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Abstract—We study a source-channel coding scheme in which
source messages are assigned to classes and encoded using a
channel code that depends on the class index. While each class
code can be seen as a concatenation of a source code and
a channel code, the overall performance improves on that of
separate source-channel coding and approaches that of joint
source-channel coding as the number of classes increases. The
performance of this scheme is studied by means of random-
coding bounds and validated by simulation of a low-complexity
implementation using existing source and channel codes.

I. INTRODUCTION

Jointly designed source-channel codes attain a lower error
probability than separate source-channel coding [1]. This
reduction in error probability has been quantified in terms of
error exponents [1], [2]: joint coding has an error exponent
at most twice that of separate codes [3]. This improvement
justifies the interest in practical joint source-channel codes.

While a number of results treated this problem (see [4]
and references therein), they do not realize the full gain over
separate source-channel coding. In this paper, we analyze a
scheme in which source messages are assigned to classes and
encoded by different codes that depend on the class index. This
scheme was shown to attain the joint source channel reliability
function in those cases where it is known to be tight [5].
However, the analysis in [5] assumes that source and channel
decoding are performed jointly at the receiver. In contrast,
in this work we assume that the channel output is processed
in parallel for each class using a maximum likelihood (ML)
decoder. The decoded message is then selected from the
outputs of the ML decoders based on a maximum a posteriori
(MAP) criterion.

While this coding scheme fails to achieve the best perfor-
mance of joint source-channel coding, it can be implemented
with reduced complexity using existing source and channel
codes. Moreover, this suboptimal decoding scheme improves
on the error exponent of separate coding, and, as the number
of classes increases, it approaches the error exponent of joint
source-channel coding. The performance of this scheme is
characterized through a random-coding analysis and validated
by simulations of a reduced-complexity implementation.
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II. SYSTEM MODEL AND NOTATION

We consider the transmission of a discrete memoryless
source P over a memoryless channel W . The source message
v has length k and is distributed according to P k(v) ,∏k
j=1 P (vj), where vj is the j-th component. The channel

input and output have length n and are respectively denoted
by x = (x1, . . . , xn), y = (y1, . . . , yn). We define the channel
law as Wn(y|x) ,

∏n
j=1W (yj |xj).

A source-channel code is defined by an encoder and a
decoder. The encoder maps the message v to a length-n code-
word x(v). Based on the channel output y, the decoder selects
a message v̂(y). Throughout the paper, random variables will
be denoted by capital letters and the specific values they take
are denoted by the corresponding lower case letters. The error
probability of a source-channel code is thus given by

εn = Pr
{
V 6= V̂

}
. (1)

An exponent E > 0 is to said to be achievable if there exists
a sequence of codes whose error probabilities εn satisfy

εn ≤ e−nE+o(n), (2)

where o(n) is a sequence such that limn→∞
o(n)
n = 0.

If we force the encoder (resp. the decoder) to be a con-
catenation of a source and channel encoder (resp. channel and
source decoder), this model recovers separate source-channel
coding. In this work, we propose a new scheme in which the
source-message set is split into subsets, and different separate
source-channel codes are used for each subset. At the receiver,
each channel code is decoded in parallel, and the output is
selected based on MAP criterion.

We define a partition Pk of the source-message set Vk into
Nk + 1 disjoint subsets A(i)

k , i = 0, 1, . . . , Nk. We shall refer
to these subsets as classes. We assume that Nk grows at most
subexponentially with k. All the messages belonging to the
class A(0)

k are encoded with the same codeword x(v) = x0

and are assumed to lead to a decoding error. The messages
belonging to each remaining class, v ∈ A(i)

k , are encoded
with the codeword x(v) ∈ Ci, i = 1, . . . , Nk. Ci denotes a
channel code of rate Ri , 1

n log
(∣∣A(i)

k

∣∣), i = 1, . . . , Nk.
At the receiver, we use a two-step decoder. Within each

class A(i)
k , i = 1, . . . , Nk, the decoder selects a message v̂i

in A(i)
k according to the ML criterion, i. e.,

v̂i = arg max
v∈A(i)

k

{
Wn

(
y|x(v)

)}
. (3)



For ease of presentation, we let the dependence of the decoder
output on the channel output y be implicit. Next, the decoder
selects the class index i with largest decoding metric

q(v,y) , P k(v)Wn
(
y|x(v)

)
, (4)

that is,

ı̂ = arg max
i=1,...,Nk

q(v̂i,y). (5)

The final output is then given by v̂ , v̂ı̂.
The above scheme includes both separate and joint source-

channel coding as special cases. For Nk = 1, the scheme
corresponds to a concatenation of a source code and a channel
code C1 with intermediate rate 1

n log
∣∣A(1)

k

∣∣. Similarly, when
A(0)
k = ∅ and the subsets A(i)

k , i = 1, . . . , Nk, coincide with
the source-message types the overall decoder is MAP, and we
recover the best joint source-channel coding scheme [5].

For later use, let the Gallager channel and source functions
be given by

E0(ρ,Q) , − log
∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ

, (6)

and

Es(ρ) , log

(∑
v

P (v)
1

1+ρ

)1+ρ

, (7)

respectively. Also, for a sequence of partitions
{
A(i)
k

}
, k =

1, 2, . . ., we define

E(i)
s (ρ) , lim

k→∞

1

k
log

 ∑
v∈A(i)

k

P k(v)
1

1+ρ


1+ρ

. (8)

III. ERROR EXPONENT ANALYSIS

In this section, we analyze the error probability for a given
partition of the source-message set. First, we express the error
probability of a given code as

εn = Pr
{
V ∈ A(0)

k

}
+

Nk∑
i=1

Pr
{
V ∈ A(i)

k , V̂ i 6= V
}

+

Nk∑
i=1

Pr
{
V ∈ A(i)

k , V̂ i = V , Î 6= i
}
, (9)

where the first summand corresponds to the event that a
source message belongs to the set A(0)

k ; the second to the
ML decoding error when the correct class is considered; and
the last one to the event that the wrong class index is selected
in the second decoding stage, i. e., a MAP decoding error.

A. Lower Bounds

Upper bounds on the error probability lead to lower bounds
on the exponent. To this end, we start by upper bounding each
of terms within the third summand in (9),

Pr
{
V ∈ A(i)

k , V̂ i = V , Î 6= i
}

≤ Pr
{
V ∈ A(i)

k , Î 6= i
∣∣ V̂ i = V

}
(10)

≤ Pr

{
V ∈ A(i)

k , q(V ,Y ) ≤ max
v̄ 6=V ,v̄/∈A(0)

k

q(v̄,Y )

}
, (11)

where (10) follows from the chain rule; and (11) follows from
(5) by increasing the set of source messages over which the
maximum is computed and assuming that ties are decoded as
errors.

Substituting (11) into (9), we obtain

εn ≤Pr{V ∈ A(0)
k }+

Nk∑
i=1

Pr
{
V ∈ A(i)

k , V̂ i 6= V
}

+ Pr

{
V /∈ A(0)

k , q(V ,Y ) ≤ max
v̄ 6=V ,v̄/∈A(0)

k

q(v̄,Y )

}
.

(12)

Without loss of generality, assume that P k(v) > 0 for all v.
Consider the partition such that source messages are assigned
depending on their probability, i. e.,

A(i)
k =

{
v
∣∣ γki < P k(v) ≤ γki+1

}
, i = 0, . . . , Nk, (13)

with γ0 = 0 ≤ γ1 ≤ . . . ≤ γNk+1 = 1. The thresholds
γ1, . . . , γNk−1 should be properly selected to optimize the
system performance. Let assign a distribution Qi(x) to each
class, A(i)

k , i = 1, . . . , Nk. Then, for each source message
v ∈ A(i)

k , we may randomly generate the codeword x(v)
according to Qni (x) ,

∏n
j=1Qi(xj), i = 1, . . . , Nk.

We define t , limn→∞
k
n and R , maxNki=1Ri. The next

result follows from (12) using the exponential bounds [6, Th.
5.2], [2, Th. 5.6.1] and [5, Th. 1] via the random-coding
argument.

Theorem 1. There exists a sequence of codes and partitions
(13) such that, for any ρ ≥ 0, ρi ∈ [0, 1], i = 1, . . . , N∞, the
following exponent is achievable

min

{
ρR− tEs(ρ, P ),

min
i=1,...,N∞

{
E0(ρi, Qi)− ρiRi − tE(i)

s (0, P )
}}

.

(14)

Further analysis involves optimization over Ri, parameters
ρ, ρi, and distributions Qi, for i = 1, . . . , N∞.

For Nk = 1, it follows that R1 = R and E
(1)
s (0, P ) =

0. Hence, (14) leads to the separate source-channel coding
exponent [1]

min
{
ρR− tEs(ρ), E0(ρ′, Q)− ρ′R

}
, (15)

for ρ ≥ 0 and ρ′ ∈ [0, 1]. Considering more than one class
improves the exponent, as we will see later.



B. Upper Bounds

We now turn our attention to deriving upper bounds on
the error exponent of our construction. Disregarding the last
summand in (9) we may lower bound the error probability of
a given code as

εn ≥Pr{V ∈ A(0)
k }+

Nk∑
i=1

Pr
{
V ∈ A(i)

k , V̂ i 6= V
}
. (16)

While it is tempting to apply source and channel coding
converses to the respective summands in (16), this must be
done with care. A subtle point here is that channel coding
converses are usually derived for the maximal error proba-
bility, and then extended to the average error. The required
polynomial relationship between maximal and average error
probabilities holds only for either equiprobable messages or
certain codes and channels.

In particular, for linear codes with an appropriately defined
randomized ML decoder and for channels such as discrete
additive-noise channels and erasure channels, the average and
maximal error probabilities coincide [7, Appx. A]. These
channels include as particular examples the binary symmetric
channel, binary erasure channel or phase-shift-keying mod-
ulated additive white Gaussian noise (AWGN) channel. If
we restrict the codes Ci to be linear and the ML decoder
(3) resolves the ties at random, the average error probability
Pr
{
V̂ i 6= V

∣∣V ∈ A(i)
k

}
can thus be bounded by any

converse bound on the maximal error probability of a channel
code of rate Ri, even when the messages are non-equiprobable.
In particular, applying the exponential bounds [6, Th. 5.6] and
[8, Th. 19] via (16) we obtain the following result.

Theorem 2. Let W be an additive-noise or erasure discrete
channel. Then, for the code construction in Sec. II with {A(i)

k }
given in (13) and {Ci} a set of linear codes with randomized
ML decoding, any achievable error exponent E is upper
bounded by

min

{
max
ρ≥0

{
ρR− tEs(ρ, P )

}
,

min
i=1,...,N∞

max
ρi≥0

{
E0(ρi)− ρiRi − tE(i)

s (0, P )
}}

. (17)

where E0(ρ) , maxQE0(ρ,Q).

If the optimizing values of ρi, i = 1, . . . , Nk, in (17) are
smaller than 1 the bounds from Theorems 1 and 2 coincide.
While this converse result only applies to a specific family of
channels and codes, it shows the tightness of the lower bound
in Theorem 1 under certain assumptions.

C. Example

A binary memoryless source (BMS) is to be transmitted
over a binary-input complex AWGN channel with signal-to-
noise ratio (SNR) Es/N0. For a fair comparison, we normalize
Es/N0 with respect to the number of transmitted information
bits, i. e., the source entropy H(V ) = h(p), where h(p) ,
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Fig. 1. Error exponent bounds. BMS with P (1) = 0.1 transmitted over a
binary input AWGN channel for t = 1.

−p log2 p − (1 − p) log2(1 − p) denotes the binary entropy
function. We define the signal-to-noise ratio per source bit as

Eb

N0
,

n

kh(p)

Es

N0
. (18)

Figure 1 shows the achievable error exponents for different
coding schemes as a function of Eb/N0. The schemes con-
sidered are joint source-channel coding [1], separate source-
channel coding (15), and our multi-class scheme for the
partition (13) with Nk = 2, 3, 5, 10 when optimized over
the thresholds γi, intermediate rates Ri, and parameters ρ, ρi,
i = 1, . . . , Nk. From Fig. 1 we can see that the multi-
class construction approaches the best source-channel error
exponent as the number of classes increases. Moreover, with
just a small increase in complexity the scheme with Nk = 2
classes, shows a 0.4-0.7 dB improvement over separate source
coding. In the following, we restrict ourselves to a low-
complexity scheme with Nk = 2.

For a BMS, it is possible to obtain a closed-form expression
for the source terms in (16). We assume without loss of
generality that p , P (1) ≤ 1/2 and we define

bn(p, w) ,

(
n

w

)
pw(1− p)n−w, (19)

Bn(p, w1, w2) ,
w2∑

w=w1

bn(p, w), w1 ≤ w2, (20)

to be the binomial distribution with parameter w and the prob-
ability of w ∈ [w1, w2], respectively. The best source encoder
strategy with Nk = 2 is to encode the sequences of Hamming
weight w ∈ {w1, . . . , w2} with the first (lower-rate) channel
code and the sequences of weight w ∈ {w2 + 1, . . . , w3}
with the second (higher-rate) code. All other sequences are
transmitted by some fixed codeword which leads to decoding
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Fig. 2. Implementation of a two-class JSCC system.

error. Then, from (16) we obtain

εn ≥ min
w1,w2,w3=0,...,k

{
Bk(p, w1, w2)εB(n,R(w1, w2))

+Bk(p, w2 + 1, w3)εB(n,R(w2 + 1, w3))

+Bk(p, 0, w1 − 1) +Bk(p, w3 + 1, k)
}
, (21)

where

R(w1, w2) =
1

n

⌈
log2

w2∑
w=w1

(
k

w

)⌉
, (22)

and εB(n,R) is a lower bound to the error probability of
a block channel code with rate R ≥ 0 and length n. This
expression will be used in the next section to lower-bound
the frame error rate (FER). As εB(n,R) we use Shannon’s
sphere-packing bound [9], since it is accurate for relatively
short codes and low SNRs [10]. In order to compute the bound
in [9] we use the approximation from [11], very accurate for
error probability below 0.1.

IV. PRACTICAL CODE DESIGN

In this section, we describe a practical source-channel code
with two classes and illustrate its performance by means of
simulations. A block diagram of the scheme is shown in Fig. 2.
We consider a fixed-to-variable lossless source code followed
by two linear (n, ki)-codes Ci, i = 1, 2.

A. Encoding

The Hamming weight (type) of the source sequence deter-
mines which one of two available codes will be used to encode
each source message. For a given source sequence v ∈ {0, 1}k
a binary enumerative encoder [12] first computes a pair of
integer numbers (w(v), j(v)), where w = w(v) ∈ {0, 1, ..., k}
is the Hamming weight of v, and j = j(v) ∈

{
1, 2, ...,

(
k
w

)}
is the index of the actual sequence v in the lexicographically
ordered list of all possible sequences with weight w. With
very small loss of optimality both w and j can be losslessly
encoded by codewords of lengths Lw =

⌈
log2(k + 1)

⌉
and

Lj =
⌈
log2

(
k
w

)⌉
, producing the codeword of overall length

L(v) = Lw + Lj . Enumerative coding can be implemented
with linear complexity via arithmetic coding [12].
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Fig. 3. Error rates for separate coding, JSCC using different pairs of linear
codes, and optimized JSCC using two linear codes, n = 100, k = 80.

If either w(v) < wmin or w(v) > wmax holds, then a source
coding error is reported. If not, if w(v) ≤ wth then the source
codeword length L(v) ≤ k1 and the channel code C1 is used
for transmission, otherwise L(v) ≤ k2 and the second code,
C2, is used. In this encoding scheme l = ki − L(v) leftover
bits may appear; these are used for error detection. To do this,
we choose a pseudo-random binary matrix H(w, j) of size
L× l and we assume that this matrix is known to the decoder.
Multiplying the information vector of length L by H(w, j) we
obtain a parity-check sequence c of l bits which is included
in the information payload of the selected code.

B. Decoding

At the decoder, two decoding attempts are performed in
parallel. In each of the branches corresponding to each of the
two possible codes, the receiver performs ML decoding. The
decoding result of each of the branches is then checked to be
compatible with the encoding scheme and the additional parity
check written on the leftover positions. If only one of two
codes —which is the typical case— passes this compatibility
test, then the corresponding output is used as the decoder
output. If both decoders fail, a predetermined decoder output,
for example all-zero data sequence, is used. Finally, if both
decoders report decoding success, the decision with larger a
posteriori likelihood is selected and the corresponding message
is accepted as a final decision.

C. Simulation Results

The performance of this coding scheme has been evaluated
for the transmission of a BMS with p = 0.1 over an AWGN
channel in two scenarios.

In the first scenario we consider tail biting (TB) block codes
of length n = 100. The length of the source sequence is chosen
to be k = 80. The proposed scheme requires a set of codes
that fit to a particular source realization and Eb/N0. We have
chosen TB block codes of three rates R = 1/2, 3/5 and 3/4.
The code of rate R = 1/2 was taken from [13], that contains
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Fig. 4. Error rates for separate coding, JSCC using different pairs of linear
codes, and optimized JSCC using two linear codes, n = 1008, k = 1000.

tables of low-rate low-complexity TB codes. For the other
rates we did a short search for high-rate convolutional codes
using techniques from [14], [15]. Among the most efficient
near ML decoding algorithms we have selected BEAST [16]
which allows near ML decoding for codes of length 100 with
acceptable complexity. The simulated FER performance is
shown in Fig. 3. The curves “Separate” and “Two-class code”
show the best performance obtained within the corresponding
family of codes.

In the second scenario, we fix k = 1000, n = 1008
and as channel codes we use quasi-cyclic (QC) LDPC codes
with base matrix containing c = 24 columns and rates
R = 12/24, 13/24, . . . , 16/24. For constructing these parity-
check matrices we used the optimization algorithm from [17].
The only exception is the code of rate R = 18/24 = 2/3
which is borrowed from [18, code A]. The FER after 50
iterations of belief propagation decoding is shown in Fig. 4.

We conclude from the presented plots that the proposed
scheme outperforms separate coding by 1 dB and by about
0.4-0.7 dB in the first and second scenario, respectively, in
agreement with the values predicted by the random coding
analysis.
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A. Martinez, “A derivation of the source-channel error exponent using
non-identical product distributions,” IEEE Trans. Inf. Theory, 2014, in
press.

[6] F. Jelinek, Probabilistic Information Theory. New York: McGraw-Hill,
1968.

[7] Y. Polyanskiy, H. Poor, and S. Verdú, “Channel coding rate in the finite
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