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Abstract—We introduce a random code construction for chan-
nel coding in which the codewords are constrained to be well-
separated according to a given distance function, analogously to
an existing construction attaining the Gilbert-Varshamov bound.
We derive an achievable error exponent for this construction, and
prove its tightness with respect to the ensemble average. We show
that the exponent recovers the Csiszár and Körner exponent as a
special case by choosing the distance function to be the negative
of the empirical mutual information. We further establish the
optimality of this distance function with respect to the exponent
of the random coding scheme.

I. PROBLEM SETUP

We consider transmission over a discrete memoryless chan-
nel (DMC) described by a conditional probability mass func-
tion W (y|x), with input x ∈ X and output y ∈ Y for finite
alphabets X and Y . We define Wn(y|x) =

∏n
k=1W (yk|xk)

for input/output sequences x = (x1, . . . , xn) ∈ Xn,y =
(y1, . . . , yn) ∈ Yn. The corresponding random variables are
denoted by X,Y .

An encoder maps a message m ∈ {1, . . . ,Mn} to a
channel input sequence xm ∈ X , where the number of
messages is denoted by Mn. The message, represented by the
random variable S, is assumed to take values on {1, . . . ,Mn}
equiprobably. This mapping induces an (n,Mn)-codebook
Mn = {x1, . . . ,xMn

} with rate Rn = 1
n logMn.

Upon observing the channel output y, the decoder produces
an estimate of the transmitted message m̂ ∈ {1, . . . ,Mn}.
We consider the family of type-dependent maximum-metric
decoders, for which the transmitted message is estimated as

m̂ = arg max
xi∈Mn

q(P̂xi,y), (1)

where P̂x,y is the joint empirical distribution (or type [1,
Ch. 2]) of the pair (x,y). We assume that q : P(X × Y) →
R is bounded and continuous on the probability simplex.
Maximum-likelihood (ML) decoding is a special case of (1),
but more generally, the decoder may be mismatched [2], [3].

Denoting the random variable corresponding to the de-
coded message by Ŝ, we define the probability of error as
Pe = Pr

[
Ŝ 6= S

]
. A rate-exponent pair (R,E) is said to
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be achievable for channel W if, for all ε > 0, there exists a
sequence of (n, en(R−ε))-codebooks such that

lim inf
n→∞

− 1

n
log Pr

[
Ŝ 6= S

]
≥ E − ε. (2)

Equivalently, we say that E is an achievable error exponent at
rate R if (R,E) is an achievable rate-exponent pair.

Using random selection and graph decomposition tech-
niques, Csiszár and Körner [4] studied the error exponent
of constant-composition codes under a decoder that uses a
type-dependent decoding metric, and derived the following
achievable exponent for an arbitrary input distribution P :

Eq(R,P,W ) = min
V ∈TI

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
,

(3)

where

TI ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), I(X; X̃) ≤ R
}

(4)

with P(·) denoting the set of distributions on a given alphabet.
This exponent was shown to be at least as high as the
maximum of the expurgated and the random coding exponents.

In this paper, we introduce an alternative random code
construction that achieves Eq(R,P,W ). Our construction
constrains the codewords to be well-separated according to a
general distance function, and thus, it can be viewed as a ran-
domized Gilbert-Varshamov construction [5], [6]. Setting the
distance function to be the negative mutual information (which
turns out to maximize the exponent), we recover the exponent
Eq(R,P,W ) in (3). While the analysis of [4] establishes the
existence of codes attaining the exponent using a decompo-
sition lemma, our scheme provides an explicit randomized
construction whose ensemble average directly achieves the
exponent. In addition, our construction provides insight into
general distance functions, and among the constructions in the
literature that are known to achieve the expurgated exponent,
it is the first for which ensemble tightness is established,
i.e., the derived error exponent of the ensemble-average error
probability is exact.



II. RANDOM CODEBOOK AND PROPERTIES

Codes that attain the Gilbert-Varshamov bound on the Ham-
ming space [5], [6] ensure that all codewords are at least at a
certain Hamming distance ∆ from each other. Our construction
is a randomized constant-composition version of such codes
for arbitrary DMCs and more general distance functions. We
therefore refer to the resulting construction as the generalized
random Gilbert-Varshamov (RGV) construction.

Definition 1. Let Ω be the set of symmetric type-dependent
functions d(·, ·) : Xn × Xn → R that are bounded and
continuous, i.e., functions that satisfy d(x,x′) = d(x′,x)
for all x,x′ ∈ Xn, that depend on (x,x′) only through the
joint empirical distribution P̂xx′ , and that are bounded and
continuous as a function of this joint distribution.

We use the notation d(x,x′) and d(P̂xx′) interchangeably
for convenience, and similarly for q(x,y) and q(P̂xy). We
refer to d ∈ Ω as a distance function, though it need not be a
distance in the topological sense (e.g., it may be negative).

In the following, we describe how to construct a code Mn

with Mn codewords of length n, such that any two distinct
codewords x,x′ ∈ Mn satisfy d(x,x′) > ∆ for a given
function d(·, ·) ∈ Ω and threshold ∆ ∈ R. This guarantees
that the minimum distance of the codebook exceeds ∆.

Our construction depends on an input distribution P ∈
P(X ), and throughout the paper, we let Pn denote an arbitrary
type [1, Ch. 2] whose entries are 1

n -close to P . The set of
sequences with type Pn is denoted by T (Pn). For i < j, we
let xji denote (xi, . . . ,xj).

Fixing n,Mn, an input distribution P ∈ P(X ), a distance
function d(·, ·) ∈ Ω, and constants δ > 0,∆ ∈ R, the
construction is described by the following steps:

1) The first codeword, x1, is drawn uniformly from T (Pn);
2) The second codeword x2 is drawn uniformly from

T (Pn,x1) , {x̄ ∈ T (Pn) : d(x̄,x1) > ∆} (5)
= T (Pn)\ {x̄ ∈ T (Pn) : d(x̄,x1) ≤ ∆} , (6)

the set of sequences of composition Pn whose distance
to x1 exceeds ∆;

3) The i-th codeword xi is drawn uniformly from

T (Pn,x
i−1
1 )

= {x̄ ∈ T (Pn) : d(x̄,xj) > ∆, j = 1 . . . , i− 1} (7)

= T (Pn,x
i−2
1 )\

{
x̄ ∈ T (Pn,x

i−2
1 ) : d(x̄,xi−1) ≤ ∆

}
. (8)

Throughout the paper, it will be helpful to generalize the nota-
tion T (Pn,x

i−1
1 ) as follows: For any subset D ⊆ T (Pn), we

define T (Pn,D) , {x ∈ T (Pn) : d(x,x′) > ∆,∀x′ ∈ D}.
We show in Lemma 1 below that in order to ensure that the

above procedure generates the desired number of codewords
Mn = enRn (i.e., the sets T (Pn,x

i−1
1 ) are non-empty for all

i = 1, . . . ,Mn), it suffices to choose ∆ and δ such that

en(Rn+δ)volx(∆) ≤ |T (Pn)| (9)

where volx(∆) = |{x̄ ∈ T (Pn) : d(x̄,x) ≤ ∆}| is the
volume of a ball of radius ∆ according to distance d(·, ·)

centered at some x ∈ T (Pn). Since d ∈ Ω is symmetric
and type-dependent, volx(∆) does not depend on the specific
choice of x ∈ T (Pn). Condition (9) can be rewritten as∑

x̄∈T (Pn) : d(x̄,x)≤∆

1

|T (Pn)|
≤ e−n(Rn+δ). (10)

A. Codebook Properties

Here we provide several lemmas characterizing the key
properties of the RGV construction. Due to space constraints,
we only provide brief comments on the proofs.

We begin with the key fact that the construction is well-
defined, in the sense that the procedure described above always
produces the desired number of codewords Mn.

Lemma 1. The RGV codebook construction with condition
(10) is such that for all i ∈ {1, . . . ,Mn}, all (x1, . . . ,xi−1)
occurring with non-zero probability, and any δ > 0,

(1− e−nδ)|T (Pn)| ≤ |T (Pn,x
i−1
1 )| ≤ |T (Pn)|. (11)

The upper bound is immediate, and the lower bound follows
from (9) and the fact that at most enRn · volx(∆) codewords
are removed from consideration throughout the construction.

Lemma 2. A codebook Mn = {x1, . . . ,xMn} occurs with
positive probability under the generalized RGV construction
if and only if xi ∈ T (Pn) for all i ∈ {1, . . . ,Mn}, and
d(xi,xj) > ∆ for all i, j ∈ {1, . . . ,Mn} such that i 6= j.

Moreover, for any disjoint index sets I,J ⊆ {1, . . . ,Mn}
(i.e., I ∩ J = ∅), the set of codewords xI = {xi}i∈I
occurring with non-zero probability given xJ = {xj}j∈J
(with Pr(xJ ) > 0) is given by

T ′I(Pn,xJ ) ,
{
xI ; d(xi,xi′) > ∆,∀i, i′ ∈ I, i 6= i′,

and d(xi,xj) > ∆,∀i ∈ I, j ∈ J
}
. (12)

More generally, for possibly-overlapping I and J , the corre-
sponding set is

TI(Pn,xJ )

,
{
x̄I ; x̄i = xi,∀i ∈ I ∩ J , and x̄I\J ∈ T ′I\J (Pn,xJ )

}
.

(13)

We will often make use of the set (13) in the special case
that I = {1, . . . , i} for some index i, in which case we
will adopt the shorthand T i1 (Pn,xJ ) , T{1,...,i}(Pn,xJ ).
Moreover, we will use notation such as T i−1

1 (Pn,xi,xm) to
mean T i−1

1 (Pn, {xi,xm}). We also define δn , e−nδ

1−e−nδ
.

Lemma 3. Under the generalized RGV construction, for any
message m and k < m, it holds for all xm ∈ T (Pn,x

k
1) that

1− δ2
n

eδn
· 1

|T (Pn)|
≤ Pr(xm|xk1) ≤ 1

1− e−nδ
· 1

|T (Pn)|
,

(14)

while Pr(xm|xk1) = 0 for all x /∈ T (Pn,x
k
1).

In the following, we consider the probability
Pr(xi|xi−1

1 ,xm) conditioned on the previous codewords



xi−1
1 along with another codeword xm (which will later

represent the transmitted codeword). It may be the case that
m < i, in which case Pr(xi|xi−1

1 ,xm) can equivalently be
viewed as Pr(xi|xi−1

1 ).

Lemma 4. Under the generalized RGV construction, for any
pair (xm,xi) (m 6= i) satisfying d(xm,xi) > ∆, and any
xi−1

1 ∈ T i−1
1 (Pn,xm,xi), it holds that

Pr(xi|xi−1
1 ,xm) ≥ (1− e−nδ)2(1− δ2

n)

eδn
· 1

|T (Pn)|
(15)

Pr(xi|xi−1
1 ,xm) ≤ eδn

(1− δ2
n)(1− e−nδ)

· 1

|T (Pn)|
, (16)

while Pr(xi|xi−1
1 ,xm) = 0 whenever xi−1

1 /∈
T i−1

1 (Pn,xm,xi).

Finally, using a basic symmetry argument, we have that the
marginal distribution of any given codeword Xm (without any
conditioning on other codewords) is uniform over T (Pn).

Lemma 5. For any message index m, the marginal distribu-
tion of codeword Xm is Pr(xm) = 1

|T (Pn)| .

III. MAIN RESULT

We now state our main result, namely, a single-letter lower
bound for the error exponent of the RGV construction. We
show in Section V that it reduces to the exponent of [4] when
the distance function d(·, ·) is optimized. Let

ERGV(R,P,W, q, d,∆) =

min
V ∈Td,q,P (∆)

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
, (17)

where

Td,q,P (∆) ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), d(PXX̃) ≥ ∆
}
. (18)

Subsequently, the notations .
=,

.
≤, and

.
≥ denote (in)equalities

up to subexponential factors.

Theorem 1. For all P ∈ P(X ), δ > 0, ∆ ∈ R, d ∈ Ω, and
R > 0 satisfying

R ≤ min
P
XX̃

: d(P
XX̃

)≤∆, PX=P
X̃

=P
I(X; X̃)− 2δ, (19)

the ensemble average error probability P̄ (n)
e of the RGV con-

struction with parameters (n,R, P, d,∆, δ) and the continuous
type-dependent decoding metric q(·) over DMC W satisfies

P̄ (n)
e

.
≤ e−nERGV(R,P,W,q,d,∆). (20)

In addition, if q is an additive decoding metric, then

P̄ (n)
e

.
≥ e−nERGV(R,P,W,q,d,∆+ε) (21)

for arbitrarily small ε > 0.

As will be shown in the sequel, the rate constraint (19)
is not restrictive in the sense that if the distance function
is chosen appropriately, the generalized RGV construction

achieves the exponent Eq(R,P,W ) in (3), which in turn
shows the achievability of capacity for ML decoding or the
LM rate in the mismatched case [4].

While Theorem 1 states the error exponent, the central
part of the analysis is in arriving at the following asymptotic
expression for the ensemble average probability of error:

P̄ (n)
e

.
=

∑
x∈T (Pn),y

1

|T (Pn)|
Wn(y|x)

·min

{
1, (Mn − 1)

∑
x′∈T (Pn) : q(x′,y)≥q(x,y)

d(x′,x)≥∆

1

|T (Pn)|

}
. (22)

This can be interpreted as a stronger (albeit asymptotic)
analog of the random coding union bound [7] that achieves
not only the random coding exponent, but also the low-rate
improvements of the expurgated exponent.

A notable difficulty in the analysis is that unlike ordinary
random coding with pairwise codeword independence, the
conditional distribution of the m-th codeword depends on
the previously drawn m − 1 codewords. Lemma 4 is key to
overcoming this challenge.

IV. PROOF OF THEOREM 1
Here, we give details of the proof of (20). Details of the

proof of (21) can be found in [8].
Step 1: Characterizing the permitted rates
For convenience, we define

R′ = min
P
XX̃
∈P(X 2) : d(P

XX̃
)≤∆, PX=P

X̃
=P

I(X; X̃)− 2δ. (23)

Moreover, we let T (PX̃|X) denote a conditional type class [1,
Ch. 2] corresponding to x ∈ T (Pn), and let Pn(X|x) be the
set of all conditional types. For n sufficiently large, we have∑

x̄∈T (Pn) : d(x̄,x)≤∆

1

|T (Pn)|

≤ (n+ 1)|X |
2

max
P
X̃|X∈Pn(X|x) :P

X̃
=PX=Pn

d(P
XX̃

)≤∆

|T (PX̃|X)|
|T (Pn)|

(24)

≤ exp

(
−n
(

min
P
XX̃
∈Pn(X 2) : d(P

XX̃
)≤∆

PX=P
X̃

=P

I(X; X̃)− δ
))

(25)

≤ e−n(R′+δ), (26)

where (24) follows since the number of joint types is upper
bounded by (n + 1)|X |

2

, (25) holds for n sufficiently large
because |T (PX̃|X)| .= enHP (X̃|X) and |T (Pn)| .= enH(P ),
and (26) follows from (23). Hence, if the rate of the RGV
construction satisfies Rn ≤ R′, we have∑

x̄∈T (Pn):d(x̄,x)≤∆

1

|T (Pn)|
≤ e−n(Rn+δ), (27)

which is precisely the condition assumed in (10).



We henceforth assume that the number of codewords of the
RGV construction is such that Rn ≤ R′, and we calculate the
resulting average probability of error.
Step 2: Conditional probability of correct decoding

The ensemble average error probability is

P̄ (n)
e =

1

Mn

Mn∑
m=1

P̄ (n)
e,m (28)

where the error probability for the m-th codeword is

P̄ (n)
e,m = 1− E[Pr(no error |Xm,Y )], (29)

and where Pr(no error |xm,y) is the probability of correct
decoding for the m-th codeword assuming that the realizations
of the codeword and received sequences are xm and y.
We perform the analysis conditioned on the transmitted and
received sequences being xm and y (and implicitly on m being
transmitted), and later we duly average over these choices.

We define the i-th pairwise correct decoding event given
(Xm,Y ) = (xm,y) as

Ci = {q(Xi,y) < q(xm,y)} , (30)

meaning that xm is favored over the random codeword Xi

(recall that ties are counted as errors). We further define Cji ,
{Ci, Ci+1, . . . , Cj} for j > i, that is, the intersection of the
events Ci, Ci+1, . . . , Cj .

We write the correct decoding probability given (xm,y) as

Pr(no error |xm,y)

=
∏
i<m

Pr(Ci|Ci−1
1 ,xm,y)

∏
i>m

Pr(Ci|Cm−1
1 , Ci−1

m+1,xm,y).

(31)

For brevity, we use the shorthand notation Pr(Ci|Ci−1
1 ,xm,y)

also for i > m (i.e., for Pr(Ci|Cm−1
1 , Ci−1

m+1,xm,y)).
We proceed by lower bounding Pr(Ci|Ci−1

1 ,xm,y). Since
only sequences x1 such that d(x1,xm) > ∆ have positive
probability conditioned on Xm = xm, we have

Pr(C1|xm,y) =
∑

x1 : q(x1,y)<q(xm,y)
d(x1,xm)>∆

Pr(x1|xm,y). (32)

Recall Lemma 2, and define

Sm,i(xm,y) ,
{
xi−1

1 ∈ T i−1
1 (Pn,xm) :

q(xj ,y) < q(xm,y), ∀j ≤ i− 1, j 6= m
}
. (33)

Also recalling Ci defined in (30), we have for i > 1 that

Pr(Ci|Ci−1
1 ,xm,y) =

∑
xi−1

1 ∈Sm,i(xm,y)

Pr(xi−1
1 |Ci−1

1 ,xm,y)

× Pr(Ci|xi−1
1 , Ci−1

1 ,xm,y) (34)

=
∑

xi−1
1 ∈Sm,i(xm,y)

Pr(xi−1
1 |Ci−1

1 ,xm,y) Pr(Ci|xi−1
1 ,xm,y)

(35)

≥ min
xi−1

1 ∈Sm,i(xm,y)
Pr(Ci|xi−1

1 ,xm,y), (36)

where (35) follows since given (xi−1
1 ,xm,y), the event Ci

does not depend on Ci−1
1 , and (36) follows since the sum-

mation in (35) includes all xi−1
1 for which the probability

Pr(xi−1
1 |Ci−1

1 ,xm,y) is non-zero (see Lemma 2). Continuing,
we rewrite (36) as

Pr(Ci|Ci−1
1 ,xm,y)

≥ 1− max
xi−1

1 ∈Sm,i(xm,y)
Pr(Cci |xi−1

1 ,xm,y) (37)

= 1− max
xi−1

1 ∈Sm,i(xm,y)

∑
xi:q(xi,y)≥q(xm,y)

Pr(xi|xi−1
1 ,xm,y)

(38)

≥ 1− max
xi−1

1 ∈T i−1
1 (Pn,xm)

∑
xi:q(xi,y)≥q(xm,y)

Pr(xi|xi−1
1 ,xm,y)

(39)

= 1− max
xi−1

1 ∈T i−1
1 (Pn,xm)

∑
xi:q(xi,y)≥q(xm,y)

d(xi,xm)>∆

Pr(xi|xi−1
1 ,xm,y)

(40)

= 1− max
xi−1

1 ∈T i−1
1 (Pn,xm)

∑
xi:q(xi,y)≥q(xm,y)

d(xi,xm)>∆

Pr(xi|xi−1
1 ,xm),

(41)

where (39) follows by enlarging the set over which the maxi-
mization takes place, (40) follows from the fact that given xm,
only codewords xi such that d(xi,xm) > ∆ may have posi-
tive probability, and (41) follows since Xi−(xi−1

1 ,Xm)−Y
forms a Markov chain.

Step 3: Applying the technical lemmas

Combining (41) and Lemma 4, we obtain

Pr(Ci|Ci−1
1 ,xm,y)

≥ 1− eδn

(1− δ2
n)(1− e−nδ)

·
∑

x′∈T (Pn) :
q(x′,y)≥q(xm,y),
d(xi,xm)>∆

1

|T (Pn)|
. (42)

Using Lemma 5 to take the expectation over (Xm,Y ) gives

P̄ (n)
e,m

.
≤

∑
xm∈T (Pn),y

1

|T (Pn)|
Wn(y|xm)

·

[
1−

(
1−

∑
x′∈T (Pn) :

q(x′,y)≥q(xm,y)
d(x′,xm)>∆

1

|T (Pn)|

)Mn−1]
, (43)

where the
.
≤ follows from eδn

(1−δ2
n)(1−e−nδ)

.
= 1. Since the

above bound does not depend on m, it is an upper bound on
P̄

(n)
e . Applying the inequality 1 − (1 − a)M ≤ min{1,Ma}

for a ∈ [0, 1], and slightly enlarging the set of summands by
replacing d(x′,x) > ∆ by d(x′,x) ≥ ∆, we recover the
asymptotic upper bound corresponding to (22). The matching
lower bound that establishes (22) can be found in [8], though
it is not needed for proving (20).



Step 4: Deducing the error exponent
Similarly to (24), the inner sum in (22) satisfies∑

x′∈T (Pn):
q(x′,y)≥q(x,y),
d(x′,x)≥∆

1

|T (Pn)|
.
≤ max
T (P̂x′|xy)∈Pn(X|xy):

q(x′,y)≥q(x,y)
d(x′,x)≥∆

|T (P̂x′|xy)|
|T (Pn)|

.

(44)

We apply the standard properties of types |T (P̂x′|xy)| .
=

enHP̂ (X̃|Y,X) and |T (Pn)| .= enH(Pn) [1, Ch. 2], as well as

Wn(y|x) = en(D(P̂y|x‖W |Pn)+H(P̂y|x)), (45)

which implies that (Xm,Y ) has a given conditional type
VY |X with probability e−nD(V ‖W |Pn) times a subexponential
factor. Combining these properties with the fact that Pn → P
and the assumption that d(PXX̃) and q(PXY ) are continuous,
we deduce the final single-letter exponent:

P̄ (n)
e

.
≤ e
−nminV∈Td,q,P (∆) D(VY |X‖W |P )+|I(X̃;Y,X)−R|+ , (46)

where Td,q,P (∆) is defined in (18).

V. REDUCTION TO THE CSISZÁR-KÖRNER EXPONENT

We next show that when the distance function d(·, ·) is
optimized, and ∆ is chosen appropriately, the exponent in
Theorem 1 recovers the exponent Eq(R,P,W ) in (3) [4].

Corollary 1. Let ε > 0 be given, let q(·) be an arbitrary
continuous decoding rule, and let R,P be given. The expo-
nent of the ensemble average error probability of the RGV
construction with sufficiently small δ, d(PXX̃) = −I(X; X̃),
∆ = −(R+2δ), sufficiently large n, and decoding metric q(·)
over the DMC W is at least as high as Eq(R,P,W )− ε.

Proof. We first claim that the choices d(PXX̃) = −I(X; X̃)
ad ∆ = −(R+ 2δ) are valid for all R. To see this, note that

min
P
XX̃

: d(P
XX̃

)≤∆
PX=P

X̃
=P

I(X; X̃)

∣∣∣∣d(P
XX̃

)=−I(X;X̃)

∆=−(R+2δ)

(47)

= min
P
XX̃

: I(X;X̃)≥R+2δ
PX=P

X̃
=P

I(X; X̃) (48)

≥ R+ 2δ, (49)

thus, condition (19), which is imposed in Theorem 1 for
the achievability of ERGV(R,P,W, q, d,∆) is met. Now, by
setting d(PXX̃) = −I(X; X̃), and ∆ = −(R+2δ), we obtain

ERGV(R,P,W, q, d,∆)
∣∣∣
d(P

XX̃
)=−I(X;X̃),∆=−(R+2δ)

= min
V ∈TI,δ

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
, (50)

where

TI,δ ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), I(X̃;X) ≤ R+ 2δ
}
. (51)

The result follows by letting δ → 0 and using the continuity
of Eq(R,P,W ) in R [4].

The following proposition reveals that the above choice
of (d,∆) in fact maximizes the general exponent given in
Theorem 1.

Proposition 1. Under the setup of Theorem 1 with

R ≤ min
P
XX̃

:PX=P
X̃

=P

d(P
XX̃

)≤∆

I(X; X̃)− 2δ, (52)

we have

ERGV(R,P,W, q, d,∆)

≤ ERGV(R,P,W, q, d,∆)
∣∣∣
d=−I(X;X̃), ∆=−(R+2δ)

. (53)

Proof. From (52), we see that among all P ′
XX̃

such that
P ′X = P ′

X̃
= P , the condition d(P ′

XX̃
) ≤ ∆ implies

R + 2δ ≤ IP ′(X; X̃). The contrapositive statement is that
among all P ′

XX̃
such that P ′X = P ′

X̃
= P , the condition

R+ 2δ > IP ′(X; X̃) implies d(P ′
XX̃

) > ∆. Thus, when (52)
holds, Td,q,P (∆) defined in (18) satisfies Td,q,P (∆) ⊇ T ′′,
where

T ′′ ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), R+ 2δ ≥ I(X; X̃)
}
. (54)

Therefore,

ERGV(R,P,W, q, d,∆)

= min
V ∈Td,q,P (∆)

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+

(55)

≤ min
V ∈T ′′

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
, (56)

so the exponent is upper bounded by that corresponding to
d(PXX̃) = −I(X; X̃) and ∆ = −(R+ 2δ).

We note that the choice d(PXX̃) = −I(X; X̃) is not only
the one that maximizes the achievable exponent in Theorem
1, but it is universally maximizing for all channels, decoding
rules, and input distributions.
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