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Abstract—This paper studies expurgated random-coding

bounds and error exponents for joint source-channel coding

(JSCC). We extend Gallager’s expurgation techniques for channel

coding to the JSCC setting, and derive a non-asymptotic bound

that recovers two exponents derived by Csiszár using the method

of types. Our approach has the notable advantage of being

directly applicable to channels with continuous alphabets.

I. INTRODUCTION

It was shown by Shannon [1] that separate source-channel
coding incurs no loss of optimality in terms of asymptotically
reliable transmission for discrete memoryless sources and
channels. However, joint source-channel coding (JSCC) has
been shown to yield performance gains in terms of the error
exponent [2]–[6], second-order asymptotics [7], [8], and non-
asymptotic performance [6], [8], [9]. In this paper, we consider
expurgated random coding for JSCC, which has thus far
received significantly less attention than random coding with
independent codewords.

In the channel coding setting, the main approaches for ob-
taining expurgated bounds and exponents are those of Gallager
[2, Sec. 5.7] and Csiszár-Körner-Marton (CKM) [10], [11]
(see also [12, Ex. 10.18]). The former is based on simple
inequalities such as Markov’s inequality, whereas the latter is
based on the type packing lemma. Gallager’s approach has
the notable advantage of extending to continuous channels.
On the other hand, the CKM exponent can be higher when
the input distribution is fixed, even though the two coincide
for the optimal input distribution [13]. However, it has recently
been shown in [13] that the CKM exponent can be recovered
by refining Gallager’s techniques.

In [4], Csiszár derived two expurgated exponents for JSCC
by generalizing the techniques used in the derivation of the
CKM exponent. In this paper, motivated by the preceding
discussion, we provide alternative derivations of both of these
exponents using a similar approach to Gallager, which can also
be applied in the case of continuous channel alphabets.
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under ERC grant agreement 259663, by the European Union’s 7th Framework
Programme under grant agreement 303633 and by the Spanish Ministry of
Economy and Competitiveness under grants RYC-2011-08150 and TEC2012-
38800-C03-03.

Problem setup: We consider the transmission of a dis-
crete memoryless source (DMS) over a discrete memoryless
channel (DMC), described as follows. The source block length
and channel block length are denoted by k and n respectively.
The source, channel input and channel output alphabets are
denoted by V , X and Y respectively, and are assumed to
be finite. The source V is i.i.d. on a source distribution π,
i.e., V ∼ π

k(v) � �
k

i=1 π(vi). We assume without loss
of generality that π(v) > 0 for all v. The encoder maps
the source sequence v to a codeword x(v) on Xn, and the
output sequence Y is generated according to W

n(y|x) ��
n

i=1 W (yi|xi), where W is the channel transition law.
An error is said to have occurred if v̂ �= v, and the average

error probability for a given codebook C = {x(v)}v∈Vk

is denoted by pe(C). A JSCC error exponent E(t) is said
to be achievable at transmission ratio t > 0 if, for all
block lengths k and n increasing in a fashion such that
limn→∞

k

n
= t, there exists a sequence of codebooks Cn such

that lim infn→∞ − 1
n
log pe(Cn) ≥ E(t).

Notation: Bold symbols are used for vectors (e.g., x), and
the corresponding i-th entry is written using a subscript (e.g.,
xi). The marginals of a joint distribution PXY are denoted
by PX and PY . The set of all empirical distributions (i.e.,
types [12, Ch. 2]) corresponding to length-k sequences on V
is denoted by Pk(V). The set of all sequences of length k

having a given type PV is denoted by T
k(PV ).

II. ACHIEVABLE EXPONENTS AND DUALITY

Here we outline the existing expurgated JSCC exponents,
and present equivalent expressions based on Lagrange and
Fenchel duality. We define source exponent as [12, Ch. 9]

e(R) � min
PV :H(PV )≥R

D(PV �π), (1)

and we define the expurgated channel coding exponents

Eex(Q,R) � min
PXX :PX=PX=Q

IP (X;X)≤R

EP [dB(X,X)] + IP (X;X)−R

(2)
E

�
ex(Q,R) � min

PXX :PX=Q

IP (X;X)≤R

EP [dB(X,X)] + IP (X;X)−R,

(3)
where

dB(x, x) �
�

y

�
W (y|x)W (y|x) (4)



is the Bhattacharyya distance. Observe that Eex is the CKM
exponent [11], and that E�

ex ≤ Eex since the second marginal
constraint in (2) is absent in (3).

The following achievable JSCC error exponents were given
in [3], [4] for DMSs and DMCs:

EJ,1(t) � max
Q

min
R∈[0,t log |V|]

te

�
R

t

�
+ Eex(Q,R) (5)

EJ,2(t) � min
R∈[0,t log |V|]

te

�
R

t

�
+max

Q

E
�
ex(Q,R). (6)

We refer to these as Csiszár’s first and second exponents
respectively. Observe that (5) uses the better channel coding
exponent Eex in place of E�

ex, whereas (6) is better in terms of
the min-max ordering. Neither exponent dominates the other in
general, and the problem of determining whether the minimum
and maximum can be interchanged in (5) remains open. See [4,
Cor. 1-3] for conditions under which the answer is affirmative.

We proceed by providing alternative expressions for EJ,1

and EJ,2; we omit the proofs due to space constraints, and
since the arguments are standard. We first note the following
equivalent forms of (1)–(3):

e(R) = sup
ρ≥0

ρR− Es(ρ) (7)

Eex(Q,R) = sup
ρ≥1

Ex(Q, ρ)− ρR (8)

E
�
ex(Q,R) = sup

ρ≥1
E

�
x(Q, ρ)− ρR, (9)

where

Es(ρ) � log

��

v

π(v)
1

1+ρ

�1+ρ

(10)

Ex(Q, ρ) � sup
a(·)

−ρ

�

x

Q(x) log
�

x

Q(x)

�
e
−dB(x,x) e

a(x)

ea(x)

� 1
ρ

(11)

E
�
x(Q, ρ) � min

Q�
−ρ

�

x

Q(x) log
�

x

Q
�(x)e−

dB(x,x)
ρ . (12)

These equivalences can be proved via Lagrange duality [14];
(7) is well-known [5], (8) was shown in [13], and (9) can be
proved via the arguments used to prove (8).

We claim that the following identities hold for any DMS
and DMC with zero-error capacity equal to zero:1

EJ,1(t) = sup
ρ≥1

Ex(ρ)− tEs(ρ) (13)

EJ,2(t) = sup
ρ≥1

E
�
x
(ρ)− tEs(ρ), (14)

where Ex(ρ) � maxQ Ex(Q, ρ), and E
�
x
(ρ) is the concave

hull of E
�
x
(ρ) � maxQ E

�
x
(Q, ρ). These follow by Fenchel

duality using the techniques of Zhong et al. [5], [15]. In fact,
(13) was shown in [15, Thm 5.3] in the special case that the Q

maximizing Eex(Q,R) is independent of the rate; in this case,
one can safely interchange the min-max in (5) and replace
Eex and Ex by Gallager’s expurgated channel coding exponent

1We include (14) for completeness, though it will not be used in this paper.

functions [2, Sec. 5.7]. The more general expression in (13)
can be proved in the same way as [15, Thm 5.3] once the
equivalence in (8) is established. Similarly, the ordering of
the min-max in (6) translates to a concave hull operation in
(14) in the same way as the case of random coding [5].

III. GALLAGER-LIKE DERIVATIONS OF EJ,1 AND EJ,2

A. An Initial Upper Bound

We study the error probability by working with source
tuples (PV , PV

) on a type-by-type basis, where PV represents
the actual source type, and P

V
represents the type of an

incorrect source sequence favored by the decoder. To simplify
the notation, we index the source types by i = 1, · · · , |Pk(V)|,
and let Pi denote the corresponding i-th type. We consider a
set of codeword distributions {P (i)

X } depending on the source
type. We let pe(i, j) denote the probability that the transmitted
sequence v has type Pi but some incorrect v ∈ T

n(Pj) is
chosen at the decoder (possibly with i = j).

Theorem 1. Fix the codeword distributions {P (i)
X } and pa-

rameters {ρij} such that ρij ≥ 1. For any non-negative

function g(v) depending on v only through its type, there exists

a JSCC code and decoder such that

pe ≤
|Pk(V)|�

i=1

|Pk(V)|�

j=1

pe(i, j), (15)

where, for each pair (i, j),

pe(i, j) ≤
�
4|Pn(V)|2

�ρij

×
�

�

v∈Tk(Pi)

π
k(v)

� �

v∈Tk(Pj)

�
g(v)

g(v)

� 1
ρij

�ρij
�

×
�
�

x,x

P
(i)
X (x)P (j)

X (x)e
− dnB(x,x)

ρij

�ρij

. (16)

Before proving this result (see Section III-D), we show how
it can be used to derive EJ,1 and EJ,2.

B. Derivation of EJ,1 Using Theorem 1

We set g(v) = π
k(v)s for some s ∈ [0, 1], let each P

(i)
X (x)

be a common distribution PX(x) to be specified shortly, and
let each ρij equal a common value ρ. Hence, (16) yields

pe(i, j) ≤
�
4|Pn(V)|2

�ρ

×
�
�

v

π
k(v)

��

v

�
π
k(v)

πk(v)

� s
ρ
�ρ

�

×
�
�

x,x

PX(x)PX(x)e−
dnB(x,x)

ρ

�ρ

, (17)

where we have upper bounded the summations over v and v
by expanding them to all sequences.



Observe that the bound in (17) contains a source factor and
a channel factor. With s = ρ

1+ρ
, the source factor equals

�

v

π
k(v)

��

v

�
π
k(v)

πk(v)

� 1
1+ρ

�ρ

(18)

=
�

v

π
k(v)1−

ρ
1+ρ

��

v

π
k(v)

1
1+ρ

�ρ

(19)

=

��

v

π
k(v)

1
1+ρ

�1+ρ

= e
kEs(ρ), (20)

where the last step follows from (10).
For the channel factor, we consider cost-constrained random

coding [16]; while constant-composition random coding also
suffices, we focus on the former since it extends immediately
to channels with continuous input alphabets upon suitably
replacing summations by integrals. The codeword distribution
is given by

PX(x) =
1

µn

n�

i=1

Q(xi)1
�
x ∈ Dn

�
, (21)

where

Dn

�
=

�
x :

����
1

n

n�

i=1

al(xi)− φl

���� ≤ δ, l = 1, . . . , L

�
, (22)

and where µn is a normalizing constant, δ is a positive constant
(independent of n), and for each l = 1, . . . , L, al(·) is an
auxiliary cost function and φl � EQ[al(X)] is its mean.
Roughly speaking, each codeword is generated according to
an i.i.d. distribution conditioned on the empirical mean of each
al(x) being close to the true mean. We have the following.

Proposition 2. Fix an input alphabet X , an input distribution

Q ∈ P(X ), and auxiliary cost functions a1(·), . . . , aL(·) such

that |al(x)| is uniformly bounded in l = 1, . . . , L and x ∈
X . For any δ > 0 in (22), there exists η > 0 such that the

normalizing constant in (21) satisfies µn ≥ 1− 2Le−nη
.

Proof: For any l = 1, . . . , L, since |al(x)| is bounded, we
have from Hoeffding’s inequality that

�� 1
n

�
n

i=1 al(xi)−φl

�� ≤
δ with probability at least 1− 2e−nη . The proposition follows
by taking the union bound over the L cost functions.

We now set L = 2, let a1(·) be arbitrary for now,
and choose a2(x) = log

�
x
Q(x)

�
e
−dB(x,x) ea1(x)

ea1(x)

� 1
ρ
. Letting

a
n

l
(x) � �

n

i=1 al(xi) and Q
n(x) � �

n

i=1 Q(xi), we recall
the following steps from [13]:

�

x,x

PX(x)PX(x)e−
dnB(x,x)

ρ

≤ e
2δn
ρ

�

x,x

PX(x)PX(x)

�
e
−d

n
B(x,x) e

a
n
1 (x)

ea
n
1 (x)

� 1
ρ

(23)

≤ e
2δn
ρ

µn

max
x∈Dn

�

x

Q
n(x)

�
e
−d

n
B(x,x) e

a
n
1 (x)

ea
n
1 (x)

� 1
ρ

(24)

=
e

2δn
ρ

µn

exp

�
max
x∈Dn

a
n

2 (x)

�
(25)

≤ e
2δn
ρ +δn

µn

exp
�
nEQ[a2(X)]

�
(26)

where (23) follows since a
n

1 (·) is δn-close to nφ1 by (22),
(24) follows from (21), (25) follows from the choice of a2(·),
and (26) follows since a

n

2 (x) is δn-close to nEQ[a2(X)].
Substituting (26) and the choice of a2(·) into (17) and

renaming a1(·) as a(·), we see that the channel factor is upper
bounded by e

(2+ρ)δn

µ
ρ
n

e
−nEx(Q,ρ) (see (11)). Hence, using (20),

Proposition 2, the fact that δ can be arbitrarily small, and
|Pk(V)| ≤ (n + 1)|V|−1 [12, Ch. 2], we obtain the exponent
EJ,1 in the form given in (13) upon optimizing ρ, a(·) and Q.

C. Derivation of EJ,2 Using Theorem 1

The expression in (16) can be simplified by noting that
both g(·) and π

k(·) take fixed values among the sequences
within a given type class (for g(·), this is an assumption of
the theorem). Specifically, fixing the sequences v ∈ T

k(Pi)
and v ∈ T

k(Pj) arbitrarily, (16) can be written as

pe(i, j) ≤
�
4|Pn(V)|2

�ρij

�
��T k(Pi)

��πk(v)
g(v)

g(v)

�

×
�
��T k(Pj)

��
�

x,x

P
(i)
X (x)P (j)

X (x)e
− dnB(x,x)

ρij

�ρij

, (27)

where we moved
��T k(Pj)

�� from the source factor to the chan-
nel factor for later convenience. We choose g(·) as follows:

g(v) =
��T k(Pi)

��πk(v) (28)
g(v) =

��T k(Pj)
��πk(v). (29)

We now fix the distributions {Qi} and choose P
(i)
X to

be the cost-constrained distribution (21) with Qi in place
of Q, and with L = |Pk(V)| auxiliary costs2 of the form
al(x) = log

�
x
Ql(x)e−dB(x,x)/ρ. Thus, L is polynomial in

k, meaning that the prefactor µn still tends to one exponen-
tially fast by Proposition 2.

Substituting (28)–(29) into (27), we obtain

pe(i, j)

≤
�
4|Pn(V)|2

�ρij
���T k(Pj)

��πk(v)
�

×
�
��T k(Pj)

��
�

x,x

P
(i)
X (x)P (j)

X (x)e
− dnB(x,x)

ρij

�ρij

(30)

≤
�
4|Pn(V)|2

�ρij
���T k(Pj)

��πk(v)
�

×max
PX

�
��T k(Pj)

��
�

x,x

PX(x)P (j)
X (x)e

− dnB(x,x)

ρij

�ρij

,

(31)

2It suffices to have L = |X |−1 auxiliary costs in the finite-alphabet setting,
but we provide a more general argument here since it extends to channels with
continuous alphabets upon suitably replacing summations by integrals, under
mild technical assumptions ensuring the exponential decay in Proposition 2
(e.g., boundedness or sub-Gaussianity of the auxiliary costs).



where the maximum over PX is over the set of |Pk(V)| cost-
constrained distributions characterized by the {Qi}. Since dB

is symmetric in its arguments, this yields

pe(i, j) ≤
�
4|Pn(V)|2

�ρij
���T k(Pj)

��πk(v)
�

×max
PX

�
��T k(Pj)

��
�

x,x

P
(j)
X (x)PX(x)e

− dnB(x,x)

ρij

�ρij

. (32)

We proceed by upper bounding the source and channel factors
in (32). For the former, we combine the simple identity
π
k(v) = e

kEPj [log π(V )] (which holds since v ∈ T
k(Pj)) with

the inequality
��T k(Pj)

�� ≤ e
kH(Pj) [12, Ch. 2] to obtain

��T k(Pj)
��πk(v) ≤ e

kD(Pj�π). (33)

Recalling that we chose the cost-constrained distribution in
(21) to contain all auxiliary costs of the form al(x) =
log

�
x
Ql(x)e−dB(x,x)/ρ for l = 1, . . . , |Pk(V)|, we obtain

via similar steps to (23)–(26) that the channel factor in (32)
is upper bounded by a subexponential factor times

���T k(Pj)
��e−nE

�
x(Qj ,ρij)

�ρij

, (34)

where E
�
x is defined in (12).

Substituting (33) and (34) into (32), optimizing ρij and
{Qj}, and again using the fact that

��T k(Pj)
�� ≤ e

kH(Pj), we
see that the error exponent corresponding to the right-hand
side of (32) is lower bounded by

E
(j)
J,2(t) � tD(Pj�π) + max

Qj

E
�
ex(Qj , tH(Pj)) (35)

≥ min
PV :H(PV )≥H(Pj)

tD(PV �π) + max
Qj

E
�
ex(Qj , tH(Pj))

(36)
= te(H(Pj)) + max

Q

E
�
ex(Q, tH(Pj)), (37)

where the final step uses (1) and renames Qj as Q. The overall
exponent corresponding to pe in (15) is thus bounded by

min
j

E
(j)
J,2(t) ≥ min

j

te(H(Pj)) + max
Q

E
�
ex(Q, tH(Pj)) (38)

≥ min
R∈[0,log |V|]

te(R) + max
Q

E
�
ex(Q, tR) (39)

= min
R∈[0,t log |V|]

te

�
R

t

�
+max

Q

E
�
ex(Q,R), (40)

where (39) follows since H(Pj) is always between 0 and
log |V|, and (40) follows from a change of variable. We have
thus recovered EJ,2 as given in (6).

D. Proof of Theorem 1

The proof is based on a decoding rule of the form

v̂ = argmax
v

g(v)2Wn(y|x(v)), (41)

where g(v) is given in the theorem statement. We assume that
ties are broken as errors.

We consider a modified JSCC setup with duplicates of each
source sequence, and then apply expurgation on a type-by-
type basis in such a way that there are no duplicates. The

modified setup is as follows: A random variable Z takes values
uniformly on a finite alphabet Z . Each pair (v, z) is assigned
a codeword x(v, z), and the decoder estimates

(v̂, ẑ) = argmax
(v,z)

g(v)2Wn(y|x(v, z)). (42)

An error occurs if (v̂, ẑ) �= (v, z) (or if there is a tie), and
the error probability given that (V , Z) = (v, z) is denoted by
p̃e(v, z, c), where c = {x(v, z)} is the codebook. Hence,

p̃e(v, z, c) ≤
�

j

p̃e(v, z, j, c), (43)

where p̃e(v, z, j, c) is the probability given (V , Z) = (v, z)
that some (v, z) with v ∈ T

k(Pj) yields a decoding metric at
least as high as that of (v, z).

Consider a random codebook C in which each codeword
corresponding to a pair (v, z) with v ∈ T

k(Pi) is generated
according to P

(i)
X (i.e., the codeword distribution depends on

the source type). Hence, p̃e(v, z,C) is a random variable. By
Markov’s inequality and the union bound, we have for any
ρij > 0, η > 0 and pair (v, z) that

P
��

j

�
p̃e(v, z, j,C)

1
ρij ≥ (1 + η)E

�
p̃e(v, z, j,C)

1
ρij

���

≤ |Pn(V)|
1 + η

. (44)

For each source type PV ∈ Pk(V), let N(PV ) be the number
of (v, z) pairs with v ∈ T

n(PV ), and let N0(PV ,C) be the
random number of such pairs that fail to satisfy the event in
(44), i.e., the number of (v, z) with v ∈ T

n(PV ) such that

p̃e(v, z, j, c)
1

ρij < (1 + η)E
�
p̃e(v, z, j,C)

1
ρij

�
, ∀j. (45)

We have from (44) that

E
�
N0(PV ,C)

�
≥ N(PV )

�
1− |Pn(V)|

1 + η

�
. (46)

Since N0(PV ,C) ≤ N(PV ) with probability one, the reverse
Markov inequality3 gives for any α < 1− 1

1+η
that

P
�
N0(PV ,C) > αN(PV )

�
≥

1− |Pn(V)|
1+η

− α

1− α
, (47)

or equivalently

P
�
N0(PV ,C) ≤ αN(PV )

�
≤

|Pn(V)|
1+η

1− α
(48)

=
|Pn(V)|

(1 + η)(1− α)
. (49)

Thus, using the union bound, we obtain

P
� �

PV ∈Pk(V)

�
N0(PV ,C) ≤ αN(PV )

��
≤ |Pk(V)|2

(1 + η)(1− α)
.

(50)

3If A ∈ [0, amax] with probability one, then P[A > a] ≥ E[A]−a
amax−a for

any a < E[X]. This is proved by applying Markov’s inequality to the non-
negative random variable amax −A.



Fixing γ > 0 and choosing α = 1
2 , |Z| = 2, and η =

2|Pn(V)|2+γ−1, we see that the right-hand side of (50) equals
2|Pk(V)|

2|Pk(V)|+γ
< 1, and we conclude that there exists at least one

codebook c satisfying N0(PV , c) > αN(PV ) for every type
PV . Since α = 1

2 , this means that at least half of the (v, z)
pairs corresponding to each source type PV satisfy (45). Let
C(PV ) denote any such collection of 1

2N(PV ) codewords.
We now construct a standard JSCC code from {C(PV )}.

Since |Z| = 2, we see that 1
2N(PV ) is precisely the number

of v sequences having type PV . Let C be a code for which,
for each PV , the sequences v ∈ T

n(PV ) are assigned from
C(PV ) in an arbitrary one-to-one fashion. Since the decoding
rule (see (41)) depends on v only through its type, any such
assignment of codewords yields the same error probability.

For a fixed sequence v, consider the codeword x from
the preceding construction, and let (v�

, z
�) be the pair corre-

sponding to that codeword in the modified setup. We see that
pe(v, C) ≤ p̃e(v�

, z
�
, c) by noting that v and v� have the same

type by construction, the decoding rules for the two setups
coincide, and C was obtained from c by removing codewords.
Letting pe(v, j, C) be the probability (for the standard JSCC
setup) given V = v that some v ∈ T

k(Pj) yields a decoding
metric at least as high as that of v, we conclude from (45)
that there exists a codebook C such that

pe(v, j, C) <
��

2|Pk(V)|2+ γ
�
E
�
p̃e(v, z, j,C)

1
ρij

��ρij

(51)

for (i, j) and v ∈ T
k(Pi) (recall η = 2|Pk(V)|+ γ − 1).

We can upper bound the inner expectation in (51) using
standard arguments [2], [13]. Letting X(v, z) denote the
random codeword associated with (v, z) in the above modified
JSCC setup with Z = {1, 2}, we have

E
�
p̃e(v, z, j, ,C)

1
ρij

�

= E
�
P
� �

(v,z) �=(v,z), v∈Tk(Pj)

�
g(v)2Wn(Y |X(v, z))

≥ g(v)2sWn(Y |X(v, z))
� ���C

� 1
ρij

�
(52)

≤ E
�� �

(v,z) �=(v,z), v∈Tk(Pj)

P
�
g(v)2Wn(Y |X(v, z))

≥ g(v)2sWn(Y |X(v, z))
���C

�� 1
ρij

�
(53)

≤
�

v∈Tk(Pj)

2�

z=1

E
��

P
�
g(v)2Wn(Y |X(v, z))

≥ g(v)2sWn(Y |X(v, z))
���C

�� 1
ρij

�
(54)

≤ 2
�

v∈Tk(Pj)

�

x,x

P
(i)
X (x)P (j)

X (x)

×
�
g(v)

g(v)

�

y

�
Wn(y|x)Wn(y|x)

� 1
ρij

, (55)

where (52) follows from the decoding rule in (42), (53)
follows from the union bound, (54) follows from the inequality��

i
ai

� 1
ρ ≤

�
i
a

1
ρ

i
for ρ ≥ 1, and (55) follows from

Markov’s inequality as per Gallager’s analysis [2]. Substituting
(55) into (51), applying the identity

pe(i, j) =
�

v∈Tk(Pi)

π
k(v)pe(v, j, C), (56)

and performing simple rearrangements, we obtain (16) with
2(2|Pk(V)|2 + γ) in place of 4|Pk(V)|2. Since γ can be
arbitrarily small, this completes the proof.
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