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Abstract—We propose a saddlepoint approximation of the
error probability of a binary hypothesis test between two i.i.d.
distributions. The approximation is accurate, simple to compute,
and yields a unified analysis in different asymptotic regimes. The
proposed formulation is used to efficiently compute the meta-
converse lower bound for moderate block-lengths in several cases
of interest.

I. INTRODUCTION

Non-Bayesian binary hypothesis testing has found a large
number of applications in information theory, image process-
ing, signal processing, social sciences and biology. The goal is,
upon observing a certain random sequence, to decide which of
the two possible probability distributions generated the obser-
vation. The probability of making a mistake in this decision is
minimized when employing the likelihood ratio test, as shown
by Neyman and Pearson [1]. While in some applications
having a coarse approximation of the performance of this
test is sufficient, in other applications the computation of the
exact minimum error probability is important. In this case, for
most testing distributions of interest, computing the minimum
probability of error can become a heavy computational task
especially when the observation length grows large.

In the context of reliable communication, binary hypothesis
testing has been instrumental in the derivation of converse
bounds to the error probability. In [2, Sec. III], Shannon,
Gallager and Berlekamp derived lower bounds to the error
probability in the transmission of M messages by analyzing
an instance of binary hypothesis testing. Blahut emphasized
the fundamental role of binary hypothesis testing in infor-
mation theory in [3]. More recently, Polyanskiy, Poor and
Verdú applied the Neyman-Pearson lemma to a specific binary
hypothesis test to derive the meta-converse bound [4, Th.
27], a fundamental finite-length lower bound to the channel-
coding error probability from which several converse bounds
can be recovered. While this bound is surprisingly accurate
in several cases of interest, it is difficult to evaluate even for
simple channels.

This work has been funded in part by the European Research Council
(ERC) under grants 714161 and 725411, by the Spanish Ministry of Econ-
omy and Competitiveness under grants TEC2013-41718-R, RYC-201416332,
IJCI-2015-27020 and TEC2016-78434-C3 (AEI/FEDER, EU), by the Madrid
Autonomous Community under grant S2103/ICE-2845 and by the Spanish
Ministry of Education, Culture and Sport under grant FPU14/01274.

In this paper, we derive a saddlepoint expansion of the min-
imum error probability trade-off of non-Bayesian hypothesis
testing between two arbitrary i.i.d. distributions satisfying mild
regularity conditions. This expansion yields an approximation
which is accurate, simple to compute and allows a unified anal-
ysis in different asymptotic regimes. The proposed framework
is then applied to analyze the meta-converse lower bound for
symmetric channels. The saddlepoint approximation can be
computed for auxiliary distributions other than the capacity-
achieving output distribution. In particular, we show the advan-
tage of computing it for the tilted output distribution attaining
the sphere-packing and strong-converse exponents [2], [5].

This work is related to [6], [7], where the meta-converse
lower bound is evaluated by solving (and approximating)
Laplace integrals using a steepest descent technique. However,
the method followed in [6], [7] is tailored to specific scenarios
(the AWGN channel is treated in [6], while parallel chan-
nels, binary input AWGN channels and the binary symmetric
channel are investigated in [7]), and seems difficult to extend
to arbitrary auxiliary distributions. Saddlepoint methods have
also been used to obtain approximations of random-coding
bounds in [8]–[10].

II. BINARY HYPOTHESIS TESTING

Let Y be a random variable on Y distributed according
to either P or Q, where P and Q are probability measures.
We consider a binary hypothesis test deciding the underlying
distribution based on n i.i.d. observations of Y . We denote
the observed vector by y = (y1, . . . , yn) ∈ Yn and the n-
fold distributions by Pn and Qn, respectively. Let T (y) ∈
[0, 1] denote the probability of the test deciding P given an
observation y. Then, 1 − T (y) is the probability of deciding
Q. The best error probability under P among all tests T with
error probability under Q not exceeding β is

αβ
(
Pn, Qn

)
, inf
T :EQn [T (Y )]≤β

{
1− EPn [T (Y )]

}
, (1)

where EA[·] denotes expectation with respect to A.
Neyman and Pearson (NP) gave an explicit form for the test

achieving this trade-off [1]. Defining the log-likelihood ratio

(y) ,
1

n
log

dPn(y)

dQn(y)
, (2)



the NP test minimizing (1) is given by

TNP(y) = 11
[
(y)>γ

]
+ p11

[
(y)=γ

]
(3)

where 11[·] is the indicator function and γ and p ∈ [0, 1] are
parameters chosen such that EQn

[
TNP(Y )

]
= β. This test

yields the following characterization for αβ
(
Pn, Qn

)
.

Lemma 1 (NP error trade-off): The optimal error probability
tradeoff for testing between Pn and Qn can be expressed as

αβ
(
Pn, Qn

)
= max

γ

{
P
[
(Y )≤γ

]
+enγ

(
Q
[
(Y )>γ

]
−β
)}
,

(4)

where the probabilities P[·] and Q[·] are computed with respect
to Y ∼ Pn and Y ∼ Qn, respectively.

Proof: To obtain (4), we optimize [11, eq. (95)] over γ′.
Equality is attained for the threshold appearing in the NP test.

III. SADDLEPOINT APPROXIMATION

We consider the following expansion of a tail probability,
where O(fn) summarizes terms of order no larger than fn.

Lemma 2 (Saddlepoint expansion): Let {Z`}n`=1 be a se-
quence of i.i.d. real-valued non-lattice random variables1 with
positive variance and define Z̄n , 1

n

∑n
`=0 Z`. Let κ(s) =

log E[esZ1 ] be the cumulant generating function of Z1 with
region of convergence Sκ, and denote by κ′(s) and κ′′(s) its
first and second derivatives. Assume that 0 ∈ Sκ, and that the
mapping t→ exp(κ(it)), where i =

√
−1, has a finite ξ-norm

for some ξ ≥ 1. If there exists s ∈ Sκ such that κ′(s) = γ
then, for such s,

Pr
[
Z̄n ≥ γ

]
= 11[s < 0]

+ sgn(s)
(
Ψ(λn)+O

(
Ψ(λn)n−

1
2

))
en(κ(s)−sκ

′(s)), (5)

where sgn(x) is equal to 1 for x ≥ 0 and −1 for x < 0,

Ψ(λn) , Q(|λn|)e
λ2n
2 , (6)

λn , |s|
√
nκ′′(s), (7)

and Q(·) denotes the Gaussian Q-function.
Proof: See [12, eq. (2.2.6)] and [12, Prop. 2.3.1].

The function Ψ(λn) defined in (6) satisfies

Ψ(λn) =

{(√
2πλn

)−1
+O(λ−3n ), λn →∞,

Ψ(λ̂) +O(λn − λ̂), λn → λ̂ <∞.
(8)

Suposse that sn → ŝ as n → ∞ and let γ = γn satisfy
γn = κ′(sn). Under mild regularity conditions, the error
term in (5) is uniformly bounded in a compact set around
s = ŝ [12, Prop. 2.3.1]. Then, according to (8), for ŝ > 0,
Ψ(λn) = O

(
n−

1
2

)
and the error term in (5) becomes O(n−1).

In contrast, if sn → 0 as sn = O
(
n−

1
2

)
, then Ψ(λn) = O(1)

and the error term in (5) becomes O
(
n−

1
2

)
.

1A random variable Z is said to be lattice if, and only if
∑∞
k=−∞ Pr[Z =

a+ kδ] = 1 for some a, δ ≥ 0. Otherwise it is said to be non-lattice.

A. Saddlepoint approximation of αβ
(
Pn, Qn

)
For the binary hypothesis test considered in Section II,

computing the tail probabilities in (4) requires solving two
n-dimensional integrals, which is not feasible in general,
even for moderate values of n. To compute the trade-off
αβ(Pn, Qn) in an efficient manner, we shall apply the ex-
pansion in Lemma 2 to P

[
(Y )≤γ

]
and Q

[
(Y )>γ

]
.

We define

κ(s) , log

∫
dP (y)s

dQ(y)s
dQ(y) = (s− 1)Ds(P‖Q), (9)

where Ds(P‖Q) denotes the Rényi divergence of order s.
This function is well defined provided that P is absolutely
continuous with respect to Q, i.e., P � Q. In the rest of the
paper, we shall also assume that
(A1) P and Q are distinct and absolutely continuous with

respect to each other, i.e., P � Q, and Q� P ,
(A2) the random variables ZP , −(YP ), YP ∼ P , and

ZQ , (YQ), YQ ∼ Q, satisfy the conditions in
Lemma 2 and [12, Prop. 2.3.1].

Theorem 1: The NP trade-off αβ
(
Pn, Qn

)
as a function of

the auxiliary parameter s ∈ Sκ is given by

α(s) = 11[s > 1] + an(s)en(κ(s)+(1−s)κ′(s)), (10)

β(s) = 11[s < 0] + bn(s)en(κ(s)−sκ
′(s)), (11)

where the sub-exponential factors an(s) and bn(s) satisfy

an(s) = sgn(1− s)Ψ
(
|1− s|

√
nκ′′(s)

)(
1 +O

(
n−

1
2

))
, (12)

bn(s) = sgn(s)Ψ
(
|s|
√
nκ′′(s)

)(
1 +O

(
n−

1
2

))
, (13)

where sgn(x) is equal to 1 for x ≥ 0 and −1 for x < 0.
Proof: According to the NP test (3), the trade-off between

α and β as a function of an auxiliary parameter s satisfies

P
[
(Y )<κ′(s)

]
≤ α(s) ≤ P

[
(Y )≤κ′(s)

]
, (14)

Q
[
(Y )>κ′(s)

]
≤ β(s) ≤ Q

[
(Y )≥κ′(s)

]
. (15)

Then, the result follows by applying Lemma 2 to the random
variables ZP and ZQ, defined in (A2) above, which have
cumulant generating functions

κP (s) = log EP

[(
dP (y)
dQ(y)

)−s]
= κ(1− s), (16)

κQ(s) = log EQ

[(
dP (y)
dQ(y)

)s]
= κ(s). (17)

For random variables satisfying (A2) the corresponding expan-
sions of the upper and lower bounds in (14) and (15) coincide
and yield (10) and (11), respectively.

Combining Lemmas 1 and 2 we obtain an alternative for-
mulation of the optimal trade-off of binary hypothesis testing.

Theorem 2: The NP trade-off αβ
(
Pn, Qn

)
satisfies

αβ
(
P,Q

)
= max

s

{(
an(s) + bn(s)

)
en(κ(s)+(1−s)κ′(s))

+ 11[s > 1] +
(

11[s < 0]− β
)
enκ

′(s)
}
, (18)

with an(s) and bn(s) defined in (12) and (13), respectively.
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Fig. 1. NP error trade-off of a binary hypothesis test between a Laplacian
distribution versus a mixture of two normal distributions.

Proof: The proof follows by applying in Lemma 1 the
saddlepoint expansion (5) to the probabilities P

[
(Y ) ≤ γ

]
and Q

[
(Y )>γ

]
, and by using the mapping κ′(s) = γ. The

proof is then analogous to that of Theorem 1.
For a sufficiently large n, Theorems 1 and 2 allow us

to approximate the trade-off αβ
(
P,Q

)
by disregarding the

O
(
n−

1
2

)
terms in (12) and (13). We shall refer to the resulting

expression as saddlepoint approximation. In this approxima-
tion, the probabilities α(s), β(s) ≤ 1

2 correspond to s ∈ [0, 1].
While obtaining a closed-form expression for κ(s) is dif-

ficult in general, evaluating the cumulant generating function
κ(s) and its first and second derivatives only requires to solve
three one-dimensional integrals, as shown in the next result.

Proposition 1: Let κ(s) be defined in (9) and let

J`(s) , EQ
[
es(Y )(Y )`

]
= EP

[
e(s−1)(Y )(Y )`

]
. (19)

Then κ(s) = log J0(s) and

κ′(s)=
J1(s)

J0(s)
, κ′′(s)=

J2(s)

J0(s)
− J1(s)2

J0(s)2
. (20)

Proof: The derivative of J`(s) is J ′`(s) = J`+1(s). Noting
that κ(s) = log J0(s), then (20) follows by computing its two
first derivatives.

We illustrate the accuracy of the saddlepoint approximation
with an example. We let P be a Laplacian distribution with
unit variance and unit mean, and Q be the equiprobable
mixture of two normal distributions with unit variance and
mean equal to −1 and +1, respectively. Fig. 1 depicts the
trade-off α versus β for different values of n. We show
the exact trade-off αβ(Pn, Qn) computed using Monte Carlo
methods and the saddlepoint approximation that follows from
Theorem 1 by ignoring the O

(
n−

1
2

)
terms in (12)-(13). The

functions κ(s), κ′(s) and κ′′(s) have been obtained for a
grid of values of s ∈ [−1, 2] via numerical integration as
described in Proposition 1. We can see that the precision of
the approximation is remarkable for a number of observations
n ≥ 8 in the whole range of values. In the range α, β ≤ 1

2
the approximation is accurate even for n ≥ 1.

B. Asymptotic analysis

We next study the asymptotic behavior of the error proba-
bility of binary hypothesis testing as n→∞. To this end, we
explicitly write the dependence of α and β with n, as αn and
βn, respectively. We shall also assume that (A1)-(A2) hold.

When both αn and βn decay exponentially in n, the
hypothesis test is in the so-called large deviations regime.
Let βn = b̂ne

−nB where B ≥ 0 and b̂n satisfies
limn→∞

1
n log b̂n = 0. Theorem 1 provides a direct approach

to study the existing trade-off between the error exponents
A , limn→∞− 1

n logαn, where αn = αβn(Pn, Qn), and B.
Using (10) and (11), we obtain the following parametric
representation of A and B as a function of s ∈ [0, 1]:

A(s) = −κ(s)− (1− s)κ′(s), (21)
B(s) = −κ(s) + sκ′(s). (22)

This representation appears, e.g., in [2, Th. 5] and [3, Th. 4].
A non-parametric relation between A and B is given by the
next result, corresponding to [3, Th. 7]:

Corollary 1 (Error exponent trade-off): The error exponent
A as a function of B is given by

A(B) = max
0≤s≤1

{
− 1
sκ(s)− 1−s

s B
}

(23)

= max
0≤s≤1

{
1−s
s

(
Ds(P‖Q)−B

)}
. (24)

Proof: Solving for κ′(s) in (22), and substituting the
resulting expression in (21) yields

A(s) = − 1
sκ(s)− 1−s

s B(s). (25)

This equation expresses A(s) as a function of B(s). However,
the dependence between A and B is not explicit since the
value of s appearing in (25) needs to be obtained from (22)
by setting B(s) = B and solving for s. We next show that this
value of s is precisely the one optimizing (23). Since the term
in braces in (23) coincides with (25), we then conclude that
the optimization in (23) yields A(B) = A(s). The identity
(24) follows from (9) and (23).

To show that the value of s optimizing (23) satisfies (22), we
take the derivative of the bracketed term in (23) with respect
to s. Equating the result to 0 yields (22) when B(s) = B.

When βn = β > 0, the corresponding error exponent is
B = 0 and the error probability of the hypothesis test is
governed by the small deviations (or Stein’s) regime. In this
setting, the error probability αn becomes [13, Th. 1.1]

− 1

n
logαn = −κ′(0)−

√
1
nκ
′′(0)Q−1(β) +O

(
logn
n

)
, (26)

which is usually referred to as normal approximation.
This approximation can be recoved from a refined version

of Theorem 2, where the error terms are specified in more
detail. Indeed, to recover (26) one requires a sequence s = sn
that satisfies sn → 0 at a rate n−

1
2 . In this case, the error

term in (13) becomes O
(
Ψ(λn)n−

1
2

)
= O

(
n−

1
2

)
. As the sub-

exponential factor in (18) behaves as n−
1
2 in this regime, it is

masked by this error term.



IV. APPLICATION TO CHANNEL CODING

We consider the problem of transmitting M equiprobable
messages over a length-n memoryless channel PY |X(y|x) =∏n
i PY |X(yi|xi). The encoder maps a message v ∈
{1, . . . ,M} to a codeword x(v) using a codebook C. Based
on the channel output y, the decoder guesses the transmitted
message v̂ with error probability Pe(C) , Pr{V̂ 6= V }.

The meta-converse bound [4, Th. 27] lower-bounds Pe(C)
by the error probability of a binary hypothesis test. Under
certain symmetry conditions, it yields [4, Th. 28]

Pe(C) ≥ α 1
M

(
PY |X=x, QY

)
. (27)

In particular, (27) holds when Pr
[ dPY |X(Y |x)

dQY (Y ) ≥ τ
]

is
independent of x ∈ Xn for every τ ,- where the probability is
computed with respect to PY |X=x. This condition is satisfied,
e.g., for symmetric memoryless channels when QY = QnY
with QY the capacity-achieving or the exponent-achieving
output distribution, defined next.

For simplicity, we assume that PY |X is absolutely continu-
ous with respect to the Lebesgue measure and denote its pdf
by pY |X . We also assume that the channel input has bounded
support and denote by P̄X the uniform distribution. We define

qρ(y) ,
1

µ(ρ)

(∫
pY |X(y|x)

1
1+ρ dP̄X(x)

)1+ρ
, (28)

where µ(ρ) ,
∫ (∫

pY |X(y|x)
1

1+ρ dP̄X(x)
)1+ρ

dy. Then, the

Gallager E0-function [14, eq. (5.6.14)] is E0(ρ) , − logµ(ρ).
We consider the hypothesis test in (27) and QY with

pdf qY (y) =
∏n
i qρ(yi). For ρ = 0 this distribution is

the capacity-achieving output distribution. When ρ is appro-
priately chosen this distribution optimizes the exponential
behavior of the bound, as shown next.

Theorem 3 (Meta-converse, auxiliary distribution qρ): Let
log

pY |X(Y |x)
qρ(Y ) be non-lattice and let pY |X=x and qρ share the

same support, ρ > −1. Then, any code C with M=enR≥2
codewords satisfies

Pe(C) ≥ max
ρ>−1

{
11[ρ < 0]

+
(
ηn(ρ)−e−n(R−E

′
0(ρ))

)
e−n(E0(ρ)−ρE′0(ρ))

}
, (29)

where, for Ψ(·) defined in (6),

ηn(ρ) , Ψ
(√
nV (ρ)

)(
1 +O

(
n−

1
2

))
+ sgn(ρ)Ψ

(√
nρ2V (ρ)

)(
1 +O

(
n−

1
2

))
, (30)

and V (ρ), 1
(1+ρ)2κ

′′( 1
1+ρ

)
for κ(s) = log

∫ pY |X(y|x)s

qρ(y)s−1 dy.
Proof: Let us consider the bound that follows from (27)

when qY (y) =
∏n
i qρ(yi), ρ > −1. Applying Theorem 2 with

s > 0, we obtain that, for any ρ > −1,

Pe(C) ≥ max
s>0

{(
an(s) + bn(s)

)
en(κ(s)+(1−s)κ′(s))

+ 11[s > 1]− en(κ
′(s)−R)

}
. (31)

In (31), we can let ρ be a function of s provided that the
derivatives κ′(s) and κ′′(s) are computed assuming ρ to be
independent of s. We fix ρ = 1−s

s .2 Using that κ(s) does
not depend on x due to the channel symmetry, a tedious but
straightforward calculation yields

κ(s) = −sE0

(
1−s
s

)
, (32)

κ′(s) = 1
sE
′
0

(
1−s
s

)
− E0

(
1−s
s

)
, (33)

where E′0(ρ) = ∂E0(ρ)
∂ρ .

Although (33) coincides with the derivative of the right-hand
side of (32), this is not to be expected in general. Indeed, (33)
follows from Proposition 1 by assuming qρ independent of s
and by then fixing ρ = 1−s

s in the resulting expression. In
contrast, on the right-hand side of (32), the mapping ρ = 1−s

s
is implicit. For the second derivative of κ(s), there exists no
direct correspondence between κ′′(s) and E′′0 (ρ).

Using the definitions of an and bn in (12) and (13), sub-
stituting (32) and (33) in (31), and changing the optimization
variable from s = 1

1+ρ ∈ (0,∞) to ρ = 1−s
s ∈ (−1,∞), we

obtain the desired result.
Theorem 3 recovers the the sphere-packing exponent [2]

Esp(R) , max
ρ≥0

{
E0(ρ)− ρR

}
(34)

and the strong-converse exponent [5]

Esc(R) , max
−1<ρ<0

{
E0(ρ)− ρR

}
. (35)

Indeed, let ρ? satisfy E′0(ρ?) = R, and note that E′0(0) =
I(X;Y ) with X ∼ P̄X . Then, ρ? > 0 corresponds to R <
I(X;Y ) and ρ? < 0 corresponds to R > I(X;Y ). Setting
in (29) ρ = ρ̂ such that E′0(ρ̂) = R− δ, δ > 0, yields

Pe(C) ≥ 11[ρ̂ < 0] +
(
ηn(ρ̂)− e−nδ

)
e−n(E0(ρ̂)−ρ̂(R−δ)). (36)

It follows that limn→∞
1
n log

(
ηn(ρ̂) − e−nδ

)
= 0 for any

δ > 0. Thus, by first letting n → ∞ and then δ → 0, (36)
recovers the sphere-packing exponent Esp(R) when ρ? > 0
and the strong-converse exponent Esc(R) when ρ? < 0.

Furthermore, by letting ρ = ρ̂n tend to ρ? with n as

ρ̂n = ρ? −
log
(√

2πnV (ρ?)
)

nE′′0 (ρ?)
, (37)

Theorem 3 recovers not only the sphere-packing exponent
when ρ? > 0, but also the sub-exponential behavior of the
error probability Pe(C) in a certain regime.

Corollary 2: Let ρ? satisfy E′0(ρ?) = R and ρ? > 0. Then,

Pe(C) ≥
(

1
ρ?

(
2πnV (ρ?)

)− 1+ρ?
2 +O

(
n−(1+

ρ?
2 )
))
e−nEsp(R).

(38)

Proof: The proof is omitted due to space constraints.
The lower bound (38) has a sub-exponential factor of the

order n−
1+ρ?

2 . For rates between the critical rate of the channel
and capacity, this order coincides with that of the random-
coding upper bound to the error probability in [9, Th. 2].

2This choice correspond to s = 1
1+ρ

, also used in the derivation of Gallager
random-coding bound [14, Ch. 5]. See also [14, p. 529, Prob. 5.6].
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A. Example: The binary-input AWGN (BIAWGN) channel

We consider the converse bounds that follow from (27) with
qY (y) =

∏n
i qρ(yi) when ρ = 0 (capacity-achieving) and

when ρ = ρ?n is the value of ρ maximizing (29) in Theorem 3
(exponent-achieving). In order to show the accuracy of the
proposed saddlepoint approximations, even for extremely low
values of n, Fig. 2 compares the converse bounds evaluated via
Monte Carlo simulation, and the saddlepoint approximations
obtained by disregarding the O

(
n−

1
2

)
terms in Theorem 2

(for ρ = 0) and in Theorem 3 (for ρ = ρ?n). For reference,
we also plot the RCU upper bound [4, Th. 16] evaluated
according to [10, eq. (61)]. We can see how the saddlepoint
approximations become very accurate for n ≥ 20 and still
provide a good approximation of the bounds for n < 20.
Additionally, Fig. 2 also shows that by using the exponent-
achieving ρ = ρ?n we obtain a tighter meta-converse than
by using ρ = 0. In fact, as discussed after Theorem 3,
the meta-converse bound with ρ = ρ?n attains the sphere-
packing error exponent, while this is not true in general when
ρ = 0. Therefore, the gap between the two bounds is not only
significant, but it may even grow exponentially with n.

Figure 3 compares different bounds in a scenario with
R = 0.75 bits/channel use and n = 1024. The lower bounds
in the figure are Shannon’s sphere-packing (SP) bound for the
AWGN channel [15], the improved SP bound for symmetric
channels [16, Th. 3.1], and Theorem 3. As upper bounds
we plot the RCU bound [4, Th. 16] and Gallager’s random
coding bound [14, Th. 5.6.2]. From Fig. 3 we conclude that,
as perhaps expected, the meta-converse lower bound is much
tighter than both Shannon’s and the improved SP bounds. The
error probability of the best code is precisely characterized
between the RCU and the meta-converse bound from Th. 3.
For n = 1024 and the exponent-achieving auxiliary distribu-
tion, evaluation of (27) using previous results in the literature
was computationally unfeasible. In contrast, evaluating the
saddlepoint approximation has a computational complexity
similar (if not smaller) to that of the other bounds.

1 1.5 2 2.5 3
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

E
rr

or
pr

ob
ab

ili
ty

,P
e

Gallager
RCU
Meta-converse, Th. 3
Improved SP
Shannon’59

Fig. 3. Error probability bounds for a BIAWGN channel with parameters
R = 0.75, n = 1024.
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“Bayesian M-ary hypothesis testing: The meta-converse and Verdú-Han
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