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Abstract—This paper studies channel coding for the discrete
memoryless multiple-access channel with a given decoding rule.
A multi-letter successive decoding rule depending on an arbitrary
non-negative function q(x1, x2, y) is considered, and an achiev-
able rate region and error exponent are derived. The rate region
is compared with that of the maximum-metric decoder which
uses the function q(x1, x2, y), and a numerical example is given
for which successive decoding yields a strictly higher sum rate
for a given pair of input distributions.

I. INTRODUCTION

The mismatched decoding problem [1]–[3] seeks to char-
acterize the performance of channel coding when the decoding
rule is fixed and possibly suboptimal (e.g. due to channel
uncertainty or implementation constraints). Extensions of this
problem to multiuser settings are not only of interest in their
own right, but can also provide valuable insight into the single-
user setting [3]–[5]. In particular, significant attention has been
paid to the mismatched multiple-access channel (MAC), for
which, given the length-n output vector y and codebooks
Cν = {x(1)

ν , · · · ,x(Mν)
ν } (ν = 1, 2), the decoder estimates

the message pair as

(m̂1, m̂2) = arg max
(i,j)

qn(x
(i)
1 ,x

(j)
2 ,y), (1)

where qn(x1,x2,y) ,
∏n
i=1 q(x1,i, x2,i, yi) for some non-

negative decoding metric q(x1, x2, y).
Given that the decoder only knows the metric

qn(x
(i)
1 ,x

(j)
2 ,y) corresponding to each codeword pair,

one may question whether there exists a decoding rule with
better performance than the maximum-metric rule in (1).
In general, this question is only interesting if “reasonable”
decoding rules are considered. For example, if the values
{log q(x1, x2, y)} are rationally independent (i.e. no value can
be written as linear combinations of the others with rational
coefficients), then there is a one-to-one correspondence
between the joint empirical distribution of (x1,x2,y) and
the possible values of qn(x1,x2,y), and hence the decoder
can implement the maximum-likelihood (ML) rule (assuming
the channel is memoryless).
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In this paper, we consider successive decoding of the form

m̂1 = arg max
i

∑
j

qn(x
(i)
1 ,x

(j)
2 ,y) (2)

m̂2 = arg max
j
qn(x

(m̂1)
1 ,x

(j)
2 ,y). (3)

Stated formally, we have the following. Let W (y|x1, x2) be
the transition law of a memoryless MAC, and let q(x1, x2, y)
be an arbitrary non-negative function. The alphabets are
denoted by X1, X2 and Y , and each is assumed to be
finite. Encoder ν = 1, 2 takes as input mν equiprobable
on {1, · · · ,Mν}, and transmits the corresponding codeword
x
(mν)
ν from a codebook Cν . We say that a rate pair (R1, R2) is

achievable if, for all δ > 0, there exist sequences of codebooks
C1,n and C2,n with M1 ≥ en(R1−δ) and M2 ≥ en(R2−δ)

respectively, such that P[(m̂1, m̂2) 6= (m1,m2)] → 0 under
the decoding rule described by (2)–(3).

Letting Eν , {m̂ν 6= mν} for ν = 1, 2, we observe that
if q(x1, x2, y) = W (y|x1, x2), then (2) is the decision rule
which minimizes P[E1]. That is, (2) is a mismatched version
of the optimal decoding rule for (one user of) the interference
channel (IC). Thus, as well as giving an achievable rate
region for the MAC with mismatched successive decoding,
our results will quantify the loss due to mismatch for the IC.
In particular, we obtain an achievable error exponent using
different techniques to those of [6].

It can be shown that the exponents and rates with q = W
coincide with those of ML decoding (i.e. (1) with q = W ); this
is done by noting that (2) minimizes P[E1], (3) minimizes the
probability of favoring some (m1, j) (j 6= m2) over (m1,m2),
and (1) minimizes P[E1 ∪ E2]. In contrast, we will see that
when q 6= W , the successive decoder can lead to significantly
different rate regions to those of maximum-metric decoding.

Notation: Bold symbols are used for vectors (e.g. x),
and the corresponding i-th entry is written using a subscript
(e.g. xi). Subscripts are used to denote the distributions
corresponding to expectations and mutual informations (e.g.
EP [·], IP (X;Y )). The marginals of a joint distribution PXY
are denoted by PX and PY . We write PX = P̃X to denote
element-wise equality between two probability distributions on
the same alphabet. The set of all sequences of length n with a
given empirical distribution PX (i.e. type [7, Ch. 2]) is denoted
by Tn(PX). We write f(n)

.
= g(n) if limn→∞

1
n log f(n)

g(n) =



0, and similarly for ≤̇ and ≥̇. We write [α]+ = max(0, α),
and denote the indicator function by 11{·}

II. MAIN RESULT

We fix the input distributions Q1 and Q2, let PX1X2Y ,
Q1 ×Q2 ×W , and define the functions

F (P̃X1X2Y , P̃
′
X1X2Y , R2) , max

{
EP̃ [log q(X1, X2, Y )],

EP̃ ′ [log q(X1, X2, Y )] +
[
R2 − IP̃ ′(X2;X1, Y )

]+}
, (4)

F (PX1X2Y , R2) , max

{
EP [log q(X1, X2, Y )],

max
P ′
X1X2Y

∈T ′
1 (PX1X2Y

,R2)
EP ′ [log q(X1, X2, Y )]

+R2 − IP ′(X2;X1, Y )

}
, (5)

and the sets

T1(PX1X2Y , R2) ,
{

(P̃X1X2Y , P̃
′
X1X2Y ) : P̃X2Y = PX2Y ,

P̃X1 = PX1 , P̃
′
X1Y = P̃X1Y , P

′
X2

= PX2 ,

F (P̃X1X2Y , P̃
′
X1X2Y , R2) ≥ F (PX1X2Y , R2)

}
(6)

T ′1 (PX1X2Y , R2) ,
{
P ′X1X2Y :

P ′X1Y = PX1Y , P
′
X2

= PX2 , IP ′(X2;X1, Y ) ≤ R2

}
(7)

T2(PX1X2Y ) ,
{
P̃X1X2Y : P̃X2 = PX2 , P̃X1Y = PX1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
. (8)

Theorem 1. For any input distributions Q1 and Q2, the pair
(R1, R2) is achievable for the decoder in (2)–(3) provided that

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T1(PX1X2Y
,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
(9)

R2 ≤ min
P̃X1X2Y

∈T2(PX1X2Y
)
IP̃ (X2;X1, Y ). (10)

Proof: See Section III.
The minimization in (9) is a non-convex optimization

problem, but it can be cast in terms of convex optimization
problems; see the Appendix for details. While our focus is on
achievable rates, the proof of Theorem 1 reveals that the error
exponent corresponding to (10) coincides with one of the three
error events for maximum-metric decoding [5], and the error
exponent corresponding to (9) is given by

min
PX1X2Y

:PX1
=Q1,PX2

=Q2

D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[
I0(PX1X2Y , R2)−R1

]+
, (11)

where I0(PX1X2Y , R2) denotes the right-hand side of (9) with
an arbitrary distribution PX1X2Y used in (5)–(8) (rather than
PX1X2Y = Q1 ×Q2 ×W ).
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Figure 1. Achievable rate regions for the channel given in (12).

A. Numerical Example
We consider the MAC with X1 = X2 = {0, 1}, Y =

{0, 1, 2}, and

W (y|x1, x2) =

{
1− 2ηx1x2

y = x1 + x2

ηx1x2 otherwise,
(12)

where {ηx1x2} are constants. The mismatched decoder uses
q(x1, x2, y) of a similar form, but a fixed value η in place
of {ηx1x2

}. We set η00 = 0.01, η01 = 0.1, η10 = 0.01,
η11 = 0.3, η = 0.15, and Q1 = Q2 = (0.5, 0.5). Figure 1 plots
the achievable rates regions of successive decoding (Theorem
1), maximum-metric decoding (see [3], [5]), and matched
decoding (yielding the same region whether successive or
maximum-metric).

Interestingly, neither of the mismatched rate regions domi-
nates the other, thus suggesting that the two decoding rules are
fundamentally different. For the given input distribution, the
sum rate for successive decoding exceeds that of maximum-
metric decoding. Furthermore, upon taking the convex hull
(which is justified by a time sharing argument [3], [8]), the
region for successive decoding is strictly larger. While we
observed similar behaviors for other choices of Q1 and Q2, it
remains unclear as to whether this always holds. Furthermore,
while the rate region for maximum-metric decoding is tight
with respect to the ensemble average [3], it is unclear whether
the same is true for that of successive decoding.

The vertical line at R1 ≈ 0.1 is analogous to the interference
channel, where for R1 below a certain threshold, R2 can take
any value while still ensuring user 1’s message is estimated
correctly [6]. Due to the mismatch, this induces a non-
pentagonal shape in the present example.

III. PROOF OF THEOREM 1
Our analysis is based on the method of type class enumera-

tion (e.g. see [6], [9], [10]), and is perhaps most similar to that
of Somekh-Baruch and Merhav [10]. We consider constant-
composition random coding, where for ν = 1, 2 we have

PXν
(xν) =

1

|Tn(Qν)|
11
{
xν ∈ Tn(Qν)

}
. (13)



Here we assume that Q1 and Q2 are types for notational con-
venience; more generally, we can approximate these by types
and the analysis is unchanged. The (independent) random
codewords are denoted by (X(1)

ν , · · · ,X(Mν)
ν ). We assume

without loss of generality that m1 = m2 = 1, and we
write Xν = X(1)

ν and let Xν denote an arbitrary X(j)
ν with

j 6= 1. The output sequence is denoted by Y , and we write
Rν , 1

n logMν (ν = 1, 2).
As noted by Grant et al. [11], we can analyze the error

probability of the second decoding step (see (3)) assuming that
no error occurred on the first step (see (2)), while still using
the unconditional statistics of (X1,X2,Y ). The subsequent
analysis has been done in the study of maximum-metric
decoding [3], [5], and the corresponding rate condition is
precisely (10). In the remainder of this section, we focus on
the first decoding step.

Let pe,1(x1,x2,y) denote the random-coding error
probability for the first decoding step conditioned on
(X

(1)
1 ,X

(1)
2 ,Y ) = (x1,x2,y). The joint type of (x1,x2,y)

is denoted by PX1X2Y .1 We write the objective in (2) as

Ξx2y(x1) , qn(x1,x2,y) +
∑
j 6=1

qn(x1,X
(j)
2 ,y), (14)

which is random due to the randomness of {X(j)
2 }. Using the

union bound, we have

pe,1(x1,x2,y) ≤ (M1−1)P
[
Ξx2y(X1) ≥ Ξx2y(x1)

]
. (15)

We proceed by analyzing the statistics of Ξx2y . From (14),

Ξx2y(x1) = qn(P̃X1X2Y )+
∑

P̃ ′
X1X2Y

Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y ),

(16)
where P̃X1X2Y is the joint type of (x1,x2,y),
Nx1y(P̃ ′X1X2Y

) is the random number of X
(j)
2 (j 6= 1)

such that (x1,X
(j)
2 ,y) ∈ Tn(P̃ ′X1X2Y

), and we write
qn(P̃ ′X1X2Y

) , qn(x1,x2,y) for an arbitrary triplet
(x1,x2,y) ∈ Tn(P̃ ′X1X2Y

). Since the codewords are
generated independently, Nx1y(P̃ ′X1X2Y

) is binomially
distributed with M2 − 1 trials and success probability
P
[
(x1,X2,y) ∈ Tn(P̃ ′X1X2Y

)
]
. By construction, we have

Nx1y(P̃ ′X1X2Y
) = 0 unless P̃ ′X1X2Y

∈ S ′1(Q2, P̃X1Y ), where

S ′1(Q2, P̃X1Y ) ,
{
P̃ ′X1X2Y : P̃ ′X1Y = P̃X1Y , P̃

′
X2

= Q2

}
.

(17)
The following lemma characterizes the behavior of
Nx1y(P̃ ′X1X2Y

) for fixed R2 and P̃ ′X1X2Y
. The proof

can be found in [6], [10], and is based on the fact that

P
[
(x1,X2,y) ∈ Tn(P̃ ′X1X2Y )

] .
= e−nIP̃ ′ (X2;X1,Y ). (18)

Roughly speaking, the lemma states that if R2 >
IP̃ ′(X2;X1, Y ) then the corresponding type enumerator is
highly concentrated about its mean, whereas if R2 <

1This is a slight abuse of notation in light of the previous definition
PX1X2Y = Q1 ×Q2 ×W , but this substitution will be made later.

IP̃ ′(X2;X1, Y ) then the type enumerator takes a subexpo-
nential value (possibly zero) with overwhelming probability.

Lemma 1. [6], [10] Fix the pair (x1,y) ∈ Tn(P̃X1Y ), a
constant δ > 0, and a type P̃ ′X1X2Y

∈ S ′1(Q2, P̃X1Y ).
(i) If R2 ≥ IP̃ ′(X2;X1, Y ) + δ, then

M2e
−n(IP̃ ′ (X2;X1,Y )+δ) ≤ Nx1y(P̃ ′X1X2Y ) (19)

≤M2e
−n(IP̃ ′ (X2;X1,Y )−δ) (20)

with probability approaching one super-exponentially fast.
(ii) If R2 < IP̃ ′(X2;X1, Y ) + δ, then

Nx1y(P̃ ′X1X2Y ) ≤ e−n 2δ (21)

with probability approaching one super-exponentially fast.

Given a joint type P̃X1X2Y , let Aδ(P̃X1X2Y ) denote the
event that the high-probability events in Lemma 1 occur for
all P̃ ′X1X2Y

∈ S ′1(Q2, P̃X1Y ). Since P[Aδ(P̃X1X2Y )] → 1
super-exponentially fast, we can safely condition any event on
Aδ(P̃X1X2Y ) without changing the exponential behavior of
the corresponding probability.

Conditioned on Aδ(PX1X2Y ), we have the following:

Ξx2y(x1)

= qn(PX1X2Y ) +
∑

P ′
X1X2Y

Nx1y(P ′X1X2Y )qn(P ′X1X2Y )

(22)
≥ qn(PX1X2Y )

+ max
P ′
X1X2Y

∈S′
1(Q2,PX1Y

)

R2≥IP ′ (X2;X1,Y )+δ

Nx1y(P ′X1X2Y )qn(P ′X1X2Y ) (23)

≥ qn(PX1X2Y )

+ max
P ′
X1X2Y

∈S′
1(Q2,PX1Y

)

R2≥IP ′ (X2;X1,Y )+δ

M2e
−n(IP ′ (X2;X1,Y )+δ)qn(P ′X1X2Y )

(24)

, F δ(PX1X2Y ), (25)

where (24) follows from part (i) of Lemma 1. Unlike
Ξx2y(x1), the quantity F δ(PX1X2Y ) is deterministic. Substi-
tuting (25) into (15), we obtain

pe,1(x1,x2,y) ≤̇M1P
[
Ξx2y(X1) ≥ F δ(PX1X2Y )

]
. (26)

Since the statistics of Ξx2y(x1) depend on x1 only through
the joint type of (x1,x2,y), we can write (26) as follows:

pe,1(x1,x2,y) ≤̇M1

∑
P̃X1X2Y

P
[
(X1,x2,y) ∈ Tn(P̃X1X2Y )

]
× P

[
Ξx2y(x1) ≥ F δ(PX1X2Y )

]
(27)

.
= M1 max

P̃X1X2Y
∈S1(Q1,PX2Y

)
e−nIP̃ (X1;X2,Y )

× P
[
Ξx2y(x1) ≥ F δ(PX1X2Y )

]
,
(28)



where x1 denotes an arbitrary sequence such that
(x1,x2,y) ∈ Tn(P̃X1X2Y ), and

S1(Q1, PX2Y ) ,
{
P̃X1X2Y : P̃X1

= Q1, P̃X2Y = PX2Y

}
.

(29)
In (28), we have used an analogous property to (18).

Next, we again use Lemma 1 in order to replace Ξx2y(x1)
in (28) by a deterministic quantity. We have from (16) that

Ξx2y(x1) ≤ qn(P̃X1X2Y )

+ p0(n) max
P̃ ′
X1X2Y

Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y ), (30)

where p0(n) is a polynomial corresponding to the total number
of joint types. Substituting (30) into (28), we obtain

pe,1(x1,x2,y) ≤̇M1 max
P̃X1X2Y

∈S1(Q1,PX2Y
)

max
P̃ ′
X1X2Y

∈S′
1(Q2,P̃X1Y

)

e−nIP̃ (X1;X2,Y )P
[
EP,P̃ (P̃ ′X1X2Y )

]
, (31)

where

EP,P̃ (P̃ ′X1X2Y ) ,
{
qn(P̃X1X2Y )

+ p0(n)Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y ) ≥ F δ(PX1X2Y )
}
,

(32)

and we have used the union bound to take the maximum over
P̃ ′X1X2Y

outside the probability in (31). Continuing, we have

max
P̃ ′
X1X2Y

∈S′
1(Q2,P̃X1Y

)
P
[
EP,P̃ (P̃ ′X1X2Y )

]
= max

{
max

P̃ ′
X1X2Y

∈S′
1(Q2,P̃X1Y

)

R2≥IP̃ ′ (X2;X1,Y )+δ

P
[
EP,P̃ (P̃ ′X1X2Y )

]
,

max
P̃ ′
X1X2Y

∈S′
1(Q2,P̃X1Y

)

R2<IP̃ ′ (X2;X1,Y )+δ

P
[
EP,P̃ (P̃ ′X1X2Y )

]}
. (33)

For the first maximization in (33), observe that conditioned
on Aδ(P̃X1X2Y ) (defined following Lemma 1), we have for
P̃ ′X1X2Y

satisfying R2 ≥ IP̃ ′(X2;X1, Y ) + δ that

Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y )

≤M2e
−n(IP̃ ′ (X2;X1,Y )−δ)qn(P̃ ′X1X2Y ). (34)

Hence, and using Lemma 1, we have

P
[
EP,P̃ (P̃ ′X1X2Y )

]
≤̇ 11
{
qn(P̃X1X2Y )

+M2p0(n)e−n(IP̃ ′ (X2;X1,Y )−δ)qn(P̃ ′X1X2Y ) ≥ F δ(PX1X2Y )
}
.

(35)

For the second maximization in (33), we define the event B ,{
Nx1y(P̃ ′X1X2Y

) > 0
}

, yielding

P[B] ≤̇M2e
−nIP̃ ′ (X2;X1,Y ), (36)

which follows from the union bound and the identity in (18).
Whenever R2 < IP̃ ′(X2;X1, Y ) + δ, we have

P
[
EP,P̃ (P̃ ′X1X2Y )

]
≤ P

[
EP,P̃ (P̃ ′X1X2Y )

∣∣Bc]+ P[B]P
[
EP,P̃ (P̃ ′X1X2Y )

∣∣B]
(37)

≤̇ 11
{
qn(P̃X1X2Y ) ≥ F δ(PX1X2Y )

}
+M2e

−nIP̃ ′ (X2;X1,Y )P
[
EP,P̃ (P̃ ′X1X2Y )

∣∣B], (38)

≤̇ 11
{
qn(P̃X1X2Y ) ≥ F δ(PX1X2Y )

}
+M2e

−nIP̃ ′ (X2;X1,Y )

× 11
{
qn(P̃X1X2Y ) + p0(n)e−n2δqn(P̃ ′X1X2Y ) ≥ F δ(PX1X2Y )

}
,

(39)

where (38) follows from (36) and since Bc implies
Nx1y(P̃ ′X1X2Y

) = 0, and (39) uses part (ii) of Lemma 1.
Observe that F (PX1X2Y , R2) in (5) is obtained from F δ

in (25) in the limit as δ → 0. Similarly, the exponents
corresponding to the other quantities appearing in the indicator
functions in (35) and (39) tend toward the following:

F 1(P̃X1X2Y , P̃
′
X1X2Y , R2) , max

{
EP̃ [log q(X1, X2, Y )],

EP̃ ′ [log q(X1, X2, Y )] +R2 − IP̃ ′(X2;X1, Y )
}

(40)

F 2(P̃X1X2Y , P̃
′
X1X2Y ) , max

{
EP̃ [log q(X1, X2, Y )],

EP̃ ′ [log q(X1, X2, Y )]
}
. (41)

Combining (31), (33), (35) and (39) with these expressions,
taking δ → 0, and using the continuity of the underlying terms
in the optimizations, we obtain

pe,1(x1,x2,y) ≤̇ max

{
max

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (1)
1 (PX1X2Y

,R2)

M1e
−nIP̃ (X1;X2,Y ),

max
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2′)
1 (PX1X2Y

,R2)

M1e
−nIP̃ (X1;X2,Y ),

max
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2)
1 (PX1X2Y

,R2)

M1e
−nIP̃ (X1;X2,Y )

×M2e
−nIP̃ ′ (X2;X1,Y )

}
, (42)

where2

T (1)
1 (PX1X2Y , R2) ,{

(P̃X1X2Y , P̃
′
X1X2Y ) : P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ), IP̃ ′(X2;X1, Y ) ≤ R2,

F 1(P̃X1X2Y , P̃
′
X1X2Y , R2) ≥ F (PX1X2Y , R2)

}
(43)

2Strictly speaking, these sets depend on (Q1, Q2), but this dependence
need not be explicit, since we have PX1

= Q1 and PX2
= Q2.



T (2′)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) :

P̃X1X2Y ∈ S1(Q1, PX2Y ), P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ),

EP̃ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)
}

(44)

T (2)
1 (PX1X2Y , R2) ,{

(P̃X1X2Y , P̃
′
X1X2Y ) : P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ), IP̃ ′(X2;X1, Y ) ≥ R2,

F 2(P̃X1X2Y , P̃
′
X1X2Y ) ≥ F (PX1X2Y , R2)

}
. (45)

The three terms in the maximization in (42) respectively
correspond to (35) and the two terms in (39).

Since F 1 ≥ EP̃ [log q], we see that T (1)
1 ⊆ T (2′)

1 , and
hence the second term in the outer maximum of (42) can be
removed. Furthermore, we can safely substitute PX1X2Y =
Q1×Q2×W , since PX1X2Y → Q1×Q2×W with probability
approaching one by the law of large numbers. We thus obtain
the following rate conditions for the first decoding step:

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (1)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y )

(46)
R1 +R2 ≤ min

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (2)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y ) + IP̃ ′(X2;X1, Y ). (47)

Finally, using the definitions of F , S1, S ′1, T (1)
1 and T (2)

1 (see
(4), (17), (29), (43) and (45)) to unite (46)–(47) yields (9).

APPENDIX

Here we write (9) in terms of convex optimization problems,
starting with the alternative expression in (46)–(47). We first
note that (47) holds if and only if

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
, (48)

due to the constraint IP̃ ′(X2;X1, Y ) ≥ R2. Next, we claim
that when combining (46) and (48), the rate region is un-
changed if the constraint IP̃ ′(X2;X1, Y ) ≥ R2 is omitted
from (48). To see this, note that for IP̃ ′(X2;X1, Y ) < R2,
the objective in (48) coincides with that of (46). The desired
result follows from the identity F 1 > F 2 (using (40)–(41) and
the assumption IP̃ ′(X2;X1, Y ) < R2), implying that (46) is
more restrictive.

We now deal with the non-concavity of F 1 and F 2. Using
the identity

min
x≤max{a,b}

f(x) = min
{

min
x≤a

f(x),min
x≤b

f(x)
}
, (49)

we obtain the following rate conditions from (46) and (48):

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (1,1)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y )

(50)

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (1,2)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y )

(51)
R1 ≤ min

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (2,1)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
(52)

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2,2)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
, (53)

where for k = 1, 2 and l = 1, 2, T (k.l)
1 is defined in the

same way as T (k)
1 with the following modifications: (i) The

constraint F k ≥ F is changed so that the left-hand side
contains the l-th term in the maximization in F k (see (40)–
(41)); (ii) For k = 2, the constraint IP̃ ′(X2;X1, Y ) ≥ R2 is
removed, in accordance with the discussion following (48).

The variable P̃ ′X1X2Y
can be removed from both (50) and

(52), since in both cases the choice P̃ ′X1X2Y
(x1, x2, y) =

PX2(x2)P̃X1Y (x1, y) is feasible and yields an objective of
IP̃ (X1;X2, Y ). It follows that (50) and (52) yield the same
value, and we conclude that (9) can equivalently be expressed
in terms of three conditions: (51), (53), and

R1 ≤ min
P̃X1X2Y

∈T (1,1′)
1 (PX1X2Y

,R2)

IP̃ (X1;X2, Y ), (54)

where T (1,1′)
1 is defined in the same way as T (1,1)

1 with
the variable P̃ ′X1X2Y

removed. These three conditions are all
written as convex optimization problems, as desired.
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