
An Achievable Error Exponent for the Multiple
Access Channel with Correlated Sources
Arezou Rezazadeh∗, Josep Font-Segura∗, Alfonso Martinez∗, Albert Guillén i Fàbregas∗†‡
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Abstract—This paper derives an achievable random-coding
error exponent for joint source-channel coding over a multiple
access channel with correlated sources. The codebooks are
generated by drawing codewords from a multi-letter distribution
that depends on the composition of the source message.

I. INTRODUCTION

For point-to-point communication, joint source-channel
coding is known to yield a larger exponent than separate
source-channel coding [1], [2], even though the latter is
optimal in terms of transmissibility. In contrast, for the
multiple-access channel with correlated sources, joint source-
channel coding leads to a larger transmissibility region [3],
[4]. In addition, tuning the random-coding ensemble leads
to improved exponents in the point-to-point channel [5], [6]
and in the multiple-access channel [7], [8]. Inspired by these
facts, we are motivated to consider joint source-channel coding
where codewords are generated with a conditional probability
distribution of the codeword symbol that depends both on the
instantaneous source symbol and on the type of the source
sequence. In particular, this paper studies a novel ensemble
where codebooks are drawn from a multi-letter distribution
that is the product of independent conditional distributions that
depend on the corresponding single-letter value of the source
message. Generalizations to constant-composition families,
and other are possible, although they are not discussed here.

A. Problem set-up, notation and definitions
In the multiple-access channel, two or more terminals

send information to a common receiver. Here, we consider
simultaneous transmission over the channel of two correlated
discrete memoryless sources. The sources are characterized by
a probability distribution PU1U2 on the alphabet U1×U2, where
U1 and U2 are the respective alphabets of the two sources.
The source sequences u1 and u2 have length n. We use a
bold letter u to denote a sequence and underline to represent
a pair of quantities for users 1 and 2, such as

¯
u = (u1, u2),

¯
u = (u1,u2) or Ū = U1 × U2.

For user ν = 1, 2, the source message uν is mapped onto
codeword xν(uν), which also has length n and is drawn from
the codebook Cν = {xν(uν);uν ∈ Un

ν
}. Both terminals
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send the codewords over a discrete memoryless multiple
access channel with transition probability W (y|x1, x2), input
alphabets X1 and X2, and output alphabet Y .

Given the received sequence y, the decoder estimates the
transmitted pair messages

¯
u based on the maximum a poste-

riori criterion:

¯
u� = argmax

¯
u∈

¯
Un

P
n

¯
U (

¯
u)Wn

�
y|x1(u1),x2(u2)

�
. (1)

An error occurs if the decoded messages
¯
u� differ from

the transmitted
¯
u. Using the convention that scalar random

variables are denoted by capital letter, e.g., X , and capital
bold letters denote random vectors, the error probability for a
given pair of codebooks is given by

�
n(C1

, C2) � P [(U �
1,U

�
2) �= (U1,U2)] . (2)

The pair of sources (U1, U2) is transmissible over the
channel if there exists a sequence of codebooks (C1

n
, C2

n
) such

that limn→∞ �
n(C1

n
, C2

n
) = 0. An exponent E(P

¯
U ,W ) is

achievable if there exists a sequence of codebooks such that

lim inf
n→∞

− 1

n
log

�
�
n(C1

n
, C2

n
)
�
≥ E(P

¯
U ,W ). (3)

We apply random coding to show the existence of such
sequences of codebooks. Equivalently, we find a sequence
of ensembles whose error probability averaged over the en-
semble �̄

n tends to zero, in order to determine an achievable
exponent. For user ν = 1, 2, we assign to source proba-
bility distribution PUν a conditional probability distribution
Qν,PUν

(x|u). We represent the set of these distributions by
{Qν,PUν

: PUν ∈ PUν}. For every message un

ν
∈ Un

ν
, we ran-

domly generate a codeword xν(uν) according to the probabil-
ity distribution Q

n

ν,π(uν)
(xν |uν) =

�
n

i=1 Qν,π(uν)(xν,i|uν,i),
where Qν,π(uν) is a probability distribution that depends on
the type of uν , denoted by π(uν).

We shall also need the symbol ξ ∈ {{1}, {2}, {1, 2}} and
its complement ξc among the subsets of {1, 2}. For example,
ξ
c = {2} for ξ = {1} and ξ

c = ∅ for ξ = {1, 2}. In order to
simplify some expressions, we adopt the following notational
convention,

uξ =






∅ ξ = ∅
u1 ξ = {1}
u2 ξ = {2}

¯
u ξ = {1, 2}

, (4)



for the variable uν , and similarly for the probability distribu-
tion Qν and the set Xν .

The set of all possible distributions of single letter X is
denoted by PX and the set of all empirical distributions on a
vector in Xn (i.e. types) is denoted by Pn

X . Given P̂X ∈ Pn

X ,
the type class T n(P̂X) is the set of all sequences in Xn with
type P̂X . If x ∈ T n(P̂X), for any probability distribution
Q

n(x) =
�

n

i=1 Q(xi), we have the following facts [9]

Q
n(x) = e

n
�

x∈X P̂X(x) logQ(x)
, (5)

e
nH(P̂X)

(n+ 1)|X | ≤
��T n(P̂X)

�� ≤ e
nH(P̂X)

, (6)

where the cardinality of an arbitrary set Z is denoted by |Z|.
Considering (5) and (6), we have

P
�
T n(P̂X)

�
=

�

x∈T n(P̂X)

Q
n(x) ≤ e

−nD(P̂X ||Q)
. (7)

Given P̂XY ∈ Pn

X×Y and y ∈ T n(P̂Y ), the conditional type
class T n

y (P̂XY ) is defined to be the set of all sequences x ∈
Xn such that (x,y) ∈ T n(P̂XY ). It can be proved that [9]

��T n

y (P̂XY )
�� =

��T n(P̂XY )
��

��T n(P̂Y )
�� . (8)

II. AN ACHIEVABLE EXPONENT

Proposition 1: For the two-user MAC transition probability
W and source probability distributions P

¯
U , an achievable

exponent E1(P
¯
U ,W ) is given by (9) and (10) at the bottom

of the page, where λ(
¯
U,

¯
X,Y ) = log

�
P
¯
U (¯

U)W (Y |
¯
X)

�
, and

[x]+ = max{0, x}.
We briefly note that by setting P̂

¯
U
¯
XY =

P
¯
UQ1,P̂U1

Q2,P̂U2
W and P̂

¯
U
¯
XY = P̃

¯
U
¯
XY , the exponent

in (9) can be shown to recover the achievability region by
Cover, El Gamal and Salehi [3].

Proof: We first bound �̄
n, the average error probability

over the ensemble, for a given block length n. Applying the
random coding union bound [10] for joint source channel
coding, we have

�̄
n ≤

�

¯
u,

¯
x,y

P
n

¯
U

¯
XY (

¯
u,

¯
x,y)

min

�
1,

�

¯
u� �=

¯
u

P
�
P

n

¯
U (

¯
u�)Wn(y|

¯
X �)

P
n

¯
U (

¯
u)Wn(y|

¯
x)

≥ 1

��
, (11)

where
¯
x� has the same distribution as

¯
x but is independent of

y. We group the error events corresponding to the summation
over (u�

1,u
�
2) �= (u1,u2) into three types of error events,

namely (u�
1,u2) �= (u1,u2), (u1,u�

2) �= (u1,u2) and
(u�

1,u
�
2) �= (u1,u2). We respectively denote these types of

error by ξ ∈ {{1}, {2}, {1, 2}}. Using that min{1, a + b} ≤
min{1, a}+min{1, b}, we further bound �̄

n as

�̄
n ≤

�

ξ

�̄
n

ξ
, (12)

where

�̄
n

ξ
≤

�

¯
u,

¯
x,y

P
n

¯
U

¯
XY (

¯
u,

¯
x,y)

min

�
1,

�

u�
ξ �=uξ

x�
ξ:

Pn

¯
U (u�

ξ,uξc )W
n(y|x�

ξ,xξc )

Pn
¯
U (

¯
u)Wn(y|x1,x2)

≥1

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
)

�
.

(13)

Next, we group the outer and inner summations in (13)
based on the empirical distributions of (

¯
u,

¯
x,y) and (u�

ξ
,x�

ξ
),

respectively, and then sum over all possible empirical distribu-
tions, respectively denoted by P̂

¯
U
¯
XY and P̃

¯
U
¯
XY . We note that

the summation over P̂
¯
U
¯
XY runs over the set of all possible

empirical distributions, Pn

¯
U×

¯
X×Y

, while the summation over
P̃
¯
U
¯
XY is restricted to the set Ln

ξ
, defined as

Ln

ξ
(P̂

¯
U
¯
XY ) �

�
P̃
¯
U
¯
XY ∈ Pn

¯
U×

¯
X×Y : P̃UξcXξcY

= P̂UξcXξcY
,

E
P̃
[λ(

¯
U,

¯
X,Y )] ≥ E

P̂
[λ(

¯
U,

¯
X,Y )]

�
.

(14)

As a result, we can write the summations in equation (13)
respectively as

�

¯
u,

¯
x,y

P
n

¯
U

¯
XY (

¯
u,

¯
x,y) =

�

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

�

(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P
n

¯
U

¯
XY (

¯
u,

¯
x,y),

(15)

E1(P
¯
U ,W ) = max

{QνPUν
}ν=1,2Puν ∈PUν

min
ξ∈{{1},{2},{1,2}}

min
P̂

¯
U

¯
XY ∈P

¯
U×

¯
X×Y

D(P̂
¯
U
¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W )

+

�
min

P̃
¯
U

¯
XY ∈Lξ(P̂

¯
U

¯
XY )

D(P̃
¯
U
¯
XY ||P̃UξQξ,P̃Uξ

P̂UξcXξcY
)−H(P̃Uξ)

�+
(9)

Lξ(P̂
¯
U
¯
XY ) �

�
P̃
¯
U
¯
XY ∈ P

¯
U×

¯
X×Y : P̃UξcXξcY

= P̂UξcXξcY
, E

P̃
λ(

¯
U,

¯
X,Y ) ≥ E

P̂
λ(

¯
U,

¯
X,Y )

�
(10)



and
�

u�
ξ �=uξ

x�
ξ:

Pn

¯
U (u�

ξ,uξc )W
n(y|x�

ξ,xξc )

Pn
¯
U (

¯
u)Wn(y|x1,x2)

≥1

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
) =

�

P̃
¯
U

¯
XY ∈Ln

ξ (P̂
¯
U

¯
XY )

�

(u�
ξ,x

�
ξ)∈T n

uξcxξcy
(P̃

¯
U

¯
XY )

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
).

(16)

Since the conditional distribution Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
) has the

same value for all (u�
ξ
,x�

ξ
) ∈ T n

uξcxξcy(P̃¯
U
¯
XY ), we have

�

(u�
ξ,x

�
ξ)∈T n

uξcxξcy
(P̃

¯
U

¯
XY )

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
) =

|T n

uξcxξcy(P̃¯
U
¯
XY )|Qn

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
). (17)

Considering (8) and the fact that P̃UξcXξcY
= P̂UξcXξcY

in
Ln

ξ
(P̂

¯
U
¯
XY ) in (14), we have the following upper bound

��T n

uξcxξcy(P̃¯
U
¯
XY )

�� =
��T n(P̃

¯
U
¯
XY )

��
��T n(P̃UξcXξcY

)
�� (18)

≤ e
nH(P̃

¯
U

¯
XY )+o(n)

e
nH(P̂UξcXξcY )

, (19)

where o(n) is a sequence satisfying limn→∞
o(n)
n

= 0. In
addition, using equation (5) for conditional distributions, for
all (u�

ξ
,x�

ξ
) ∈ T n

uξcxξcy(P̃¯
U
¯
XY ), we have the following

identity on the conditional probability

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
) = e

n
�

¯
u,
¯
x,y P̃

¯
U

¯
XY (

¯
u,
¯
x,y) logQξ,P̃Uξ

(xξ|uξ)
.

(20)

Combining inequality (19) and identity (20) and into (17), we
obtain the following inequality

�

(u�
ξ,x

�
ξ)∈T n

uξcxξcy
(P̃

¯
U

¯
XY )

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
) ≤

e
−n

�
D(P̃

¯
U

¯
XY ||P̃Uξ

Qξ,P̃Uξ
P̂UξcXξcY )−H(P̃Uξ

)
�
+o(n)

.

(21)

Further upper bounding the right hand side of equation (21)
by the maximum over the empirical probability distributions
P̃
¯
U
¯
XY ∈ Ln

ξ
(P̂

¯
U
¯
XY ), we have

�

(u�
ξ,x

�
ξ)∈T n

uξcxξcy
(P̃

¯
U

¯
XY )

Q
n

ξ,π(u�
ξ)
(x�

ξ
|u�

ξ
) ≤ max

P̃
¯
U

¯
XY ∈Ln

ξ (P̂
¯
U

¯
XY )

e
−n

�
D(P̃

¯
U

¯
XY ||P̃Uξ

Qξ,P̃Uξ
P̂UξcXξcY )−H(P̃Uξ

)
�
+o(n)

.

(22)

Moreover, in view of (7), the second summation of the right
hand side of (15) can be expressed as

�

(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P
n

¯
U

¯
XY (

¯
u,

¯
x,y) ≤

e
−n

�
D(P̂

¯
U

¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W

�

, (23)

where P̂Uν denotes the marginal distribution of P̂
¯
U , for ν =

1, 2. Similarly to (22), we may upper bound the right hand
side of (23) by the maximum over the empirical distributions
P̂
¯
U
¯
XY ∈ Pn

¯
U×

¯
X×Y , i.e.,

�

(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P
n

¯
U

¯
XY (

¯
u,

¯
x,y) ≤

max
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n

�
D(P̂

¯
U

¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W

�

. (24)

Putting back the results obtained in equations (24) and
(22) into the respective inner and outer summations (15) and
(16), we obtain that the average error probability (13) can
be bounded as equations (25) and (26), given at the bottom
of the page. In (26), we used that the cardinality of the
sets Ln

ξ
(P̂

¯
U
¯
XY ) and Pn

¯
U×

¯
X×Y behave polynomially with the

codeword length n, and satisfy
��Ln

ξ
(P̂

¯
U
¯
XY )

�� ≤
��Pn

¯
U×

¯
X×Y

�� ≤ e
o(n)

.

Using the identity min{1, ea} = e
[a]+ , we may write

equation (26) as
�̄
n

ξ
≤ e

−nE
n
ξ +o(n)

, (27)

where E
n

ξ
is given in (28) at the bottom of the next page.

�̄
n

ξ
≤

�

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

max
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n

�
D(P̂

¯
U

¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W )

�

min

�
1,

�

P̃
¯
U

¯
XY ∈Ln

ξ (P̂¯
U

¯
XY )

max
P̃

¯
U

¯
XY ∈Ln

ξ (P̂¯
U

¯
XY )

e
−n

�
D(P̃

¯
U

¯
XY ||P̃Uξ

Qξ,P̃Uξ
P̂UξcXξcY )−H(P̃Uξ

)

�
+o(n)

�
(25)

≤ max
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n

�
D(P̂

¯
U

¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W )

�
+o(n)

min

�
1, max

P̃
¯
U

¯
XY ∈Ln

ξ (P̂¯
U

¯
XY )

e
−n

�
D(P̃

¯
U

¯
XY ||P̃Uξ

Qξ,P̃Uξ
P̂UξcXξcY )−H(P̃Uξ

)

�
+o(n)

�
(26)



Since the average error probability over the ensemble is
bounded by the summation over the error events, we further
upper bound the summation by the worst type of error, i.e.,

�

ξ

�̄
n

ξ
≤ e

−nminξ E
n
ξ +o(n)

. (29)

Hence, from (12), we conclude that �̄n is upper bounded by
the right hand side of (29), i.e.,

�̄
n ≤ e

−nminξ E
n
ξ +o(n)

. (30)

Using the following properties

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn (31)

lim inf
n→∞

min{an, bn} = min
�
lim inf
n→∞

an, lim inf
n→∞

bn

�
, (32)

we obtain that �̄n asymptotically satisfies equation (33) at the
bottom of the page. We note that the inequality

lim inf
n→∞

max{an, bn} ≥ max
�
lim inf
n→∞

an, lim inf
n→∞

bn

�
, (34)

implies that

lim inf
n→∞

[an]
+ ≥

�
lim inf
n→∞

an

�+
. (35)

We further note that the set of all empirical distributions is
dense in the set of all possible probability distributions, and
that the functions involved in (33) are uniformly continuous
over their arguments. Hence, we may replace the optimization
over empirical distributions by an optimization over the set of
all possible distributions. Using (35) in (33), we obtain (36) at
the bottom of the page, where Lξ(P̂

¯
U
¯
XY ) is defined in (10).

Finally, we may optimize the asymptotic error probability
over the set of input distributions {QνPUν

} for ν = 1, 2 and
PUν ∈ PUν . This concludes the proof, since

lim inf
n→∞

− 1

n
log(�̄n) ≥ E1(P

¯
U ,W ). (37)

III. CONCLUSION

We have derived an achievable random-coding error ex-
ponent for joint source-channel coding over a multiple ac-
cess channel with correlated sources. We have adopted a
novel ensemble where codebooks are generated according
to a conditional distribution that depends not only on the
instantaneous source symbol, but also on the type of the
whole source sequence. The derived exponent may be used to
recover the Cover-El Gamal-Salehi achievability region, and
generalizations to other random-coding ensembles is left to
future work.
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E
n

ξ
= min

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

D(P̂
¯
U
¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2

W ) +
�

min
P̃

¯
U

¯
XY ∈Ln

ξ (P̂¯
U

¯
XY )

D(P̃
¯
U
¯
XY ||P̃UξQξ,P̃Uξ

P̂UξcXξcY
)−H(P̃Uξ)

�+

(28)

lim inf
n→∞

− 1

n
log(�̄n) ≥ min

ξ∈{{1},{2},{1,2}}
lim inf
n→∞

min
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

D(P̂
¯
U
¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W )

+ lim inf
n→∞

�
min

P̃
¯
U

¯
XY ∈Ln

ξ (P̂¯
U

¯
XY )

D(P̃
¯
U
¯
XY ||P̃UξQξ,P̃Uξ

P̂UξcXξcY
)−H(P̃Uξ)

�+
(33)

lim inf
n→∞

− 1

n
log(�̄n

ξ
) ≥ min

ξ∈{{1},{2},{1,2}}
min

P̂
¯
U

¯
XY ∈P

¯
U×

¯
X×Y

D(P̂
¯
U
¯
XY ||P

¯
UQ1,P̂U1

Q2,P̂U2
W )

+

�
min

P̃
¯
U

¯
XY ∈Lξ(P̂

¯
U

¯
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D(P̃
¯
U
¯
XY ||P̃UξQξ,P̃Uξ

P̂UξcXξcY
)−H(P̃Uξ)

�+
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