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Abstract—We study transmission over multiple-antenna block-
fading channels with imperfect channel state information at
both the transmitter and receiver. Specifically, we investigate
achievable rates based on the generalized mutual information.
We then analyze the corresponding outage probability in the
high signal-to-noise ratio regime.

I. INTRODUCTION

The block-fading channel is a widely-used model to repre-
sent transmission over slowly-varying fading scenarios. The
channel is non-ergodic and the reliability of transmission
is limited by the information outage probability [1]. The
majority of works on block-fading channels studied the outage
probability assuming perfect channel state information (CSI)
(see, e.g., [2], [3]). This idealistic assumption seems to be too
optimistic in practical scenarios as the CSI is usually imperfect
due to imperfections in estimating the channel.

This paper studies imperfect CSI in block-fading channels.
Specifically, each communicating terminal is assumed to ac-
quire a noisy version of the actual CSI. The imperfect CSI
at the transmitter (CSIT) is used to adaptively allocate power
across different fading blocks (subject to a long-term power
constraint) with the aim to improve the performance. At the
receiving end, the receiver perceives the noisy CSI as if it was
noiseless and uses a nearest neighbor decoder. Because of the
noisy CSI at the receiver (CSIR), the decoder is mismatched.
With this setup, we investigate the generalized mutual informa-
tion (GMI) [4]—which is an achievable rate under mismatched
decoding—to examine the effect of imperfect CSI on the
reliability of transmission.

This study was initiated in [5] for a single antenna setup.
In this work, we extend the results of [5] to multiple-input
multiple-output (MIMO) channels. and provide upper and
lower bounds on the GMI of a MIMO block-fading channel.
These bounds are then used to find the outage exponent and to
determine diversity-achieving input distributions. (The outage
exponent is defined as the high signal-to-noise ratio (SNR)
slope of the outage probability curve plotted in a logarithmic-
logarithmic scale against the SNR.)
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II. SYSTEM MODEL

Consider a MIMO block-fading channel with n transmit
antennas, n, receive antennas and B fading blocks. The output
of the channel for block b, b = 1,...,B, is an n, x J-
dimensional random matrix

Y, = HbPEXb + Zy (1)

where Z; is the n, x J-dimensional noise matrix and X; €
X™*J ig the transmitted signal matrix; P, € R™, J and X
denote the transmission power matrix, the block length and the
constellation set, respectively. The entries of Z; are assumed
to be independent and identically distributed (i.i.d.) complex-
Gaussian random variables with zero mean and unit variance.
The (n, x nt)-dimensional matrix Hy is the b-th fading matrix
and is assumed to be i.i.d. across b = 1,..., B. We further
assume that the entries of H, are i.i.d. zero-mean unit-variance
complex-Gaussian random variables.

The codeword for message m € {1,...,28/%} is denoted
by X(m) = [X1(m), ..., Xpg(m)] where R is the data rate. The
entries of X are drawn i.i.d. from a probability distribution over
X" . We assume that R is a fixed positive number implying
zero multiplexing gain [2]. We further assume that codewords
are normalized such that %ﬂﬂ”mﬁ:] = ny where || - ||r
denotes the Frobenius norm.

We assume an additive-noise imperfect CSI model, i.e.,

CSIT Hb =H, + fEb 2
CSIR H, = H, + Ky, (3)

where error estimation matrices I~Eb and Eb are independent.
The entries of Eb and Eb are assumed to be independent from
Hy and i.i.d. complex-Gaussian random variables with zero
mean and variances &2 = P9 and &2 = P~%, respectively,
where P is the average SNR. The positive parameters d. and
(Ze are incorporated to denote the CSIT-error and the CSIR-
error diversities, respectively. This model corresponds to a sys-
tem that exploits channel reciprocity [6], for which the fading
realization stays constant within a block and fading estimation
is possible at both communicating ends at approximately the
same time. Furthermore, it captures widely-used pilot-aided
channel estimators with error variance inversely proportional
to the pilot SNR [7].

For a given CSIT matrix H £

[Hy,...,Hg], the power



matrix Py is assumed to be the scaling of the ny X ny identity
matrix I, R
Py(H)

Nt

Py (H) =

I, - “4)

We further denote the power allocatlon matrix as P £
We

[Py,---,Pp] and the CSIR matrix as H £ [Hy,...,Hpl.
further consider an average power constraint
1< -
= Ztr(Pb(H)) <P (5)
b=1

where tr(-) denotes the trace operator. For each block, power
adaptation uses noisy fading information for all blocks b =
1,...,B to adapt the scalar power coefficient P, in order
to improve performance. This model is relevant for multi-
carrier transmission, where the channel is estimated in the time
domain, but transmission is in the frequency domain.

By treating the imperfect CSIR as if it was perfect, the re-
ceiver infers the transmitted message using a nearest neighbor
rule, which outputs the message m such that

m= argmax Q(X(m),Y, H, P) 6)

me{l,... 2B R}

Q(X,Y,H,P) x exp < Z Yo — AP} bu )
III. GMI ofF THE MIMO BLOCK-FADING CHANNEL

For a given fading matrix H, CSIR estimate H and power
allocation matrix P, the average error probability for the
ensemble of i.i.d. random codes of rate R can be bounded
[8] as

P.(H,H,P) < o—BJEZ? (RH,H,P) (8)
where
A B A
E?(R7H7H7 = Ssup Z 5 P,Hvab,Pb)*PR
0<;21 b=

€))

is the mismatched error exponent and where

E(?(Sa Py Hba I:'ba Pb) =

(IE (Q(X',Y, s m))s

Q(X7 Y7 Hb; Pb)
denotes the generalized Gallager function for a given Hy, H,
and P, [8]. Since E(?(&p7 Hy, Hp, Pp) is concave in p, p €
[0, 1], the largest slope of the Gallager function occurs at p =
0. The GMI is the resulting rate [8]

—log, E

p
X7 Y7 Hb7 Hba Pf;|>

(10)

Hy, Hp, P(;|

I8™(H, H,P) = sup (11)

gmi
5>OBZI (Py, Hy, Hi, 5)

where
I8 (Py, Hp, Hy, 5) =

0 (X,Y, F, P,,)
E {Qs (X’,Y, A, Pb> ’ Y, Hy, F, Pb}

E 1Og2 Hb7|:|b7 Pb

12)

Convex1ty analysis of E (s, p, Hp, Hy, Py) reveals that the
exponent EQ(R,H,H,P) is only positive whenever R <
I8™i(H, A, P) — €. Then, for rates below I2™(H, H,P),
P.(H, H, P) can be made arbitrarily small by increasing the
block length J. The ensemble average implies that there exists
a code with rate R such that its error probability vanishes with
J aslongas R <1 gmi(H, H, P) — ¢, proving the achievability
of I8™i(H H,P). When H = H, the GMI gives the mutual
information of the perfect CSIR case, as s = 1 is optimal.

For a given input distribution, expressing the right-hand
side (RHS) of (11) may in general be difficult due to the
optimization over s > 0 across B fading blocks. Therefore,
non-trivial upper and lower bounds are relevant in the analysis.
A GMI upper bound can be obtained by exchanging the
supremum and the average on the RHS of (11), i.e.,

. 1 E . .

T (HHLP) < D sup I (P Hy Fy, ). (13)
This upper bound leads to the exact GMI in a number of
cases, e.g., when the optimizing s on the RHS of (13) does
not depend on Py, Hp and |:|l7 or when B = 1 (quasi-static
channel). Also, for single-input single-output (SISO) channels
with Gaussian inputs, the optimal value of s can be found
analytically. A GMI lower bound can be obtained by choosing
a particular s. As shown in [9, App. D], a good choice is

B

§:

- (14)
5 gk
Bu+ Y0, &P

Using the non-negativity of the GMI [9, Prop. 2], we obtain

B
o ~ 1 . ~
mi gmi ~
I™(H,H,P) > max [0733_1 I (Pb,Hb,Hb,s)] . (15)
The RHS of (15) is an achievable rate as all rates below
I#™i(H, H, P) are achievable.

IV. OUTAGE AND THE HIGH-SNR BEHAVIOR

The average error probability of long codes when the fading
varies from codeword to codeword is obtained by averaging
(8) with respect to H,H, P in the limit as J tends to infinity,

P, < lim E [szJE9<R’H’H’P>] (16)
J—o0
_ s gmi 0 _
- iggPr{I (H, L, P) — ¢ < R} 17)
— Pr {Igmi(H,H, P) < R} Pow(R)  (18)

where (18) defines the generalized outage probability.



An important outage performance indicator is the outage
exponent, defined as

log Pyout (R)
logP

In words, the d is the high-SNR slope of Pyout(R) plotted in
a logarithmic-logarithmic scale against the SNR.

The following result gives the outage exponent of a system
that optimizes the power to minimize Pyou:(R) subject to the
power constraint (5). The proof uses the bounds (13) and (15)
and interestingly, it does not require an explicit characteriza-
tion of the minimum-outage power allocation scheme.

Theorem 1: Consider transmission over the MIMO channel
(1) with CSIT and CSIR error diversities d, and zfe as
described in Section II. The outage exponent dj.s; for both
Gaussian and discrete constellations of size 2M is

dgsurd if d <1+ ngIrCZ
dicsi = = bt
dgsu‘ (1 + dgsn"d ) ) if d >1+ dusnd

d% lim —

P—oo

19)

(20)

where d;, is the perfect-CSIR outage exponent with uniform

power allocation, given by

Bngny,

{nr (14 [B(ne—£)]), for discrete inputs.21

€3y

Proof: (Sketch) The proof for the MIMO case follows

the same general lines as that for the SISO case [5, App. A,

which involves analyzing the asymptotic behavior of optimal

power allocation, evaluating the asymptotic Pyout(R) and

characterizing the asymptotic outage set, and evaluating the
exponent using Varadhan’s lemma [10].

There are three key steps to extend the proof to the MIMO
case. The first step obtains the asymptotic power allocation
by evaluating the expectation (5) using the joint density of
the entries of H, which are independent by assumption. The
second one is to obtain an asymptotic expression Pyout (R)
using the joint density of the entries of (I, E = H — H, H).
The third one is to characterize the asymptotic outage set using
the GMI bounds (13) and (15). |

The result captures the following important observations.

1) The case d, < 1 corresponds to the CSIR being

too unreliable. Any available CSIT cannot improve the
outage exponent via power adaptation. The poor quality
of the CSIR makes power adaptation as good as uniform
power allocation in terms of outage exponent (see [9] for
the result with uniform power allocation).

2) The case d. > 1 corresponds to the CSIR allowing for

power adaptation gains.

a) Case d, < 1+ d",.d,: Though power adaptation
improves the performance, the outage exponent is
limited by the quality of the CSIR. The outage ex-
ponent improves as the quality of CSIR improves.

b) Case d, > 1+ d".d.: Full performance impro-

vement is achieved with power adaptation as the
achievable outage exponent is identical to the
perfect-CSIR outage exponent in [11], [12].

for Gaussian inputs
du

csir —

The outage result in Theorem 1 corresponds to a system
where the transmitter estimates the channel independently of
the receiver. This is a typical model for two-way training
for which both the transmitter and receiver transmit pilot
symbols. One might also consider a CSIT model for which the
transmitter obtains a noisy version of the CSIR via a dedicated
feedback channel. This is commonly referred to as the mean-
feedback model [13]. For this model, we have for block b,
transmit antenna ¢ and receive antenna r that

CSIR  Hyyy = Hypt + Ep s, (22)

CSIT  Hypy = Hypt + Ep - (23)
The CSIT can then be rewritten as

I:Ib,r,t = Hb,r’,t + Eb,r,t + Eb,r,t~ (24)

The CSIT noise has zero mean and variance P~9 4 P~de,
The CSIT error diversity is then obtained from the exponent
of P~ 4 P=de_ which is given by min(d,, d,). Thus, for the
mean-feedback model the outage exponent can be obtained
by replacing d. with min(d.,d.) in Theorem 1.

V. DISCUSSION

A. Connections with Previous Works

The technique used to derive the outage exponent is based
on the GMI, which is the largest achievable rate for i.i.d.
generated codebooks [4], [14], [15]. Therefore, the outage
result in Theorem 1 is the optimal diversity for i.i.d. codebooks
(Gaussian or discrete) and a nearest neighbor decoder. An
improved achievable rate (LM rate) can be obtained with
codewords satisfying a good cost constraint [4], [14].

Several works in the literature studied a similar problem, but
used different information rates. In particular, we refer to the
works in [16]-[18] for comparison on the validity as achie-
vable rates. For simplicity and for the sake of comparison,
we consider a SISO quasi-static channel (B = 1). References
[16]-[18] assumed Gaussian inputs and linear minimum mean-
squared error (LMMSE) channel estimation at the receiver,
where the estimate H is related to the actual fading H as

H=H+E (25)

where E is the scalar fading estimation error having zero mean
and variance P~%. Thus, from (1) and (25) we can write the
input-output relationship as

Y =VPHz +VPH - H)x+ Z

where Y and Z are the random received and noise vectors,
respectively, which take values on C/; x is the J-dimensional
input vector; P is the transmission power. Note that since
every realization of H is known at the receiver, the argument
in [16]-[18] is that one can treat the term /P(H — ﬁ)m as
an additional noise term. It was further argued in [16], [18]
that by modeling the signal-dependent noise

Z'=VPH-Hx+Z

(26)

27



as a zero-mean Gaussian noise with i.i.d. entries independent
of & and each having variance 1+ P|H — H|? one can obtain
a rate that is claimed to be a lower bound to the instantaneous
mutual information as [18]

P|H|?
_ PIHE ) g
1+ P|H — H|?

Note that the above expression leads to an outage exponent
that is obtained by solving

l(HaI:I?P) :10g2 <1+

Pr{1(H, i, P) < R}
PIHP?
—Prilog, [1+——1" ) <Rr. (2
{g2< 1+P|H—H|2> } 29

Interestingly, using the lower bound in (15) and following the
steps used in [9, App. D] for B = 1, the GMI can be lower-
bounded by

7|2

I8™(H, H, P) > log, <1 + PIHP ) L
14+ P|H — H|? log 2

(30)

In the high-SNR regime, the constant difference between (28)
and the RHS of (30) does not affect the outage exponent.
Thus, it is not surprising that for the case under consideration,
our results are identical to the results in [16], [18]. Remark
that although the model (25) differs to (3) in terms of which
variables correlate to each other, it can be shown that such a
difference does not affect the outage exponent as long as we

perform a proper chain rule on the joint density of H and E.

Rate (28) seems to be easier to evaluate than the GMI.
However, there are some technical problems associated with
the derivation of (28), which we explain in the following.

o To the best of our knowledge, there is no explicit proof
on the achievability of I(H ,ﬂ ,P) for a given H ,ﬁ .
The argument to derive (28) follows from [19], where
LMMSE channel estimation is used at the receiver to
derive a lower bound to the blockwise-ergodic capacity.
In this blockwise-ergodic setup, the block length J is
finite, and the capacity expression is obtained via coding
over infinitely many blocks, where the estimate H and
the error (H — H) have uncorrelated statistics over these
many blocks. A lower bound to the blockwise-ergodic
capacity can then be obtained using the steps in [20,
Sec. III] via averaging over all states of fading and its
corresponding estimate.

It is not clear whether the technique in [19] can directly
be applied to non-ergodic fading channels. As supposed
to coding over infinitely many blocks, in a quasi-static
channel, coding is performed for only one block and
the block length J is taken to infinity to recover the
information outage probability [2], [3]. Note that during
a single block, both fading H and fading estimate H are
constant. Hence, rate (28) may not be an accurate lower
bound to the instantaneous mutual information for the
block of interest as both H and H (and thus (H —H )) are

12
10 ) . ,' 1
Is™(H,H,P) ,l
87 \" i
g ) I(H.P)
= 6 I 1
a ! .
A LHA.P)<IHP) | I(H,H,P)>I(H,P) |
/
/I 3
2 / l(H7 H7 P) 7
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Information rates (bits per channel use)
Fig. 1. Comparison of the densities of the GMI and the lower bound (28)

with fading realization H = 1, transmission power P = 1 (unit power) and
CSIR-error variance €2 = 0.1.

constant within a single block alone. It therefore follows
that there is no guarantee that transmitting codeword at
rate R = I(H, H, P) — ¢ for any € > 0 has a vanishing
error probability as the block length J tends to infinity.
This is in contrast with 8™ (H, H, P) for which the
achievability has been proven in [8].

o For some H and H, we may find I(H,H,P) that is
larger than the perfect-CSIR mutual information

I(H,P)=log, (1+ P|H?). (31)

We illustrate this in Fig. 1 where we assume power
P = 1 and fading realization H = 1, and we use
estimation (25) to compute the density of 18™!(H, H , P)
and I(H,H,P). For a given H = 1, the probability
that I(H, H,P) is greater than I(H,P) is non zero,
which implies that the lower bound (28) violates the
data-processing inequality. This result indirectly dis-
proves the achievability of [ (H,f[ , P), in contrast to
I#™(H H, P), which is always smaller than I(H, P)
as shown in [8].

o It is not clear whether modeling Z’ in (27) as a signal-
independent Gaussian noise would still result in the
correct exponent for discrete inputs.

Based on the preceding comparisons, we observe that rate
characterization in [16]-[18] may fail to guarantee achievable
outage performance. On the other hand, mismatched decoding
approach via GMI will always provide an accurate character-
ization on achievable outage performance.

B. Diversity-Achieving Input Distributions

Gaussian inputs are no longer optimal for the channel (1)
when CSIR is imperfect. We can show using (12) that the
outage exponent for Gaussian inputs is a lower bound to
the outage exponent for some input distributions satisfying
certain conditions. We first assume that the input vector is
ii.d. over all transmit antennas and all channel uses and is
such that E[| X|?] = 1. The expression in (12) (in natural-base



logarithm) can be decomposed into two terms as follows
Ifmi(Pb, Hb7 Hbv S) =E |:10g QS (Xa Ya Hb, Pb) ‘ Hba |:|b7 Pb:|
~ E[log E[Q (X', 4, Py )| Y o, i, Pu] | Ho, i, P ]

(32)
Evaluating the first term of (32) yields

E [log @ (X, Y, Ay, Py) | Hy, Ay, P
A1 2 A

— s <n +E {HEZ,P,%XH Ho. Hy, PbD (33)
Lo 12 A

> s (n +E {HEbPé . |X||2’ Hy. iy PbD (34)
.12

=—s (nr + ny ||EsPZ F) (35)

where we have denoted || - || as the Euclidean norm, and where
inequality (34) is due to the property ||AB|% < ||A|% - ||B|/%
[21, Sec. 5.6]. The first expectation in the second term of (32)
can be evaluated as follows

E[Q" (XY, FuPy) | Y, Hy, Fy, P
N , 2
- / PX(w')e_sHY_HbP;mw | g’ (36)
wl
Then, if the input density can be bounded as

G
Px(x) < —e‘”m‘lz, reC™

Tt

(37

for some constant G > 0, independent of the SNR, then the
above expectation can be bounded as

/m/ Px (z')e”"

. N pl/2 0|2
<o LotaE sy -rp e
- x’ T

~ 2
Y AP/ %o’

dx’

dx’ (38)
N N —1
G - exp |:—SYT (ln,_ + SHbeHZ) Y}
= - - . 39)
det (I, + 5Py} )

With s > 0, Il;gmi(Pb7 Hy, Hy, s) can then be lower-bounded as

~ 112
e,

N “ —1
“logG +E {SYT (Inr + sHbeH,ﬁ) Y] . (40)

[Emi(PZN Hba Flba S)

> log det (Inr + sHbeI:IZ) —s <nr + ny

The RHS of (40) is similar to I&™ (Py, Hy, Hy, s) for Gaus-
sian inputs, except for the extra terms —logG and ng in
nt||EbPE |2 (n is replaced by 1 for Gaussian inputs). How-
ever, since those terms do not depend on the SNR, they
do not affect the outage exponent. Then, noting that the
outage exponent for Gaussian inputs derived using GMI upper
and lower bounds are identical (as given in Theorem 1), it
follows that for any input distribution meeting the condition

(37), the outage exponent is lower-bounded by the outage
exponent for Gaussian inputs. It is not yet clear whether
this lower bound is tight because solving the GMI upper
bound for input distributions such that (37) holds remains a
challenge. This also implies that there may possibly exist other
input distributions having a larger outage exponent than the

Gaussian distribution.
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