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Abstract—This paper studies likelihood decoding for channel
coding over discrete memoryless channels. It is shown that the
likelihood decoder recovers the same random-coding error expo-
nents as the maximum-likelihood decoder for i.i.d. and constant-
composition random codes. The role of mismatch in likelihood
decoding is studied, and the notion of the mismatched likelihood
decoder capacity is introduced. It is shown, both in the case of
random coding and optimized codebooks, that the mismatched
likelihood decoder can lead to strictly worse achievable rates
and error exponents compared to the corresponding mismatched
maximum-metric decoder.

I. INTRODUCTION

Channel coding theorems can be proved using a variety of
decoders, including joint typicality decoding [1], maximum-
likelihood (ML) decoding [2], and threshold decoding [3].
Another alternative that has recently gained interest is the
likelihood decoder [4], which is a stochastic decoder such that
the probability of choosing a given codeword is proportional
to its likelihood under the channel law. This decoder has been
shown to simplify the derivations of a variety of asymptotic
achievability bounds in network information theory [4], and
analogous likelihood encoders have proved to be useful in the
context of lossy compression [5]. The likelihood decoder is
a special case of the pretty good measurement in quantum
information theory [6], [7].

For the point-to-point channel coding problem, it was shown
in [4] that this decoder not only yields the channel capacity of
discrete memoryless channels (DMCs), but also the channel
dispersion [8], [9]. On the other hand, existing bounds are not
powerful enough to attain the best known random-coding error
exponents [2], [10] in general. One of our contributions is a
refined analysis of that in [4] that yields the random-coding
error exponents of optimal ML decoding for both i.i.d. and
constant-composition random coding.

The main focus of this paper is on the role of mismatch
for the likelihood decoder. We let the decoder choose each
codeword in proportion to an arbitrary function on the input
and output alphabets, possibly differing from the channel like-
lihood. We introduce the notion of the mismatched likelihood
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decoder capacity, which is closely related to the notion of
the mismatched capacity for maximum-metric decoding [11]–
[14]. In contrast to the matched case, we show that the
mismatched likelihood decoder can perform worse than the
corresponding mismatched maximum-metric decoder, in terms
of both achievable rates and error exponents.

Notation: The marginals of a joint distribution PXY (x, y)
are denoted by PX(x) and PY (y). We write PX = P̃X to
denote element-wise equality between two distributions on the
same alphabet. Given a distribution Q(x) and a conditional
distribution W (y|x), we write Q × W to denote the joint
distribution Q(x)W (y|x). The set of all probability distribu-
tions on X is denoted by P(X ), and the set of all empirical
distributions for vectors in Xn (i.e. types [10], [15]) is denoted
by Pn(X ). For a given Q ∈ Pn(X ), the type class Tn(Q) is
defined to be the set of all sequences in Xn with type Q.
For two sequences f(n) and g(n), we write f(n)

.
= g(n) if

limn→∞
1
n log f(n)

g(n) = 0. All rates are in units of nats except in
the examples, where bits are used. We define [·]+ = max{0, ·},
and denote the indicator function by 1{·}.
A. Problem Setup

We consider a DMC on the alphabets X and Y described
by W (y|x), yielding an n-letter transition law given by
Wn(y|x) ,

∏n
i=1W (yi|xi). The encoder receives a message

m equiprobable on {1, . . . ,M} and transmits the correspond-
ing codeword from a codebook C = {x(1), . . . ,x(M)}. Given
the random output sequence Y and the codebook, the (possibly
mismatched) likelihood decoder randomly outputs a message
according to the rule

P[m̂ = j |Y = y] =
qn(x(j),y)∑M

j′=1 q
n(x(j′),y)

, (1)

where qn(x,y) ,
∏n
i=1 q(xi, yi) for some non-negative func-

tion q(·, ·) called the decoding metric. The error probability
is given by pe(C) = P[m̂ 6= m], where the probability
is over the message, the channel, and the decoder. Setting
q(x, y) = W (y|x) recovers the decoder studied in [4].

A rate R is said to be achievable if, for all δ > 0, there
exists a sequence of codebooks Cn with at least exp(n(R−δ))
codewords of length n such that pe(Cn) → 0 under the
decoding rule in (1). The mismatched likelihood decoder
capacity C̃M of (W, q) is defined to be the supremum of all



achievable rates. We say that Ẽ(R) is an achievable error
exponent if there exist sequences of codebooks Cn at least
exp(nR) codewords of length n such that

lim inf
n→∞

− 1

n
log pe(Cn) ≥ Ẽ(R). (2)

The decoding rule in (1) should be contrasted with the
mismatched maximum-metric decoder, which chooses

m̂ = arg max
j
qn(x(j),y). (3)

Throughout the paper, we distinguish between quantities asso-
ciated with these decoders according to whether or not a tilde
symbol is present; for example, the (classical) mismatched
capacity is denoted by CM, and is defied in the same way as
C̃M according to the maximum-metric decoding rule. When
q(x, y) = W (y|x), (3) is the optimal ML decoding rule, and
hence CM is the (matched) capacity.

Our achievability results are based on random coding,where
each codeword is independently generated according to some
distribution PX . The random codewords are denoted by
{X(j)}Mj=1. The error probability averaged over the ensem-
ble is denoted by pe(n,M). We pay particular attention to
constant-composition random coding, in which each codeword
is drawn uniformly from the set of sequences having a given
composition. That is,

PX(x) =
1

|Tn(Qn)|
1
{
x ∈ Tn(Qn)

}
, (4)

where Qn ∈ Pn(X ) is a type with the same support as Q
such that maxx |Q(x)−Qn(x)| ≤ 1

n . Similarly to the case of
mismatched maximum-metric decoding [16], all of our results
have analogues for i.i.d. coding (i.e. PX(x) =

∏n
i=1Q(xi))

that can be proved in a similar (and often simpler) fashion.
II. ACHIEVABILITY VIA DUAL-DOMAIN ANALYSIS

The following theorem presents a non-asymptotic bound
obtained via a refinement of the analysis of Yassaee et al. [4],
with an aim to improve the resulting error exponent. The main
difference is the introduction of a parameter s ∈ (0, 1] that can
be optimized. Our analysis is also related to that of Holevo
[7], but there the parameter s is introduced into the decoding
rule itself, rather than in the analysis alone.

Theorem 1. For any channel W , metric q, and codebook
distribution PX , the random-coding error probability satisfies

pe(n,M) ≤ min
s∈(0,1]

E
[

min

{
1,

1

s
(M−1)

E[qn(X,Y )s |Y ]

qn(X,Y )s

}]
,

(5)
where (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x).

Proof: Fix s ∈ (0, 1]. Assuming without loss of generality
that m = 1, the probability of a correct decision under random
coding is given by

1− pe

=
∑
x,y

PX(x)Wn(y|x)E
[

qn(x,y)

qn(x,y) +
∑
m 6=1 q

n(y|X(m))

]
(6)

=
∑
x,y

PX(x)Wn(y|x)E

[
1

1 +
∑
m6=1

qn(X(m),y)
qn(x,y)

]
(7)

=
∑
x,y

PX(x)Wn(y|x)E

[(
1(

1 +
∑
m 6=1

qn(X(m),y)
qn(x,y)

)s
) 1
s
]
(8)

≥
∑
x,y

PX(x)Wn(y|x)

(
1

E
[(

1 +
∑
m 6=1

qn(X(m),y)
qn(x,y)

)s]
) 1
s

(9)

≥
∑
x,y

PX(x)Wn(y|x)

(
1

1 +
∑
m6=1 E

[( qn(X(m),y)
qn(x,y)

)s]
) 1
s

(10)

=
∑
x,y

PX(x)Wn(y|x)

(
1

1 + (M − 1)E
[( qn(X,y)

qn(x,y)

)s]
) 1
s

(11)

≥ 1−
∑
x,y

PX(x)Wn(y|x) min

{
1,

1

s
(M − 1)

E[qn(X,y)s]

qn(x,y)s

}
,

(12)

where (9) follows from the convexity of f(z) = 1
z1/s

and
Jensen’s inequality, (10) follows since

(∑
i ai
)s ≤ ∑

i a
s
i

for s ≤ 1, and (12) follows from the identity 1 − 1
(1+z)α ≤

min{1, αz} for α > 0 (the second term in the minimum is
obtained by noting that the left-hand side is concave, equals
zero at z = 0, and has derivative α there).

The right-hand side of (5) coincides with a weakened
version of the random-coding union (RCU) bound studied in
[16], aside from the multiplicative factor of 1

s . This factor
does not affect the exponent; thus, choosing PX as in (4) and
following an identical analysis to [16], we have the following.

Theorem 2. Under the constant-composition codeword dis-
tribution in (4), the random-coding error probability satisfies
lim infn→∞− 1

n log pe(n, benRc) ≥ Ẽr(Q,R), where

Ẽr(Q,R) , max
ρ∈[0,1]

Ẽ0(Q, ρ)− ρR, (13)

and

Ẽ0(Q, ρ) , sup
s∈[0,1],a(·)

−
∑
x

Q(x)

× log
∑
y

W (y|x)

(∑
xQ(x)q(x, y)sea(x)

q(x, y)sea(x)

)ρ
. (14)

Moreover, Ẽr(Q,R) > 0 provided that R < ĨLM(Q), where

ĨLM(Q) , sup
s∈[0,1],a(·)∑

x,y

Q(x)W (y|x) log
q(x, y)sea(x)∑

xQ(x)q(x, y)sea(x)
. (15)
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Figure 1. Mismatched error exponents Ẽr and Er for the binary symmetric
channel with crossover probability 0.1, equiprobable inputs, and q(x, y) =√

W (y|x). The rates ĨLM and ILM are marked on the horizontal axis.

These expressions resemble the dual-domain exponent and
achievable rate given in [12], [16] for mismatched maximum-
metric decoding; the latter are written as in (13)–(15) with
the constraint s ∈ [0, 1] replaced by s ≥ 0. For later
reference, we denote these by Er(Q,R) and ILM(Q). We
clearly have Ẽr(Q,R) ≤ Er(Q,R) and ĨLM(Q) ≤ ILM(Q),
i.e. the random-coding rates and exponents for the mismatched
likelihood decoder never exceed those of the corresponding
maximum-metric decoder.

In the case that q = W , the dual form of Ẽr(Q,R) coincides
with the constant-composition error exponent of Csiszár and
Körner [10, Ch. 10] upon setting s = 1

1+ρ (which always lies
in [0, 1]) [16], and this exponent is the best possible under
constant-composition random coding even for ML decoding
[17]. Thus, the matched likelihood decoder achieves the same
constant-composition random-coding exponent as the ML de-
coder. The same can be shown for the i.i.d. ensemble, with
Gallager’s exponent [2, Ch. 5] replacing that of [10, Ch. 10].

In contrast, in case of mismatched decoding, the restriction
s ∈ (0, 1] does not always come without loss of optimality.
As a simple example, if we set q(x, y) =

√
W (y|x) then the

optimal value is s = 2
1+ρ . In Figure 1, we plot the achievable

rates and error exponents associated with this choice, for the
binary symmetric channel with crossover probability δ = 0.1
and an equiprobable input distribution Q. Under these choices,
the mismatched maximum-metric decoder is the same as the
ML decoder, and thus ILM(Q) is the channel capacity and
Er(Q,R) equals the random-coding exponent of [10, Ch. 10].
We see that Ẽr coincides with Er at low rates (i.e. rates
corresponding to 2

1+ρ ≤ 1), whereas the two behave differently
at higher rates, in particular yielding ĨLM(Q) < ILM(Q).

III. TIGHTNESS VIA PRIMAL-DOMAIN ANALYSIS

It is common in the literature on mismatched decoding and
error exponents to consider both primal-domain expressions

resembling those of Csiszár and Körner [10, Ch. 10], and dual-
domain expressions resembling those of Gallager [2, Ch. 5].
In the previous section, we focused on the latter, whereas here
we focus on the former. We begin with the following result
formally stating the equivalent expressions.

Lemma 1. For any DMC W , metric q, input distribution Q,
and rate R, the exponent in (13) can be written as

Ẽr(Q,R) = min
PXY :PX=Q

min
P̃XY : P̃X=Q,P̃Y =PY

D(PXY ‖Q×W ) +
[
IP̃ (X;Y )

+
[
E
[

log q(X,Y )
]
− EP̃

[
log q(X,Y )

]]+
−R

]+
, (16)

Moreover, the achievable rate in (15) can be written as

ĨLM(Q) = min
P̃XY : P̃X=Q,P̃Y =PY

IP̃ (X;Y )

+
[
EP
[

log q(X,Y )
]
− EP̃

[
log q(X,Y )

]]+
, (17)

where PXY , Q×W .

Proof: The proof follows the approach of [12], [14], [16],
and makes use of the identity [α]+ = maxs∈[0,1] sα, Fan’s
minimax theorem [18], and Lagrange duality [19]. The details
are omitted due to space constraints.

Equation (16) resembles the mismatched decoding error
exponent of [20] for maximum-metric decoding, and (17)
resembles the corresponding LM rate of Csiszár-Körner-Hui
[20], [21]. More precisely, the latter are written as in (16)–(17)
with the terms

[
E[log q(X,Y )]−EP̃ [log q(X,Y )]

]+
removed,

and with the constraint EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]

added to the minimizations over P̃XY .
The main result of this section is the following theorem,

providing a primal-domain analysis that proves that Ẽr(Q,R)
and ĨLM(Q) are tight with respect to the ensemble average
for constant-composition random coding. That is, the random-
coding error probability pe cannot decay with an exponent
exceeding Ẽr, and cannot vanish for rates exceeding ĨLM.
This concept was first studied in the context of mismatched
decoding in [12]. We make use of type class enumerators,
which have been shown to permit exponentially tight analyses
in numerous source and channel coding problems (e.g. see
[22]–[24]).

Theorem 3. For any DMC W and metric q, under the
constant-composition codeword distribution PX in (4), the
random-coding error probability satisfies

lim
n→∞

− 1

n
log pe(n, benRc) = Ẽr(Q,R) (18)

and

sup
{
R : lim

n→∞
pe(n, benRc) = 0

}
= ĨLM(Q). (19)

Proof: From the results in the previous section, it suffices
to prove only the converse parts. Due to space constraints, we
focus our attention on (18). Equation (19) can be established



by a straightforward combination of the arguments used in
proving (18) and those used in [12, Thm. 1].

Applying the identity 1
1+α ≤ 1− 1

2 min{1, α} to (7) yields

pe ≥
1

2

∑
x,y

PX(x)Wn(y|x)E
[

min

{
1,
∑
m 6=1

qn(X(m),y)

qn(x,y)

}]
.

(20)
Consider a fixed pair such that (x,y) ∈ Tn(PXY ), and let
Ny(P̃XY ) be the random number of X(m) (m 6= 1) such that
(X(m),y) ∈ Tn(P̃XY ). It follows that∑

m6=1

qn(X(m),y)

qn(x,y)
=

∑
P̃XY

Ny(P̃XY )qn(P̃XY )

qn(PXY )
, (21)

where qn(P̃XY ) equals qn(x,y) for an arbitrary pair (x,y) ∈
Tn(P̃XY ). We proceed by applying standard exponentially
tight steps based on the fact that there are only polynomially
many terms in the summation [22]–[24]:

E
[

min

{
1,

∑
P̃XY

Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
.
= E

[
max
P̃XY

min

{
1,
Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
(22)

.
= E

[ ∑
P̃XY

min

{
1,
Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
(23)

.
= max

P̃XY

E
[

min

{
1,
Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
, (24)

where the last step follows by first taking the summation
outside the expectation.

Recalling that PXY is the joint type of (x,y) and P̃XY is
the joint type of an incorrect codeword with y, we have

Ny(P̃XY ) = 0 if P̃X 6= Qn or P̃Y 6= PY . (25)

The first condition comes from the fact that all codewords
have composition Qn, and the second from the fact that the
two joint types are associated with the same y sequence. We
proceed by characterizing the behavior of the expectation in
(24) for the joint types P̃XY with P̃X = Qn and P̃Y = PY ,
using properties of type class enumerators. The arguments
follow those of [24], [25], and are based on the fact that
Ny(P̃XY ) has a Binomial distribution with exponentially
many terms (M−1

.
= enR) and an exponentially small success

probability (P
[
(X,y) ∈ Tn(P̃XY )

] .
= e−nIP̃ (X;Y )). We omit

the details and focus on the key ideas. Fixing δ > 0 and
writing R = 1

n logM , we have the following:
1) If R > IP̃ (X;Y ) + δ, then Ny(P̃XY )

.
= Me−nIP̃ (X;Y )

with probability approaching one super-exponentially fast, and
hence the expectation in (24) has an error exponent of

− 1

n
logE

[
min

{
1,
Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
→
[
IP̃ (X;Y )−R+ Ψ(PXY , P̃XY )

]+
, (26)

where

Ψ(PXY , P̃XY ) , EP
[

log q(X,Y )
]
− EP̃

[
log q(X,Y )

]
.

(27)
This case corresponds to the case that the mean of Ny(P̃XY ) is
exponentially high, and hence sharp concentration is observed.

2) If R < IP̃ (X;Y ) − δ, then Ny(P̃XY ) ≤ en 2δ with
probability approaching one super-exponentially fast. Com-
bining the union bound with an associated tightness result for
independent events [26, Lemma A.2], we have P

[
Ny(P̃XY ) >

0
] .

= Me−nIP̃ (X;Y ) . Combining these and taking δ → 0 gives

− 1

n
logE

[
min

{
1,
Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
→ IP̃ (X;Y )−R+

[
Ψ(PXY , P̃XY )

]+
. (28)

Combining (25)–(28) and using a standard continuity argu-
ment to replace the minimizations over types by minimizations
over all distributions [17], we obtain from (24) that

− 1

n
logE

[
min

{
1,

∑
P̃XY

Ny(P̃XY )qn(P̃XY )

qn(PXY )

}]
→ min

{
min

P̃XY : P̃X=Q,

P̃Y =PY ,
IP̃ (X;Y )≤R

[
IP̃ (X;Y )−R+ Ψ(PXY , P̃XY )

]+
,

min
P̃XY : P̃X=Q,

P̃Y =PY ,
IP̃ (X;Y )≥R

IP̃ (X;Y )−R+
[
Ψ(PXY , P̃XY )

]+}
.

(29)

We now note the following: (i) Surrounding the term
Ψ(PXY , P̃XY ) in the first minP̃XY by [·]+ does not change
the optimization, since the constraint IP̃ (X;Y ) ≤ R means
that the objective evaluates to zero whether this term is
negative or zero; (ii) Surrounding the objective of the second
minP̃XY by [·]+ does not change the optimization, since the
constraint IP̃ (X;Y ) ≥ R means that the objective is non-
negative. Combining these observations with (20), recalling
that PXY denotes the joint type of (x,y), and using the
standard property of types [10, Ch. 2]

P
[
(X,Y ) ∈ Tn(PXY )

] .
= e−nD(PXY ‖Q×W ), (30)

we obtain (16).

IV. FURTHER PROPERTIES OF C̃M

In the following theorem, we present further properties
comparing the mismatched likelihood decoder capacity C̃M

and the classical mismatched capacity CM.

Theorem 4. The following statements hold:
1) For any (W, q) we have C̃M ≤ CM.
2) There exist pairs (W, q) such that C̃M < CM.
3) For any (W, q,Q), ĨLM(Q) > 0 ⇐⇒ ILM(Q) > 0.
4) For any (W, q), C̃M > 0 ⇐⇒ CM > 0 .



Proof: Let PXY be the joint distribution induced by an
arbitrary codebook and the channel. For the first part, we
consider the set of all (x,y) pairs such that x is not the unique
maximum-metric codeword. Each such pair contributes at most
PXY (x,y) to the error probability of the maximum-metric
decoder, and at least 1

2PXY (x,y) to the error probability of
the likelihood decoder (since the best case scenario is that there
is only one other codeword with an equal metric, and none
with a higher metric). This means that the error probability for
the likelihood decoder is at least half of that of the maximum
metric decoder, and the claim C̃M ≤ CM follows.

For the second part, we consider W and q corresponding
to binary symmetric channels with crossover probabilities δ
and δ′ respectively, with 0 < δ < δ′ < 0.5. The maximum-
metric capacity is log 2−H2(δ) (with H2 denoting the binary
entropy function), since (3) corresponds to minimum Ham-
ming distance decoding for any such δ′. For the mismatched
likelihood decoder, the probability of correct decoding is

1− pe =
1

M

∑
x,y

Wn(y|x)
1

1 +
∑

x′ 6=x q
n(x′,y)

qn(x,y)

(31)

≤ 1

M

∑
x,y

Wn(y|x)
1

1 +
∑

x′ 6=x(δ
′)n

(1−δ′)n
(32)

=
1

1 + (M − 1) (δ′)n

(1−δ′)n
, (33)

where (32) follows since q(x, y) only takes values in {δ′, 1−
δ′}. We conclude that in order for pe to vanish, it is necessary
that R < log 1−δ′

δ′ , regardless of the value of δ. This bound
tends to zero as δ′ → 1

2 , and we conclude that for any
given δ, there exists a threshold δmin ∈ (δ, 0.5) such that the
mismatched likelihood capacity is less than the mismatched
maximum-metric capacity whenever δ′ ∈ (δmin, 0.5).

For the third part, we note that the objective in (17) equals
zero if and only if IP̃ (X;Y ) = 0 (and hence P̃XY = Q×PY )
and the expectation is non-positive. This yields the condition

EQ×PY [log q(X,Y )] ≥ EQ×W [log q(X,Y )], (34)

which matches the necessary and sufficient condition for
ILM(Q) = 0 given in [11].

The fourth part follows immediately from the third due to
the fact that maxQ ILM(Q) > 0 if and only if CM > 0 [11].

The second part of Theorem 4 shows that the weak-
ness of the mismatched likelihood decoder compared to the
maximum-metric decoder is not limited to the random coding
case. This can be understood at an intuitive level by con-
sidering the example given in the proof: As δ′ → 0.5, the
distribution in (1) becomes closer to uniform, and the uniform
distribution yields an error probability of 1 − 1

M . However,
this intuition does not establish the claim in the theorem, due
to the ordering of the limits of δ′ → 0.5 and n→∞.
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