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Abstract—This paper presents a saddlepoint approximation
of the random-coding union bound of Polyanskiy et al. for
i.i.d. random coding over discrete memoryless channels. The
approximation is single-letter, and can thus be computed effi-
ciently. Moreover, it is shown to be asymptotically tight for both
fixed and varying rates, unifying existing achievability results
in the regimes of error exponents, second-order coding rates,
and moderate deviations. For fixed rates, novel exact-asymptotics
expressions are specified to within a multiplicative 1+o(1) term.
A numerical example is provided for which the approximation
is remarkably accurate even at short block lengths.

I. INTRODUCTION

In this paper, we consider problem of channel coding over a
discrete memoryless channel W (y|x). There exists extensive
literature studying the tradeoff between the rate R, error
probability pe and block length n, including:

1) Error exponents (R < C, exponentially decaying pe) [1];
2) Second-order coding rates (R→ C, fixed pe) [2], [3];
3) Moderate deviations (R → C and pe → 0 simultane-

ously) [4],
where C is the capacity. These asymptotic notions provide
valuable insight, but at finite block lengths it is generally
unclear which one dictates the performance.

In [3, Sec. III], a non-asymptotic approach was taken.
The most powerful of the achievability bounds therein is the
random-coding union (RCU) bound, given by

rcu(n,M) , E
[

min
{

1,

(M − 1)P[Wn(Y |X) ≥Wn(Y |X) |X,Y ]
}]
, (1)

where M = enR is the number of messages, (X,Y ,X) ∼
Qn(x)Wn(y|x)Qn(x), Wn(y|x) ,

∏n
i=1W (yi|xi), and

Qn(x) ,
∏n
i=1Q(xi) for some input distribution Q (here

we focus on i.i.d. random coding). The RCU bound has
been shown to be close to non-asymptotic converse bounds
in several numerical examples [3], but its computation is
generally prohibitively complex beyond symmetric setups.

In [5], a saddlepoint approximation [6] was derived for a
weakened bound, obtained from (1) using Markov’s inequality:

rcus(n,M) , E
[

min
{

1, (M − 1)e−i
n
s (X,Y )

}]
, (2)
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where s > 0 is arbitrary, and we define the generalized
information density

ins (x,y) ,
n∑
i=1

is(xi, yi) (3)

is(x, y) , log
W (y|x)s∑

xQ(x)W (y|x)s
. (4)

The approximation in [5] is single-letter and takes the form
r̂cus(n,M) = αn(Q,R, s)e−nEr(Q,R,s), where Er and αn
represent the error exponent and the subexponential prefactor
respectively. Numerical examples in [5] showed the approxi-
mation to be remarkably tight, while being essentially as easy
to compute as the exponent alone. However, its derivation used
heuristic arguments. The techniques of this paper formalize
these arguments, and yield

lim
n→∞

r̂cus(n,Mn)

rcus(n,Mn)
= 1 (5)

at both fixed and varying rates. Moreover, both the lattice
and non-lattice case (see Section III) are handled. Since rcus
can be used to derive the random-coding exponent [1, Ch. 5],
channel dispersion [3] and moderate deviations result [4], we
conclude from (5) that r̂cus unifies these regimes.

In Theorem 1 below, we present a refined asymptotic bound
rcu∗s and a corresponding saddlepoint approximation r̂cu

∗
s

which is tight in the sense of (5), and which is seen to
approximate the more powerful bound rcu remarkably well
numerically (see Figure 1). This saddlepoint approximation
not only unifies the above-mentioned regimes, but also charac-
terizes the higher-order asymptotics. In particular, for a fixed
error probability the approximation captures the third-order
1
2 log n term [7, Sec. 3.4.5], and for a fixed rate we obtain the
prefactor growth rate derived in [8] (see also [9]), along with
a novel characterization of the multiplicative O(1) terms.

II. PRELIMINARY DEFINITIONS AND RESULTS

We henceforth make use of the standard asymptotic nota-
tions O(·), o(·), Θ(·), Ω(·) and ω(·).

1) Information Density Moments and E0 Function: We
write the mean and variance of the information density as

Is(Q) , E[is(X,Y )] (6)

Us(Q) , Var[is(X,Y )], (7)

where (X,Y ) ∼ Q×W . Note that I1(Q) = I(X;Y ).



Following Gallager [1, Ch. 5], we define the E0 function

E0(Q, ρ, s) , − logE
[
e−ρis(X,Y )

]
(8)

and the random-coding error exponent

Er(Q,R) , sup
s>0,ρ∈[0,1]

E0(Q, ρ, s)− ρR. (9)

While the supremum is achieved by s = 1
1+ρ [1, Ex. 5.6], it

will be convenient to consider an arbitrary choice of s > 0.
The optimal ρ in (9) for a given value of s is denoted by

ρ̂(Q,R, s) , arg max
ρ∈[0,1]

E0(Q, ρ, s)− ρR, (10)

and the critical rate is defined as

Rcr
s (Q) , sup

{
R : ρ̂(Q,R, s) = 1

}
. (11)

We define the following derivatives associated with (10):

c1(Q,R, s) , R− ∂E0(Q, ρ, s)

∂ρ

∣∣∣∣
ρ=ρ̂(Q,R,s)

(12)

c2(Q,R, s) , −∂
2E0(Q, ρ, s)

∂ρ2

∣∣∣∣
ρ=ρ̂(Q,R,s)

. (13)

The following properties of the above quantities coincide with
those given by Gallager [1, pp. 141-143], and follow by
adapting the arguments therein to the case of a fixed s > 0:
• If Us(Q) > 0, then c2 > 0 for all R;
• For R ∈

[
0, Rcr

s (Q)
)
, we have ρ̂ = 1 and c1 < 0;

• For R ∈
[
Rcr
s (Q), Is(Q)

]
, ρ̂ is strictly decreasing in R,

and c1 = 0;
• For R > Is(Q), we have ρ̂ = 0 and c1 > 0.

Here and throughout the paper, the arguments to ρ̂, c1, etc.
are omitted when their values are clear from the context.

2) Singular vs. Non-Singular Case: Given an input distri-
bution Q and channel W , we define the set

Y1(Q) ,
{
y : W (y|x) 6= W (y|x) for some x, x

such that Q(x)Q(x)W (y|x)W (y|x) > 0
}
. (14)

Following the terminology of Altuğ and Wagner [8], we say
that (Q,W ) is singular if Y1(Q) = ∅, and non-singular
otherwise. Our techniques can be used to handle both cases.
In the singular case, we in fact have rcu = rcus [10], and
hence (5) gives the desired result regarding the approximation
of rcu. In fact, our analysis can be applied directly to the
dependence-testing (DT) bound [3], which improves (slightly)
on rcu for singular channels. We focus on the non-singular
case, and refer the reader to [10] for the singular case.

3) Further Definitions: We say that Z is a lattice random
variable with offset γ and span h if its support is a subset of
the lattice {γ+ ih : i ∈ Z}, and the same cannot remain true
by increasing h. Our main result treats two cases separately
depending on whether is(X,Y ) is a lattice variable.

The density of a N(µ, σ2) random variable is denoted by

φ(z;µ, σ2) ,
1√

2πσ2
e−

(z−µ)2

2σ2 . (15)

In the lattice case, we similarly write

φh(z;µ, σ2) ,
h√

2πσ2
e−

(z−µ)2

2σ2 . (16)

The remaining definitions are somewhat more technical. We
define the reverse conditional distribution

P̃s(x|y) ,
Q(x)W (y|x)s∑
xQ(x)W (y|x)s

, (17)

the joint tilted distribution

P ∗ρ̂,s(x, y) =
Q(x)W (y|x)e−ρ̂is(x,y)∑

x′,y′ Q(x′)W (y′|x′)e−ρ̂is(x′,y′)
, (18)

and the conditional variance

c3(Q,R, s) , E
[
Var
[
is(X

∗
s , Y

∗
s )
∣∣Y ∗s ]], (19)

where (X∗s , Y
∗
s ) ∼ P ∗ρ̂,s(y)P̃s(x|y), and P ∗ρ̂,s(y) is the y-

marginal of (18). We have [9, Eq. (61)]

VarP̃s(·|y)[is(Xs, y)] > 0 ⇐⇒ y ∈ Y1(Q). (20)

Furthermore, using (18), we have P ∗ρ̂,s(y) > 0 if and only if∑
xQ(x)W (y|x) > 0. Combining these, we see that the non-

singularity assumption implies c3 > 0 for all R and s > 0.
Finally, we define

Is ,
{
is(x, y) : Q(x)W (y|x) > 0, y ∈ Y1(Q)

}
(21)

ψs ,

{
1 Is does not lie on a lattice

h
1−e−h

Is lies on a lattice with span h.
(22)

III. MAIN RESULT

Our saddlepoint approximation is written in the form

r̂cu
∗
s(n,M) , βn(Q,R, s)e−n(E0(Q,ρ̂,s)−ρ̂R). (23)

We treat the lattice and non-lattice cases separately, defining

βn ,

{
βnl
n is(X,Y ) is non-lattice
βl
n R− is(X,Y ) has offset γ and span h,

(24)

where

βnl
n (Q,R, s) ,

ˆ ∞
log

√
2πnc3
ψs

e−ρ̂zφ(z;nc1, nc2)dz

+
ψs√

2πnc3

ˆ log

√
2πnc3
ψs

−∞
e(1−ρ̂)zφ(z;nc1, nc2)dz, (25)

βl
n(Q,R, s) ,

∞∑
i=i∗

e−ρ̂(γn+ih)φh(γn + ih;nc1, nc2)

+
ψs√

2πnc3

i∗−1∑
i=−∞

e(1−ρ̂)(γn+ih)φh(γn + ih;nc1, nc2), (26)

and where in (26) we define

γn , min
{
nγ + ih : i ∈ Z, nγ + ih ≥ 0

}
, (27)

i∗ , min

{
i ∈ Z : γn + ih ≥ log

√
2πnc3
ψs

}
. (28)



While (25) and (26) are written in terms of integrals and sum-
mations, both are single-letter and can be computed efficiently,
with a complexity which is independent of n. In the non-lattice
case, this is done by noting thatˆ ∞

a

ebzφ(z;µ, σ2)dz = eµb+
1
2σ

2b2Q
(a− µ− bσ2

σ

)
. (29)

In the lattice case, we can write each summation in (26) as∑
i

eb0+b1i+b2i
2

= e−
b21
4b2

+b0
∑
i

eb2(i+
b1
2b2

)2 , (30)

where b2 < 0. We can thus obtain an accurate approximation
by keeping only the terms in the summation such that i is suf-
ficiently close to − b1

2b2
. Overall, the computational complexity

for any given s > 0 is similar to that of computing the error
exponent alone. In principle, the parameter s may be further
optimized, but numerical studies indicate that it suffices to
choose s = 1

1+ρ̂ (i.e. the value maximizing E0(Q, ρ̂, s)).

Theorem 1. Fix the input distribution Q, constant s > 0, and
sequence of positive integers {Mn}n≥1. If the pair (Q,W ) is
non-singular, then

rcu(n,Mn) ≤ rcu∗s(n,Mn)(1 + o(1)), (31)

where

rcu∗s(n,M) , E
[

min

{
1,

Mψs√
2πnc3

e−i
n
s (X,Y )

}]
. (32)

Furthermore, we have

lim
n→∞

r̂cu
∗
s(n,Mn)

rcu∗s(n,Mn)
= 1. (33)

Proof: See Section IV-B.
The proof of Theorem 1 reveals that for a fixed target error

probability we have r̂cu
∗
s = rcu∗s +O

(
1√
n

)
. From the analysis

given in [7, Sec. 3.4.5], setting rcu∗s = ε and solving for the
required number of messages yields

logM = nIs(Q)−
√
nUs(Q)Q−1(ε)+

1

2
log n+O(1). (34)

By Taylor expanding the Q−1 function, we conclude that the
same is true of r̂cu

∗
s . Note that since I1(Q) = I(X;Y ), (34)

is primarily of interest when s = 1 and Q achieves capacity.
For a fixed rate R ≥ 0, we can apply asymptotic expansions

to (25)–(26) to show the following [10] (here fn � gn means
that limn→∞

fn
gn

= 1):

• If R ∈ [0, Rcr
s (Q)), then βn(Q,R, s) � ψs√

2πnc3
.

• If R = Rcr
s (Q), then βn(Q,R, s) � ψs

2
√
2πnc3

.
• If R ∈ (Rcr

s (Q), Is(Q)), then

βnl
n (Q,R, s) �

(
ψs√

2πnc3

)ρ̂
1√

2πnc2ρ̂(1− ρ̂)
, (35)

βl
n(Q,R, s) �

(
ψs√

2πnc3

)ρ̂
h√

2πnc2

×

(
e−ρ̂γ

′
n

(
1

1− e−ρ̂h

)
+ e(1−ρ̂)γ

′
n

(
e−(1−ρ̂)h

1− e−(1−ρ̂)h

))
,

(36)
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Figure 1. Rate required to achieve a target error probability ε = 10−5 for
the binary symmetric channel with crossover probability δ = 0.15, and the
uniform input distribution Q = ( 1

2
, 1
2

). This corresponds to the lattice case
in (24). The capacity and critical rate are 0.390 bits/use and 0.124 bits/use.

where γ′n , γn + i∗ h− log
√
2πnc3
ψs

∈ [0, h) (see (28)).
• If R = Is(Q), then βn(Q,R, s) � 1

2 .
• If R > Is(Q), then βn(Q,R, s) � 1.

When combined with Theorem 1, these expansions provide an
alternative proof of the main result of Altuğ-Wagner [8], and
an explicit characterization of the multiplicative O(1) terms.

A. Numerical Example

A numerical example is given in Figure 1 (see the caption
for details). Definitions of the error exponent and normal
approximations can be found in [3], and the exact asymptotics
approximation equals the right-hand side of (36). We set s = 1
for the normal approximation, and s = 1

1+ρ̂ for the other
approximations.

We see that the saddlepoint approximation provides an
excellent approximation of rcu(n,M). The exact asymptotics
approximation is accurate other than a divergence near the
critical rate. A similar divergence also occurs near capacity,
but this is not visible in the plot; see [10] for further discussion.
In this example, neither the error exponent approximation nor
normal approximation is accurate, though the latter moves
closer to rcu upon including the 1

2 log n term. Roughly speak-
ing, the normal (respectively, error exponent) approximation
is better suited to rates near capacity (respectively, low rates),
whereas the saddlepoint approximation is accurate at all rates.

It should be noted that the observed accuracy of the sad-
dlepoint approximation is not limited to symmetric setups; see
[5], [10] for further examples.

IV. PROOF OF THEOREM 1

Due to space constraints, we omit some details and focus
on the non-lattice case. Full details can be found in [10].

A. Proof of (33)

1) Alternative Expressions for rcu∗s: For any non-negative
random variable A, we have E[min{1, A}] = P[A ≥ U ],



where U is uniform on (0, 1) and independent of A. Defining
gn , 1

ψs

√
2πnc3, we can thus write (32) as

rcu∗s(n,M) = P
[
nR−

n∑
i=1

is(Xi, Yi) ≥ log(Ugn)

]
. (37)

Let F (t) denote the cumulative distribution function (CDF) of
R− is(X,Y ) and let Z1, · · · , Zn be i.i.d. with CDF

FZ(z) = eE0−ρ̂R
ˆ z

−∞
eρ̂tdF (t), (38)

where the arguments to E0 are kept implicit. Using a standard
change of measure argument, we showed in [9, Eq. (44)] that

rcu∗s(n,M) = Ine
−n(E0(Q,ρ̂,s)−ρ̂R), (39)

where

In ,
ˆ 1

0

ˆ ∞
log(ugn)

e−ρ̂zdFn(z)dFU (u), (40)

and where Fn is the CDF of
∑n
i=1 Zi, and FU is the CDF of

U. Moreover, we showed in [9, Eqs. (48)–(49)] that

E[Z] = c1, Var[Z] = c2, (41)

where c1 and c2 are defined in (12)–(13). It is not difficult to
show that the non-singularity assumption implies Us(Q) > 0,
which in turn implies c2 > 0 (see Section II).

Since the integrand in (40) is non-negative, we can safely
interchange the order of integration, yielding

In =

ˆ ∞
−∞

ˆ min
{
1, 1
gn
ez
}

0

e−ρ̂zdFU (u)dFn(z) (42)

=

ˆ ∞
log gn

e−ρ̂zdFn(z) +
1

gn

ˆ log gn

−∞
e(1−ρ̂)zdFn(z), (43)

where (43) follows by splitting the integral according to which
value achieves the min{·, ·} in (42). Letting F̂n denote the
CDF of

∑n
i=1 Zi−nc1√

nc2
, we can write (43) as

In =

ˆ ∞
log gn−nc1√

nc2

e−ρ̂(z
√
nc2+nc1)dF̂n(z)

+
1

gn

ˆ log gn−nc1√
nc2

−∞
e(1−ρ̂)(z

√
nc2+nc1)dF̂n(z). (44)

2) Application of a Refined Central Limit Theorem: Let
Φ(z) denote the CDF of a zero-mean unit-variance Gaussian
random variable. Using the fact that E[Z] = c1 and Var[Z] =
c2 > 0, we have from the refined central limit theorem in [11,
Sec. XVI.4, Thm. 1] that

F̂n(z) = Φ(z) +Gn(z) + F̃n(z), (45)

where F̃n(z) = o(n−
1
2 ) uniformly in z, and

Gn(z) ,
K√
n

(1− z2)e−
1
2 z

2

(46)

for some constant K depending only on the variance and third
absolute moment of Z. Substituting (45) into (44), we obtain

In = I1,n + I2,n + I3,n, (47)

where the three terms denote the right-hand side of (44) with
Φ, Gn and F̃n respectively in place of F̂n. By reversing the
step from (43) to (44), we see that I1,n is precisely βnl

n in (25).
In accordance with the theorem statement, we must show that
I2,n = o(βnl

n ) and I3,n = o(βnl
n ) even when R and ρ̂ vary

with n. Let Rn , 1
n logMn and ρ̂n , ρ̂(Q,Rn, s), and let

c1,n and c2,n be the corresponding values of c1 and c2. We
assume with no real loss of generality that

lim
n→∞

Rn = R∗ (48)

for some R∗ ≥ 0 possibly equal to ∞. Once (33) is proved
for all such R∗, the same will follow for arbitrary {Rn}.

Table I summarizes the growth rates βnl
n , I2,n and I3,n for

various ranges of R∗, and indicates whether the first or second
integral (see (44)) dominates the behavior of each. We see that
I2,n = o(βnl

n ) and I3,n = o(βnl
n ) for all R∗, as desired.

As an example, we consider the case R∗ ∈ (Rcr
s (Q), Is(Q)).

The given behavior of βnl
n follows immediately from (35).

Taking the derivative of Gn(z) in (46), we can evaluate I2,n
by writing it in terms of the standard Gaussian density φ(z) =
1√
2π

= e−z
2/2. For I3,n, we analyze the two integrals in a

similar fashion; here we focus on the first. For the integration
range given, the integrand is upper bounded by e−ρ̂ log gn =
Θ(n−ρ̂/2). Combining this with the fact that F̃n(z) = o(n−

1
2 )

uniformly in z, we obtain the desired o(n−
1
2 (1+ρ̂)) decay rate.

B. Proof of (31)

To prove (31), we make use of two technical lemmas, whose
proofs can be found in [10, Appendix F].

Lemma 1. Fix K > 0, and for each n, let (n1, · · · , nK) be in-
tegers such that

∑
k nk = n. Fix the probability mass functions

(PMFs) Q1, · · · , QK on a common finite alphabet, and let
σ2
1 , · · · , σ2

K be the corresponding variances. Let Z1, · · · , Zn
be independent random variables, nk of which are distributed
according to Qk for each k. Suppose that mink σk > 0 and
mink nk = Θ(n). Defining

I0 ,
⋃

k :σk>0

{
z : Qk(z) > 0

}
(49)

ψ0 ,

{
1 I0 does not lie on a lattice

h0

1−e−h0 I0 lies on a lattice with span h0,
(50)

the sum Sn ,
∑
i Zi satisfies the following uniformly in t:

E
[
e−Sn11

{
Sn ≥ t

}]
≤ e−t

(
ψ0√
2πVn

+ o
( 1√

n

))
, (51)

where Vn , Var[Sn], and 11{·} is the indicator function.

Proof: The proof is analogous to that of [3, Lemma 47],
except that the use of the Berry-Esseen theorem is replaced by
the local limit theorems in [12, Thm. 1] and [13, Sec. VII.1,
Thm. 2] for the non-lattice and lattice cases respectively.

Define the random variables

(X,Y ,X,Xs) ∼ Qn(x)Wn(y|x)Qn(x)P̃ns (xs|y), (52)



Table I
GROWTH RATES OF βnl

n , I2,n AND I3,n WHEN THE RATE CONVERGES TO R∗ .

ρ̂ c1 Dominant Term(s) βnl
n I2,n I3,n

R∗ ∈ [0, Rcr
s (Q)) 1 < 0 2 Θ

(
1√
n

)
Θ
(

1
n

)
o
(

1
n

)
R∗ = Rcr

s (Q) → 1 → 0 2 ω
(

1
n

)
O
(

1
n

)
o
(

1
n

)
R∗ ∈ (Rcr

s (Q), Is(Q)) ∈ (0, 1) 0 1,2 Θ
(

1

n
1
2
(1+ρ̂)

)
Θ
(

1

n
1
2
(2+ρ̂)

)
o
(

1

n
1
2
(1+ρ̂)

)
R∗ = Is(Q) → 0 → 0 1 ω

(
1√
n

)
O
(

1√
n

)
o
(

1√
n

)
R∗ > Is(Q) 0 > 0 1 Θ(1) Θ

(
1√
n

)
o
(

1√
n

)

where P̃ns (x|y) ,
∏n
i=1 P̃s(xi|yi). We write the empirical

distribution of y as P̂y , and we let PY denote the PMF of Y .

Lemma 2. Let s > 0 and ρ̂ ∈ [0, 1] be given. If the pair
(Q,W ) is non-singular, then the set

Fnρ̂,s(δ) ,
{
y : PY (y) > 0, max

y

∣∣P̂y(y)− P ∗ρ̂,s(y)
∣∣ ≤ δ}

(53)
satisfies the following properties:

1) For any y ∈ Fnρ̂,s(δ), we have

Var
[
ins (Xs,Y ) |Y = y

]
≥ n(c3 − r(δ)), (54)

where r(δ)→ 0 as δ → 0.
2) For any δ > 0, we have

lim inf
n→∞

− 1

n
log

∑
x,y/∈Fnρ̂,s(δ)

Qn(x)Wn(y|x)e−ρ̂i
n
s (x,y)

e−nE0(Q,ρ̂,s)
> 0.

(55)

Proof: This is a simple refinement of [9, Lemma 3].
Since the two statements of Lemma 2 hold true for any

ρ̂ ∈ [0, 1], they also hold true when ρ̂ varies within this range,
thus allowing us to handle rates which vary with n.

By upper bounding M − 1 by M in (1), we obtain

rcu(n,M) ≤ S0(ρ̂, s, δ) +
∑

x,y∈Fnρ̂,s(δ)

Qn(x)Wn(y|x)

×min
{

1,MP[ins (X,y) ≥ ins (x,y)]
}
, (56)

where S0(ρ̂, s, δ) is a sum of the same form as the second
term in (56) with y /∈ Fnρ̂,s(δ), and we have replaced Wn by
ins since each is an increasing function of the other. Following
[7, Sec. 3.4.5], we have the following when P̃ns (x,y) 6= 0:

Qn(x) = Qn(x)
P̃ns (x|y)

P̃ns (x|y)
= P̃ns (x|y)e−i

n
s (x,y). (57)

Summing (57) over all x such that ins (x,y) ≥ t yields

P[ins (X,y) ≥ t] = E
[
e−i

n
s (Xs,Y )11

{
ins (Xs,Y ) ≥ t

} ∣∣∣Y = y
]

(58)
under the joint distribution in (52).

We now observe that (58) is of the same form as the left-
hand side of (51). We apply Lemma 1 with Qk given by the

PMFs of is(Xs, y) under Xs ∼ P̃s( · |y) for the various y
values. We have from (51), (54) and (58) that

P
[
ins (X,y) ≥ t

]
≤ ψs√

2πn(c3 − r(δ))
e−t(1 + o(1)) (59)

for all y ∈ Fnρ̂,s(δ) and sufficiently small δ (recall that c3 > 0).
Here we have used the fact that ψ0 in (50) coincides with ψs
in (22), which follows from (20) and the fact that P̃s(x|y) > 0
if and only if Q(x)W (y|x) > 0 (see (17)).

Using the uniformity of the o(1) term in t in (59) (see
Lemma 1), taking δ → 0 (and hence r(δ)→ 0), and writing

min{1, fn(1 + ζn)} ≤ (1 + |ζn|) min{1, fn}, (60)

we see that the second term in (56) is upper bounded by
rcu∗s(n,M)(1 + o(1)). Finally, using (55) (along with (23)
and (33)), it is easily shown that S0(ρ̂, s, δ) can be factored
into the 1 + o(1) term, thus completing the proof of (31).
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