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Abstract—The performance of the original successive cancel- SD decoding was originally proposed to decode multi-
lation decoder of short-length polar codes is inferior to that dimensional modulations for fading channels based orcésiti
of the maximum-likelihood decoder. Existing sphere decoding ;, the Euclidean space [11]. In essence, SD decoding pesform

algorithms of polar codes have a high computational complexity ) . .
even for short lengths. This is because, when exploring the tree a depth-first tree search, pruning the search tree accotding

defined by the generator matrix of the code, existing algorithms Certain branching conditions, e.g. [12]. SD has been exten-
employ loose branching conditions and end up visiting many sively studied in the context of multiple-input multipledput
more nodes than needed. We propose improved branching con- channels (e.g. [13]-[16]).

ditions that significantly reduce the search complexity. A simple In this paper, we improve standard SD branching conditions

example reports an improvement of two orders of magnitude at . . . .
Ly _ 4 dB compared to the standard sphere decoders by computing lower bounds on the optimal decoding metric.

M ndex Terms—Polar codes, Polar codes decoding, Sphere de-We first derive fixed lower bounds that only depend on the
coding received signals. Instead of obtaining fixed lower bounds by
enlarging the search space to the real field (as in [12]),

|. INTRODUCTION we propose fixed lower bounds that keep the finite field

constraints. We then propose dynamic lower bounds that are

Polar codes were proposed in [1] as a coding techniqyqated during the tree search. Dynamic lower bounds depend
that provably achieves the capacity of symmetric binain o o the received signals and the current tree path.
discrete memoryless channels (B-DMCs) with low encoding

and decoding complexity. The analysis and construction of Il. NOTATION AND PRELIMINARIES
polar codes are summarized as follows: (1) Given a B-DMC, | ot v pe the block length. Row vectors are assumed. Let

virtual channels between the bits at the input of a Iineq{ denote the sub-vector af with indicesi € Z. We useu’
encoder and the channel output sequence are created, SIICh[ denote the sub-vectdr: up) “
asy: .

the mutual information in each of these channels converges

to either zero or one as the block length tends to infinitys. Code Construction

the proportion of virtual channels with mutual information -, cider the matrdG, = [19], and letGy = GS" be
—lr1h - 2

close to one converges to the origingl channgl’s capa@y; (he N x N matrix obtained by the Kronecker product Gf;

By transmitting bits through the noiseless virtual chasnel iy itself n — log, N times. Letg; ; denote the(, j)-th entry

under successive cancellation decoding, polar codes\&chigg G . To construct codes of ratB — £ N — K rows are
. =5

the capacity. _ _ discarded, equivalentlyy — K information bits corresponding
The performance of polar codes with successive cancellatiy (hose rows arérozento zero. The set of frozen indices is

decoders is inferior to that of the maximum-likelihood (ML)5ied the frozen sef: its complement is denoted hge.

decoder. Decoders with better finite-length performanae hepjferent methods for choosingF yield different codes. For

been proposed in the literature. Soft-output decoders 88chye sake of simplicity, we only consider two selection rules
belief propagation decoders of polar codes were proposgdihis paper. Reed Muller (RM) codes discard rows with
in [2]-[4]. In [S], a list successive cancellation decodeasw |oyest Hamming weights, while polar codes discard rows with

proposed and the performance was comparable to thatiGfiest mutual information of the induced virtual channels.
low-density parity-check (LDPC) codes. ML decoding Ofnformation bits are denoted bw, with uw; € {0,1} for

polar codes implemented by means of sphere decoding (SD) rc gng u; = 0 for i € F. Codewordsz are generated
[6], [7] was studied in [8], [9]. These decoders have higBy = = uGy, whereuGy is carried out in GF(2). Letd,C
computational complexity at block length as shortas= 64.  jenote the set of all information sequenaesind the set of
Later, [10] proposed SD of binary polar codes via a non-yinag| codewordse, respectively. Since some bits inare frozen
tree search, which can decode binary polar codes with Ien%hbeo, we havel/,C ¢ {0,111V,

up to 256.

B. Modulation and Channel Model

This work has been funded in part by the European Researcmo@ou Th h hi h h li bi
under ERC grant agreement 259663 and the Spanish Ministrycofdiny roughout this paper, we assume the channel is a binary-

and Competitiveness under grant TEC2012-38800-C03-03. input additive white Gaussian noise (AWGN) channel. The



coded hitz; € {0,1} is mapped into the transmitted signaEg. (6) the branching condition at levél All surviving leafs
s; € {+1,—1}vias; =1-2z;fori =1,..., N. Thereceived in the tree are points that satisfy Eq. (4). In order to find the
signal isy; = s;+2z;, wherez; is i.i.d., additive white Gaussian ML point, [11] adaptively update the radiug. Once a valid
noise with zero mean and varianeé. solution is found, the radiug is updated and the tree search is
_ _ restarted with the new radiug. The authors in [13] proposed

C. Sphere Decoding Algorithms an implementation that does not require restarting the tree

ML decoding over the binary-input AWGN channel issearch after the radius is updated. We use this implementati
equivalent to solving the following minimization problem, for all simulations in this paper.

@ = argmin |§ — uGy|’ (1) [Il. SPHEREDECODING WITH FIXED LOWERBOUNDS
weld
a4 _ In this section, we discuss a method to speed up SD by
where y = =¥ and 1 is the all-one vector of length ysing stricter branching conditions. The key idea is to find

N. Here the calculatioruG'y is carried out in GF(2) and |ower bounds to the quantity
the result is treated as a real number vector in the rest

of the calculation. SD algorithms can be used to solve the
above minimization problem. The average complexity of ¢hes umellr/llz mi(w (7)
algorithms isO(N?) in many scenarios [14]. SD algorithms
enumerate all points € I/ that satisfy the constraint for each/ = N —1,...,1 based onyy,u;’. Let A, be one
- s _ o such bound, then we have
1y —uGnN|[" <71 )
Here ry is a carefully chosen initial radius for the search. Zmz )+ A < (8)

Finding an appropriate initial radius is beyond the scopthisf

paper. We refer readers to [14], [17] and references thereinwhen the lower bound is non-trivial, i.4, > 0, Eq. (8) gives
By the construction of the codé&'y is a lower triangular g stricter branching condition than Eq. (6).
matrix, and thus

N Lemmal.Foreveryi=1,...,N,u € U, we have that
_ 2
- uGl =3 (- Do) @ ) > min (5 - a:)”. ©
i=1 j=i z;€{0,1}
b
We use € (-) to denote the summation ov&rF'(2). De-
j=a Proof: We have that
N 2
fine m;(ulY) £ (gji — & (g5, luj)) , Where the summation mi(ug\’) > min ml(ufv) (20)
Jj=i ue{0,1}V
N N
i;u;) is carried out in GF(2) and the result is treated as . _ 2
J_EB (gj, J) ( ) = n(l)nll N( P — @ (gj zuj)) (11)
a real number in the rest of the calculation. Eq. (2) can be ue{0.1} j=i
written as v _ x»gﬂ)nl} @i — 20)° (12)
Zmi(u? ) <73 4)

Eg. (10) comes from the fact that c {0,1}. We have
N
Sincem; (ul) only depends oY, Eq. (4) can be solved Ed. (12) by lettingz; = €D (g;,iu;) with 2; € {0,1} since

in a back-substitution manner. Startlng from levek N, it 4o summation is carried out in GF(2). 0
finds all ux such that Let
. . _ 2
my(un) < 13, (5) LB() = min (5 — ;) (13)

and then for every level = N —1,..., 1, it finds allu, such we now use the branching condition
that N

> mi(ul) <12, ©) Zmz )+ Z LB(i (14)

i=t

When we reach level = 1, all points that satisfy Eq. (4) areat level ¢ to decide whether the path)’ should be kept in
found. We need to point out that ifc F, the set of feasible the tree search or not. We call SD algorithms with branching
solutions for Eq. (6) iS0} sincew, is frozen to0; if ¢ € F¢, conditions Eq. (14)SD algorithms with fixed lower bounds
the feasible set for Eq. (6) i§0, 1}. Compared to standard SD algorithms, SD algorithms with
This procedure can be interpreted as a depth-first treetsediged lower bounds have stricter conditions which enableous t
algorithm. We callm,(u}’) the branch metric at level and remove branches that would eventually be outside the sphere



at an earlier stage. Since [B,i = 1,..., N only depends on the simulation setup is the same for Fig 1, [8, Fig. 4] and [9,

y, the extra computational complexity caused by calculatirigjg. 3]. We can see that our algorithms have advantages in
fixed lower bounds i®(N). terms of average number of nodes visited over [8, Fig. 4] and
[9, Fig. 3] for all SNR range. For example, % = 4 dB,

the number of average nodes visited reported in [8, Fig. 4]
is of the order of10°> and 10* in [9, Fig. 3], while for SD

A. Simulations

10° ~5-Swndard SD algorithms with fixed lower bounds, the number of average
_$_32D with fixed lower bounds nodes visited is at the order @0? (Fig. 1).

10" Eres :mg 3 Fig. 2 confirms that error rate performance of standard SD
B st algorithms and that of SD algorithms with fixed lower bounds
Tt AL ] is the same.
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Fig. 2. Error rate performance for R4, 57).
Fig. 1 shows the complexity of SD algorithms with fixed 10%
lower bounds for a Reed-Muller (RM)64,57) code. The |  _.---77

complexity is measured by the number of nodes visited durir o0 100 120 120 160 180 200 220 240

the SD. We use the Schnorr-Euchner Enumeration [18] as t Code length

enumerating order at each level. The initial square radius

is set to be4oo.! We observe that the complexity of SDFig. 4. Average number of nodes visited for polar cqdé, [RN|) with
algorithms with fixed lower bounds is significantly lower tha & = 0.89, % =8dB.

that of standard SD algorithms over the whole SNR range.We now evaluate the tradeoff between the complexity of the
We then compare our results with decoding algorithms thalgorithms and the code rate. Fig. 3 shows that the complexit
achieve ML performance proposed in [8] and [9]. Note thatecreases as the rate increases. SD algorithms with fixest low

bounds show lower complexity over standard SD algorithms
1The initial square radius is set to be sufficient large to gotwe that the over all rate regions.
ML point falls within the sphere. Moreover, the first pointufad is always . _ .
the Babai point, thus the complexity of SD algorithms is nots@em to Fig. 4 shows how the complexity increases with the length

increasingr3 beyond the squared Babai distance [13]. for a fixed rate. We can see that the complexity of SD



algorithms with fixed lower bounds grows slower with the,;, ZO: m;(ul). A convenient bound is

i

block length than the standard SD algorithm. ueU =1
6 2
IV. SPHEREDECODING WITH DYNAMIC LOWER BOUNDS min » m;(u;') > mmzml(ug\/)
weld = ueld Pt
. . 4
From Fig. 3, as the code rate decreases, the complexity of + minzmi(ufv)
SD with fixed lower bounds grows. This is due to the fact that el —
the fixed lower bounds are obtained as if there were no frozen 6
bits (i.e. uncoded). Thus, since fixed lower bounds do nat tak +min Y m;(ul) (20)
advantage of the presence of frozen bits, fixed lower bounds w5
for low rates could be improved upon. A possible improvement 2
would be to prune the searching tree by using dynamic lower = quIelrl{igll} (Ji —n)?

bounds that also depend on the current pathat level 2. In

order to introduce our dynamic lower bounds, we first need to
introduce further notation and preprocessing.

Given a frozen sefF, generate anV x N matrix G by

substituting theth row in Gy with the all—;ero vector, for all
i€ F. Let g, ; denote the(i, j)th entry of G. Let G, denote

the ¢ x ¢ submatrix ofG which contains the first rows and

columns ofG.

For every/ € F¢, find all non-zero identical columns in

ég_l. Let d, denote the number of such columns. Define a

set of set¥, such that each elementin is a set that contains
the indices of non-zero identical columns@y_;.

A. SD with Dynamic Lower Bounds

We first illustrate the idea of SD with dynamic lower bounds
by an example. Then we will give general algorithms. For an

(8,4) polar code with the frozen sef = {1,2,3,5}. After

preprocessing, we have

000 0 OO0
0O 0 0 0 0 O
0O 0 0 0 0 O

A 1 1.1 1 0 0

G = 000 0 O0O0
1 1 0 0 1 1
101 010
1111 11

and
dg =0, Zg = 0;

dr = 3, I; = {{675}a {473}7 {2’ 1}};

dG = 1, I6 - {{473,271}}’
dy =0, Zg = 0.

_—_ 0 00000

_o OO0 oo oo

(15)

(16)
7
(18)
(19)

Assume we are at levél= 7. Therefore,(ur, us) are fixed
to (0,0) for simplicity. Thus, we now would like to bound where LR3) is defined in(13).

=3
6
+ mi g — v3)2. 21
 min > (9i — v3) (21)
We have Eq. (21) since
8 8
vi = P Gau5) = P G5.2u5), (22)
j=1 j=2
8 8
vy = P G5515) = P (G5.a15), (23)
j=3 j=4
8 8
vs = @ (95.5u5) = P (G5.61)- (24)
j=5 j=6

Egs. (22)-(24) follow sincgur,ug) = (0,0) and columns
{6,5},{4,3},{2,1} of G are identical, respectively. Eq. (21)
gives a tighter bound than the fixed lower bounds discussed in
the previous section. Furthermore, it is particularly cament
since, thanks to the fact that colum{6, 5}, {4, 3},{2,1} of

G are identical, we only need to minimize over 1 variable
instead of 2 in each term of Eq. (21). This idea is generalized
in the following.

N
Lemma2. At level ¢ € F¢, lett,; = @(gjiu;). If dg > 0,

j=¢
then for allT € Z,, we have !

g mz(ufv) > min (Ji —ud® t@77;)2 (25)
‘ ue{0,1} 4
i€L €L

> " LB(i) (26)

i€l



Proof:

Zml(ufv) Z( ENB (gj.iu; > 27)

i€l 1€L Jj=1
-1 5

= Z( (@ 9j,iUj ) S tf,i) (28)
€T Jj=1

> min (i —udte;)? (29)
ue{0.1} i€T

= in (y; — tei)” 30
21&%’%}@ u® te;) (30)

= LB(i). (31)
i€l

-1

Eq. (29) comes from the fact tha@d (g;,:u,) gives the same

Jj=t
value for all: € 7.

a
Note that the calculation of,; forms part of the calculation

N

Fig. 5 compares the complexity of SD with fixed and dy-
namic lower bounds. We observe that dynamic lower bounds,
further reduce the complexity in the low rate region. We sthou
note that the average computational complexity for eactenod
of dynamic lower bound is higher because we need to update
the lower bounds during the tree search.

V. CONCLUSIONS

We have proposed several techniques to lower the complex-
ity of ML decoding of polar and RM codes. This is achieved
by means of improving the standard branching conditions
of the sphere decoder by introducing lower bounds on the
remaining metric. The proposed techniques improve thekear
complexity of the algorithm by several orders of magnitude.
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