well as

Γ(QXX′ , R) = inf
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), α(R,QX , QY )} − g(QX′Y )]+}, (9)

where D(QY |X‖W |QX) is the conditional divergence be-
tween QY |X and W , averaged by QX . Under the above
defined quantities, the TRC error exponent is given by [7]

Etrc(R,QX) = inf
S(R,QX)

[Γ(QXX′ , R)+IQ(X;X ′)−R], (10)

where S(R,QX) = {QX′|X ∈ Q(QX) : IQ(X;X ′) ≤ 2R}.
The exponent Etrc(R,QX) is the exact value around which the
random variable E(Cn) concentrates, as was proved in [7]. The
expurgated exponent Eex(R,QX), proved in [8], has exactly
the same expression, but with the minimization constraint in
(10) IQ(X;X ′) ≤ 2R replaced by IQ(X;X ′) ≤ R.

We are interested in two LD quantities, i.e., the lower and
the upper tails of the distribution of E(Cn). The first one is the
probability that E(Cn) is smaller than a given value E0, lower
than the expected value Etrc(R,QX):

P {E(Cn) < E0} , (11)

which is the probability of drawing a bad codebook. The
second is the probability that E(Cn) exceeds a given E0 (higher
than Etrc(R,QX)):

P {E(Cn) > E0} , (12)

which is the probability of drawing a good codebook. Finding
exact expressions for (11) and (12) appears to be difficult.
In this paper, we propose an exponentially tight expression
for (11) and lower and upper bounds on (12), in order to
characterize the existence of bad or good codes, respectively.



IV. MAIN RESULTS

A. The Lower Tail

More refined questions concerning the lower tail are as
follows. Does the probability P {E(Cn) < E0} tend to zero
with a finite exponent in the entire range [0, Etrc(R,QX))?
If not, what is the range of E0 for which P {E(Cn) < E0}
decays faster than exponentially? Answers to these questions
would shed light and improve our understanding concerning
the behavior of the ensemble of random fixed–composition
codes.

In order to present the error exponent of the lower tail, we
define a few more quantities. Define the set

L(R,E0, QX)
∆
= {QX′|X ∈ Q(QX) :

[2R− IQ(X;X ′)]+ ≥ Γ(QXX′ , R) +R− E0}, (13)

and the error exponent

Elt(R,E0, QX)
∆
= inf
L(R,E0,QX)

[IQ(X;X ′)− 2R]+. (14)

Our first result in this section is the following theorem.
Theorem 1: Consider the ensemble of random fixed com-

position codes Cn of rate R and composition QX . Then,

P {E(Cn) < E0}
.
= exp{−n · Elt(R,E0, QX)}. (15)

Understanding the behavior of the exponent Elt(R,E0, QX)
is important in order to gain a deeper understanding of random
fixed composition codes. The following proposition provides
a partial characterization for the behavior of the lower tail
exponent.

Proposition 1: The function Elt(R,E0, QX) has the follow-
ing properties:

1) For fixed R, Elt(R,E0, QX) is decreasing in E0.
2) Elt(R,E0, QX) > 0 if and only if E0 < Etrc(R,QX).
3) Elt(R,E0, QX) =∞ for any E0 < Emin

0 (R), where

Emin
0 (R) = (16)
inf
Q(QX)

{Γ(QXX′ , R)− [2R− IQ(X;X ′)]+}+R.

Proposition 1 answers the questions we raised above. First, it
proves that drawing a codebook for which E(Cn) is strictly
below the TRC exponent has an exponentially vanishing
probability. This implies that only for a small fraction of fixed
composition codes, E(Cn) is significantly lower than the TRC
error exponent. Second, the probability that E(Cn) falls in
the range (Emin

0 (R), Etrc(R,QX)) tends to zero with a finite
exponent, but for E0 ∈ [0, Emin

0 (R)), the probability of drawing
a codebook with E(Cn) < E0 converges to zero faster than
exponentially; these codebooks are extremely rare.

We next describe the behavior of Emin
0 (R). Denote by

Q∗X′|X(R) the minimizer of (16) at rate R, and let R∗ be
the maximal rate for which 2R ≤ IQ∗(R)(X;X ′) holds. On
the one hand, for any R ∈ [0, R∗], the clipping in (16) is active
and Emin

0 (R) is given by

Emin
0 (R) = inf

{Q(QX): 2R≤IQ(X;X′)}
Γ(QXX′ , R) +R, (17)

which is a monotonically increasing function. On the other
hand, if R ≥ R∗, then the clipping in (16) is inactive
and Emin

0 (R) is simply given by the TRC error exponent
Etrc(R,QX). Figure 1 illustrates the error exponents, as well
as Emin

0 (R), for the binary z–channel with crossover parameter
0.001, a symmetric input distribution, QX = ( 1

2 ,
1
2 ), and a ML

decoder. The highest transmission rate is R ∼= 0.68524.
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Fig. 1: Various exponents for the z–channel.

In order to gain some intuitive insight behind the various
types of behavior of Elt(R,E0, QX), it is instructive to inspect
the properties of the type class enumerators,

N(QXX′)
∆
=

M−1∑
m=0

∑
m′ 6=m

I {(xm,xm′) ∈ T (QXX′)} , (18)

which play a pivotal role in the analysis of this lower
tail exponent. The summation (18) contains M(M − 1)

.
=

en2R terms. We refer to it as the number of trials in the
type class enumerator N(QXX′). The expectation of each
one of the binary random variables in (18) is given by
P {(xm,xm′) ∈ T (QXX′)}

.
= e−nIQ(X;X′), defined to be the

success probability. It is important to note that N(QXX′) is
not a binomial random variable.

We distinguish between two kinds of joint compositions.
On the one hand, we have the joint types QXX′ for which
IQ(X;X ′) ≤ 2R, i.e., the exponential rate of the number of
trials is higher than the negative exponential rate of the suc-
cess probability. Thus, with overwhelmingly high probability,
the respective N(QXX′) will concentrate around its mean,
exp{n(2R− IQ(X;X ′))}. Such compositions are referred to
as typically populated (TP) type classes. On the other hand,
those QXX′ for which IQ(X;X ′) > 2R, are such that their
corresponding N(QXX′) equals zero with high probability.
These compositions are referred to as the typically empty (TE)
type classes.

For E0 ∈ (Emin
0 (R), Etrc(R,QX)), let us denote the min-

imizer of Elt(R,E0, QX) by Q∗X′|X and define Q∗XX′ by
QX ×Q∗X′|X . Then, the dominant error event is due to pairs



of codewords with joint empirical composition Q∗XX′ . In this
range of exponents, all TP type classes are populated, as well
as all TE type classes with IQ(X;X ′) ≤ IQ∗(X;X ′). The rest
of the TE type classes, those with higher value of IQ(X;X ′),
are still empty (see Figure 2b). These are the joint type classes
of the closest pairs of sequences in Xn, as measured by the
empirical mutual information.

(a) For E0 ≤ Emin
0 (R) (b) E0 ∈ (Emin

0 (R), Etrc(R))

(c) Around the Etrc(R) (d) E0 ∈ (Etrc(R), Eex(R))

Fig. 2: Typical populations for different E0 values. The center
is the true codeword and each concentric circle around it
represents a conditional type class. The radii of the concentric
circles represent distances between codewords, which are mea-
sured by the empirical conditional entropy (also proportional
to the negative empirical mutual information), induced by
the joint composition of the codewords. Dots denote the TP
type classes and circles represent the TE type classes. TP
type classes are the sets of relatively distant codewords; they
include all joint compositions QXX′ with IQ(X;X ′) ≤ 2R.
Red dots/circles mean empty type classes. For larger E0 values,
the minimum distance between codewords increases.

When E0 is as low as the minimum Emin
0 (R), the constraint

set L(R,E0, QX) becomes empty, all TE type classes become
populated (see Figure 2a) and Elt(R,E0, QX) jumps to infinity.
In some sense, the curve Emin

0 (R) exhibits a phase transition.
When E0 is higher than Emin

0 (R), then the minimum distance
between pairs of codewords is still positive, but when E0 ≤
Emin

0 (R), the minimum distance between pairs of codewords
equals zero.

For E0 lower than Emin
0 (R), we can explain the super–

exponential behavior of P {E(Cn) < E0} by the following
intuitive example. If all TE type classes are populated, then
codebooks with exponentially many identical codewords also
exist in the range of these low exponents. Such poor codebooks
are drawn with a double–exponentially small probability.

B. The Upper Tail

In this subsection, we discuss the existence of good code-
books for which E(Cn) > Etrc(R,QX). Specifically, we study
the probability of randomly drawing a codebook whose expo-
nent E(Cn) is higher than a given E0, i.e., P {E(Cn) > E0}.
Mainly, we are interested in lower–bounding the probability
P {E(Cn) > E0}, such that we can assure the existence of
good codebooks. In order to present our results, we make the
following definitions. Let

β(R,QY ) = sup
{QX̃|Y :QX̃=QX}

{g(QX̃Y ) + [R− IQ(X̃;Y )]+},

Λ(QXX′ , R) = inf
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ β(R,QY )− g(QX′Y )}. (19)

We define the sets

V(R,E0, QX) = {QX′|X ∈ Q(QX) : IQ(X;X ′) < 2R,

Λ(QXX′ , R) + IQ(X;X ′)−R < E0}, (20)
U(R,E0, QX) = {QX′|X ∈ Q(QX) : IQ(X;X ′) < 2R,

Γ(QXX′ , R) + IQ(X;X ′)−R < E0}, (21)

and the error exponent functions

Eub
ut (R,E0, QX) = sup

V(R,E0,QX)

min{2R− IQ(X;X ′),

E0 − Λ(QXX′ , R)− IQ(X;X ′) +R,R}, (22)
E lb

ut (R,E0, QX) = sup
U(R,E0,QX)

[2R− IQ(X;X ′)]. (23)

The main result in this subsection is the following theorem.
Theorem 2: Consider the ensemble of random fixed com-

position codes Cn of rate R and composition QX . Then,

P {E(Cn) > E0}
·
≤ exp

{
−en·E

ub
ut (R,E0,QX)

}
. (24)

If E0 ∈ (Etrc(R,QX), Eex(R,QX)), then

P {E(Cn) > E0}
·
≥ exp

{
−en·E

lb
ut (R,E0,QX)

}
. (25)

Since we have an upper, as well as a lower bound on the
probability of the upper tail, both of which vanishes double–
exponentially fast, we can state that (good) codebooks with
relatively high error exponents are extremely rare.

The restriction to (Etrc(R,QX), Eex(R,QX)) in the lower
bound of Theorem 2 stems from the technical condition of
[11, Theorem 9] (which is equivalent to the one found in the
Lovász local lemma [12]).

In order to characterize the behavior of the error exponent
functions (22) and (23), let us first define

Ẽ(R,QX) = inf
S(R,QX)

[Λ(QXX′ , R) + IQ(X;X ′)−R]. (26)

Proposition 2: Eub
ut (R,E0, QX) and E lb

ut (R,E0, QX) have
the following properties:

1) For fixed R, they are increasing in E0.
2) E lb

ut (R,E0, QX) > 0 if and only if E0 > Etrc(R,QX).
3) Eub

ut (R,E0, QX) > 0 if and only if E0 > Ẽ(R,QX).



Note that Ẽ(R,QX) is defined similarly to Etrc(R,QX), with
Λ(QXX′ , R) replacing Γ(QXX′ , R). Generally, Ẽ(R,QX) ≥
Etrc(R,QX), but in some special cases, e.g. the z–channel and
the BEC, it can be proved that Ẽ(R,QX) = Etrc(R,QX), as
can be seen in Figure 3 below.

Recall that for the typical code, i.e., any code with E(Cn) ≈
Etrc(R,QX), all TP type classes are populated and all TE type
classes are empty (see Figure 2c). Now, for any E0 in the range
(Etrc(R,QX), Eex(R,QX)), all TE type classes are still empty,
but now, also all TP type classes that are associated with the set
U(R,E0, QX) are also empty (see Figure 2d). The dominating
error event in these codebooks is caused by relatively distant
pairs of codewords that have a joint composition Q∗XX′ ,
which is the maximizer of (23). We conclude that Etrc(R,QX)
exhibits a second phase transition. Below the Etrc(R,QX)
curve, TE type classes become populated, and above it, TP
type classes become empty.

When E0 is as high as the expurgated exponent Eex(R,QX),
the constraint set U(R,E0, QX) contains all of the joint
compositions with R < IQ(X;X ′) < 2R, and all TP type
classes associated with this range become empty. Furthermore,
when E0 reaches Eex(R,QX), then the value of the lower
bound exponent E lb

ut (R,E0, QX) is exactly R, which means
that the lower bound of Theorem 2 and the probability of any
codebook in the ensemble, given by exp{−enR}, are of the
same exponential order. We have the following corollary.

Corollary 1: If E0 < Eex(R,QX), ∃Cn with E(Cn) > E0.
Figure 3 illustrates the upper tail exponents, for the binary

z–channel with crossover parameter 0.001, rate R = 0.2, a
symmetric input distribution, QX = ( 1

2 ,
1
2 ), and a ML decoder.

0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

E0

Eub
ut (R,E0, QX)

E lb
ut (R,E0, QX)

Fig. 3: Upper tail exponents for the z–channel (R = 0.2).

Note that E lb
ut (R,E0, QX) is applicable as long as 0 ≤

E lb
ut (R,E0, QX) ≤ R, while Eub

ut (R,E0, QX) is applicable for
any E0, but is truncated to a level of R for relatively high E0’s.

V. ON THE MAIN INGREDIENT OF THE PROOFS

The proofs of Theorems 1–2 are heavily based on LD
analysis of the type class enumerators N(QXX′). One of the

difficulties associated with the statistical analysis of N(QXX′)
is that it is a sum of dependent (though pairwise independent)
binary random variables. This is different from the more
commonly encountered type class enumerators (see, e.g., [13,
eq. (11)]), which are sums of independent random variables.
Hence, existing results concerning the LD for type class
enumerators of independent variables are no longer applicable.

Recall the following large–deviations property of ordinary
type class enumerators. For some given sequence y ∈ Yn,
define the type class enumerator

Ny(QXY ) =

M−1∑
m=0

I{(xm,y) ∈ T (QXY )}. (27)

Now, for any t ∈ R, P {Ny(QXY ) ≥ ent} tends to zero
exponentially fast with E(R,QXY , t), given by{

[IQ(X;Y )−R]+ [R− IQ(X;Y )]+ ≥ t
∞ [R− IQ(X;Y )]+ < t

. (28)

Since N(QXX′) is a sum of dependent random variables,
more refined tools from LD theory are required, like those of
[11], that are able to treat the dependency between the terms.
The LD of N(QXX′) and the ordinary type class enumerators
asymptotically behave in the same way, as can be seen in the
following result:

Theorem 3: For any s ∈ R,

P {N(QXX′) ≥ ens}
.
= e−n·E(R,QXX′ ,s), (29)

where E(R,QXX′ , s) is given by{
[IQ(X;X ′)− 2R]+ [2R− IQ(X;X ′)]+ ≥ s
∞ [2R− IQ(X;X ′)]+ < s

.

REFERENCES

[1] A. Feinstein, “Error bounds in noisy channels without memory,” IRE
Trans. Inf. Theory, vol. IT–1, pp. 13–14, 1955.

[2] P. Elias, “Coding for noisy channels,” IRE Convention Record, Part 4,
pp. 37–46, 1955.

[3] R. M. Fano, Transmission of Information, MIT Press, Cambridge, Mass.
and Wiley, New York 1961.

[4] R. G. Gallager, “A simple derivation of the coding theorem and some
applications,” IEEE Trans. Inf. Theory, vol. IT–11, no. 1, pp. 3–18,
1965.

[5] A. Barg and G. D. Forney, Jr., “Random codes: minimum distances and
error exponents,” IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2568–
2573, Sept. 2002.

[6] A. Nazari, A. Anastasopoulos, and S. S. Pradhan, “Error exponent for
multiple–access channels: lower bounds,” IEEE Trans. Inf. Theory, vol.
60, no. 9, pp. 5095–5115, Sept. 2014.

[7] N. Merhav, “Error exponents of typical random codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 9, pp. 6223–6235, Sept. 2018.

[8] N. Merhav, “The generalized stochastic likelihood decoder: random
coding and expurgated bounds,” IEEE Trans. Inf. Theory, vol. 63, no.
8, pp. 5039–5051, Aug. 2017.

[9] R. Averbuch, N. Merhav, and A. Guillén i Fàbregas, “Large Deviations
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