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Abstract—This paper considers channel coding for the memo-
ryless multiple-access channel with a given (possibly suboptimal)
decoding rule. Non-asymptotic bounds on the error probability
are given, and a cost-constrained random-coding ensemble is
used to obtain an achievable error exponent. The achievable rate
region recovered by the error exponent coincides with that of
Lapidoth in the discrete memoryless case, and remains valid for
more general alphabets.

I. INTRODUCTION

The problem of channel coding with a mismatched decod-
ing rule arises in numerous settings [1]–[5]. For example, in
practical systems the decoder may have imperfect knowledge
of the channel, or implementation constraints may prohibit the
use of an optimal decoder.

The mismatched discrete memoryless multiple-access chan-
nel (DM-MAC) was considered by Lapidoth [1], and more
recently by the present authors [6]. The setup consists of a
DM-MAC W (y|x1, x2) and a decoder which maximizes the
symbol-wise product of a given decoding metric q(x1, x2, y).
Lapidoth proved the achievability of the rate region given by
the convex closure of the union of all rate pairs (R1, R2)
satisfying (see Section I-B for notation)

R1 ≤ min
P̃X1

=Q1,P̃X2Y
=PX2Y

EP̃ [log q]≥EP [log q]

IP̃ (X1;X2, Y ) (1)

R2 ≤ min
P̃X2

=Q2,P̃X1Y
=PX1Y

EP̃ [log q]≥EP [log q]

IP̃ (X2;X1, Y ) (2)

R1 +R2 ≤ min
P̃X1

=Q1,P̃X2
=Q2,P̃Y =PY ,EP̃ [log q]≥EP [log q]

IP̃ (X1;Y )≤R1, IP̃ (X2;Y )≤R2

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ) (3)

for some input distributions Q1 and Q2, where PX1X2Y =
Q1 × Q2 × W , and each minimization is over all joint
distributions P̃X1X2Y satisfying the specified constraints.

The approach of [1] is based on strong typicality arguments,
and [6] gives an alternative derivation based on error exponents
and the method of types. In both cases, the proof is valid
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only in the discrete memoryless setting. In this paper, we
use cost-constrained random coding [5], [7]–[9] to obtain
an achievable rate region for the case of general alphabets.
The region coincides with (1)–(3) in the discrete memoryless
setting, with the two being related via Lagrange duality. Thus,
our achievable rate region generalizes that of [1] analogously
to the generalization of the single-user rate of Csiszár-Körner-
Hui (see [3], [10]) given in [5].

A. System Setup

We consider a 2-user memoryless MAC W (y|x1, x2) with
input alphabets X1 and X2 and an output alphabet Y .
The decoding metric is denoted by q(x1, x2, y). We define
Wn(y|x1,x2)

4
=
∏n
i=1W (yi|x1,i, x2,i) and qn(x1,x2,y)

4
=∏n

i=1 q(x1,i, x2,i, yi), where yi is the i-th entry of y and
similarly for x1,i and x2,i.

The encoders and decoder operate as follows. Encoder
ν = 1, 2 selects a message mν equiprobably from the
set {1, . . . ,Mν}, and transmits the corresponding codeword
x
(mν)
ν from the codebook Cν = {x(1)

ν , . . . ,x
(Mν)
ν }. Upon

receiving y at the output of the channel, the decoder forms an
estimate (m̂1, m̂2) of the messages, given by

(m̂1, m̂2) = argmax
i∈{1,...,M1},j∈{1,...,M2}

qn(x
(i)
1 ,x

(j)
2 ,y). (4)

We assume that ties are broken at random. An error is said to
have occurred if the estimate (m̂1, m̂2) differs from (m1,m2).
We distinguish between the following three types of error:

(Type 1) m̂1 6= m1 and m̂2 = m2

(Type 2) m̂1 = m1 and m̂2 6= m2

(Type 12) m̂1 6= m1 and m̂2 6= m2.
The probabilities of these events are denoted by pe,1, pe,2 and
pe,12 respectively, and the overall error probability is denoted
by pe. The ensemble-average error probabilities for a given
random-coding ensemble are denoted by pe,1, pe,2, pe,12 and
pe respectively. Clearly we have

max{pe,1, pe,2, pe,12} ≤ pe ≤ pe,1 + pe,2 + pe,12 (5)

and similarly for pe.
A rate pair (R1, R2) is said to be achievable if, for all δ > 0,

there exist sequences of codebooks with M1 ≥ exp(n(R1−δ))
and M2 ≥ exp(n(R2− δ)) codewords of length n for users 1
and 2 respectively such that pe → 0. We say that E(R1, R2) is



an achievable error exponent if there exist sequences of code-
books with M1 ≥ exp(nR1) and M2 ≥ exp(nR2) codewords
of length n such that lim infn→∞− 1

n log pe ≥ E(R1, R2).

B. Notation

The probability of an event is denoted by P[·]. The symbol
∼ means “distributed as”. The marginals of a joint distribution
PXY (x, y) are denoted by PX(x) and PY (y). We write PX =
P̃X to denote element-wise equality between two probability
distributions on the same alphabet. For a distribution PX(x),
expectations are denoted by EP [·], or simply E[·] when the
probability distribution is understood from the context. We
write EP [log q] as a shorthand for EP [log q(X1, X2, Y )].

Given a distribution Q(x) and a conditional distribution
W (y|x), we write Q × W to denote the joint distribution
Q(x)W (y|x). Mutual information with respect to a joint
distribution PXY (x, y) is written as IP (X;Y ). All logarithms
have base e, and all rates are in units of nats.

II. RANDOM-CODING ERROR PROBABILITY

In this section, we extend the random-coding union (RCU)
bound for mismatched decoders [8], [11] to the MAC. We
consider a general codeword distribution of the form(
{X(i)

1 }
M1
i=1, {X

(j)
2 }

M2
j=1

)
∼

M1∏
i=1

PX1

(
x
(i)
1

) M2∏
j=1

PX2

(
x
(j)
2

)
.

(6)
The analysis and main results of this paper extend immediately
to the case that each codeword is generated conditionally on a
time-sharing sequence u. However, in the mismatched setting,
there are some subtle differences between the performance of
this ensemble and that of explicit time-sharing, and their study
is beyond the scope of this paper.

Theorem 1. Under the random-coding distribution in (6)
and maximum metric decoding, the ensemble average error
probabilities satisfy

pe,ν ≤ rcuν(n,Mν), ν = 1, 2 (7)

pe,12 ≤ min
ν=1,2

rcu12,ν(n,M1,M2), (8)

where

rcu1(n,M1)
4
= E

[
min

{
1,

(M1 − 1)P
[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1,X2,Y

]}]
(9)

rcu2(n,M2)
4
= E

[
min

{
1,

(M2 − 1)P
[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1,X2,Y

]}]
(10)

rcu12,1(n,M1,M2)
4
= E

[
min

{
1, (M1 − 1)E

[
min

{
1,

(M2−1)P
[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1

]} ∣∣∣∣X1,X2,Y

]}]
(11)

rcu12,2(n,M1,M2)
4
= E

[
min

{
1, (M2 − 1)E

[
min

{
1,

(M1−1)P
[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X2

]} ∣∣∣∣X1,X2,Y

]}]
(12)

and

(X1,X2,Y ,X1,X2) ∼ PX1(x1)PX2(x2)

×Wn(y|x1,x2)PX1(x1)PX2
(x2). (13)

Proof: The RCU bounds in (9)–(10) follow using the
same steps as the single-user setting [11], so we focus on
(11)–(12). We assume without loss of generality that message
(1, 1) is transmitted. The type-12 error probability satisfies

pe,12 ≤ P

[ ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

}]
. (14)

Writing the probability as an expectation given (X1,X2,Y )
and applying the truncated union bound to the union over i,
we obtain

pe,12 ≤ E

[
min

{
1, (M1 − 1)

× P
[ ⋃
j 6=1

{
qn(X1,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

} ∣∣∣∣X1,X2,Y

]}]
. (15)

Applying the same argument again, this time to the union over
j, we obtain (11). By applying the same steps with the union
bounds applied in the reverse order, we obtain (12).

The treatment of one union at a time in (14) is crucial to
the analysis. If the truncated union bound was instead applied
to all (M1 − 1)(M2 − 1) events then we would not only
recover a worse bound on the error probability, but also a
worse error exponent and achievable rate region in Sections
III and IV respectively. Our method for refining the union
bound is significantly different from that of [1]; see [6] for
further discussion.

While the refined bounds in (11)–(12) do not improve the
error exponent and rate region recovered under maximum-
likelihood (ML) decoding, they may be of independent interest
for characterizing the finite-length performance.

III. RANDOM-CODING ERROR EXPONENTS

In this section, we consider a cost-constrained ensemble
with multiple cost functions, given by

PXν (xν) =
1

µν,n

n∏
i=1

Qν(xν,i)11
{
xν ∈ Dν,n

}
, (16)



where for ν = 1, 2, Qν ∈ P(Xν) is an input distribution, µν,n
is a normalizing constant, and

Dν,n
4
=

{
xν :

∣∣∣∣∣ 1n
n∑
i=1

aν,l(xν,i)− φν,l

∣∣∣∣∣ ≤ δ

n
, l = 1, . . . , Lν

}
(17)

φν,l
4
= EQν [aν,l(Xν)] . (18)

Here {aν,l}Lνl=1 are cost functions, and δ is a positive constant.
Thus, the codewords for user ν are constrained to satisfy Lν
cost constraints in which the empirical mean of aν,l(·) is close
to the true mean.

Similar ensembles have been considered previously in the
single-user mismatched decoding setting [5], [7]–[9]. Similarly
to these works, the role of the functions aν,l(·) is not to
meet system constraints (e.g. power limitations), but instead
to improve the performance of the random-coding ensemble
itself. Thus, each cost function can be seen as a pseudo-cost.
However, the results of this paper can easily be extended to the
case that system costs are present, by handling them similarly
to the pseudo-costs [8, Sec. VII].

Theorem 2. For any pair of input distributions Q = (Q1, Q2),
an achievable error exponent for the mismatched memoryless
MAC is given by

Er(Q, R1, R2)
4
=

min
{
Er,1(Q, R1), Er,2(Q, R2), Er,12(Q, R1, R2)

}
, (19)

where

Er,1(Q, R1)
4
= sup
ρ1∈[0,1]

E0,1(Q, ρ1)− ρ1R1 (20)

Er,2(Q, R2)
4
= sup
ρ2∈[0,1]

E0,2(Q, ρ2)− ρ2R2 (21)

Er,12(Q, R1, R2)
4
=

max
{
Er,12,1(Q, R1, R2), Er,12,2(Q, R1, R2)

}
(22)

Er,12,1(Q, R1, R2)
4
= sup
ρ1∈[0,1],ρ2∈[0,1]

E0,12,1(Q, ρ1, ρ2)− ρ1(R1 + ρ2R2) (23)

Er,12,2(Q, R1, R2)
4
= sup
ρ1∈[0,1],ρ2∈[0,1]

E0,12,2(Q, ρ1, ρ2)− ρ2(R2 + ρ1R1), (24)

and

E0,1(Q, ρ1)
4
= sup
s≥0,a1(·)

− logE

[(
E
[
q(X1, X2, Y )sea1(X1) |X2, Y

]
q(X1, X2, Y )sea1(X1)

)ρ1]
(25)

E0,2(Q, ρ2)
4
= sup
s≥0,a2(·)

− logE

[(
E
[
q(X1, X2, Y )sea2(X2) |X1, Y

]
q(X1, X2, Y )sea2(X2)

)ρ2]
(26)

E0,12,1(Q, ρ1, ρ2)
4
= sup
s≥0,a1(·),a2(·)

− logE

[(
E
[(

E
[
q(X1, X2, Y )sea2(X2)

∣∣X1

]
q(X1, X2, Y )sea2(X2)

)ρ2
× ea1(X1)

ea1(X1)

∣∣∣∣X1, X2, Y

])ρ1]
(27)

E0,12,2(Q, ρ1, ρ2)
4
= sup
s≥0,a1(·),a2(·)

− logE

[(
E
[(

E
[
q(X1, X2, Y )sea1(X1)

∣∣X2

]
q(X1, X2, Y )sea1(X1)

)ρ1
× ea2(X2)

ea2(X2)

∣∣∣∣X1, X2, Y

])ρ2]
(28)

(X1, X2, Y,X1, X2) ∼ Q1(x1)Q2(x2)

×W (y|x1, x2)Q1(x1)Q2(x2). (29)

For ν = 1, 2, each supremum over aν(·) is taken over all
real-valued functions on Xν such that the second moment of
aν(Xν) is finite.

Proof: The proof is similar for each exponent, so we
focus on Er,12,1. We define Qnν (xν)

4
=
∏n
i=1Qν(xν,i) and

anν,l(xν)
4
=
∑n
i=1 aν,l(xν,i). Expanding (11) and applying

Markov’s inequality and min{1, α} ≤ αρ (0 ≤ ρ ≤ 1), we
obtain1

rcu12,1(n,M1) ≤
1

µ1+ρ1
1,n µ1+ρ1ρ2

2,n

∑
x1∈D1,n,x2∈D2,n,y

Qn1 (x1)

×Qn2 (x2)W
n(y|x1,x2)

(
M1

∑
x1∈D1,n

Qn1 (x1)

×
(
M2

∑
x2∈D2,n

Qn2 (x2)

(
qn(x1,x2,y)

qn(x1,x2,y)

)s)ρ2)ρ1
(30)

for any ρ1 ∈ [0, 1], ρ2 ∈ [0, 1] and s ≥ 0. From the definition
of Dν,n in (17), we have that

exp

(
anν,l(xν)

anν,l(xν)

)
e2δ ≥ 1 (31)

for any xν ,xν ∈ Dν,n. We upper-bound (30) by multiplying
the (·)s term by the left-hand side of (31) for ν = 2 and
some l ∈ {1, . . . , L2}, and multiplying the (·)ρ2 term by the

1In the case of continuous alphabets, summations should be replaced by
integrals.



left-hand side of (31) for ν = 1 and some l ∈ {1, . . . , L1}.
Furthermore, we replace the summations over Dν,n by sum-
mations over all sequences on Xnν . Expanding the resulting
terms (e.g. Qnν (xν)) as a product from 1 to n and taking the
supremum over (s, ρ1, ρ2) and the cost functions, we obtain a
bound whose exponent is given by (23), with a prefactor of

e2δ(ρ1+ρ1ρ2)

µ1+ρ1
1,n µ1+ρ1ρ2

2,n

. (32)

From [8, Prop. 1] and the assumptions on the second moments
of the cost functions, this prefactor is subexponential in n. By
choosing L1 = L2 = 3, we can ensure that different cost
functions can be used for each error type, thus allowing the
suprema over a1(·) and a2(·) in (25)–(28) to be taken individ-
ually in each equation. It suffices to let the cost functions for
E0,12,1 and E0,12,2 coincide, since the type-12 error exponent
is the maximum of the two.

Analogously to the single-user analysis of [8] and the
matched MAC analysis of [9], it is possible to improve
the exponents in (25)–(28) by replacing each occurrence of
eaν(x) (respectively, eaν(x)) with erν(aν(x)−φν) (respectively,
erν(aν(x)−φν)) for ν = 1, 2, where φν

4
= EQν [aν(Xν)] and rν

(respectively, rν) is an arbitrary real number. The exponents
may increase further if each equation is modified to contain
multiple cost functions per user [8]. We focus on the weaker
exponents in (25)–(28) for clarity of exposition, and because
they yield the same achievable rate region for any given
(Q1, Q2).

IV. ACHIEVABLE RATE REGION

By determining the conditions under which Er(Q, R1, R2)
is positive, we obtain the following achievable rate region.

Theorem 3. An achievable rate region for the mismatched
memoryless MAC is given by

cl

( ⋃
Q1,Q2

RLM(Q)

)
, (33)

where cl(·) denotes convex closure, and RLM(Q) is the set of
rate pairs (R1, R2) satisfying

R1 ≤ sup
s≥0,a1(·)

E

[
log

q(X1, X2, Y )sea1(X1)

E
[
q(X1, X2, Y )sea1(X1) |X2, Y

]]
(34)

R2 ≤ sup
s≥0,a2(·)

E

[
log

q(X1, X2, Y )sea2(X2)

E
[
q(X1, X2, Y )sea2(X2) |X1, Y

]]
(35)

and at least one of

R1 ≤ sup
ρ2∈[0,1],s≥0,a1(·),a2(·)

−ρ2R2 − E

[
logE

[
(
E
[
q(X1, X2, Y )sea2(X2)

∣∣X1

]
q(X1, X2, Y )sea2(X2)

)ρ2 ea1(X1)

ea1(X1)

∣∣∣∣∣X1, X2, Y

]]
(36)

R2 ≤ sup
ρ1∈[0,1],s≥0,a1(·),a2(·)

−ρ1R1 − E

[
logE

[
(
E
[
q(X1, X2, Y )sea1(X1)

∣∣X2

]
q(X1, X2, Y )sea1(X1)

)ρ1 ea2(X2)

ea2(X2)

∣∣∣∣∣X1, X2, Y

]]
(37)

under the joint distribution in (29). For ν = 1, 2, each
supremum over aν(·) is taken over all real-valued functions
on Xν such that the second moment of aν(Xν) is finite.

Proof: These conditions follow from (20)–(24) using the
techniques of Gallager [12]. Namely, we take ρ1 → 0 in (25)
and (27), and ρ2 → 0 in (26) and (28). The convex closure
operation follows using time-sharing [1].

In the remainder of this section, we outline the proof that the
region described by (34)–(37) coincides with (1)–(3) for any
mismatched DM-MAC. The equivalence of (34)–(35) and (1)–
(2) follows using Lagrange duality, similarly to the equivalence
of the primal and dual expressions for the single-user rate of
Csiszár-Körner-Hui [2], [5], [8]. For the conditions in (36)–
(37), we make use of the following.

Lemma 1. For any given (Q1, Q2), the condition (3) holds if
and only if

R1 +R2 ≤ max

{
min

P̃X1
=Q1,P̃X2

=Q2,P̃Y =PY
EP̃ [log q]≥EP [log q],IP̃ (X1;Y )≤R1

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ),

min
P̃X1

=Q1,P̃X2
=Q2,P̃Y =PY

EP̃ [log q]≥EP [log q],IP̃ (X2;Y )≤R2

D(P̃X1X2Y ‖Q1×Q2×P̃Y )

}
.

(38)

Proof: It is easily seen that (3) holds whenever (38) holds,
since each minimization in (38) is obtained by removing a
constraint from the minimization in (3). It remains to show
that the converse is true. To this end, we will show that the
right-hand side of (3) (denoted by f0) only exceeds that of
(38) (denoted by f ′0) when both (3) and (38) hold.

Assume f0 > f ′0. It follows that the constraints
IP̃ (X1;Y ) ≤ R1 and IP̃ (X2;Y ) ≤ R2 in (3) are active, and
hence at least one of these constraints in the two minimizations
of (38) are active. Let us assume that IP̃ (X1;Y ) ≤ R1

is active in the first minimization; the other case can be
handled similarly. If the minimizing P̃X1X2Y also satisfied
IP̃ (X2;Y ) ≤ R2, then it would satisfy the constraints of
(3), contradicting the assumption that f0 > f ′0; it follows that
IP̃ (X2;Y ) > R2. Using the identity

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y )
= IP̃ (X1;Y ) + IP̃ (X2;Y ) + IP̃ (X1;X2|Y ) (39)

and the fact that active constraints hold with equality in convex
optimization problems [13], it follows that both f0 and f ′0 are



greater than or equal to R1 +R2, i.e. both (3) and (38) hold.

Using Lagrange duality techniques similarly to [2], [8], it
can be verified that (38) holds if and only if at least one of
(36)–(37) hold, thus proving the above-mentioned equivalence.

As well as being more amenable to Lagrange duality
techniques, the condition in (38) simplifies the computation of
the region. Specifically, instead of evaluating the minimization
in (3) over a grid of (R1, R2) values, one can evaluate the first
minimization in (38) over a range of R1 values, and the second
minimization over a range of R2 values.

V. APPLICATION TO THE SINGLE-USER SETTING

It was shown in [1] that one can improve on the single-user
rate of Csiszár-Körner-Hui [3], [10] by treating the single-
user mismatched channel as a MAC. That is, given a channel
W (y|x) and decoding metric q(x, y), one can fix X1, X2

and φ : X1 × X2 → X and analyze the multiple-access
channel defined by W (y|x1, x2) = W

(
y|φ(x1, x2)

)
with the

decoding metric q(x1, x2, y) = q
(
φ(x1, x2), y

)
, and obtain

better random-coding achievable rates than the standard single-
user ensembles. A further improvement was obtained by ex-
purgation, yielding an achievable rate of the form R = R1+R2

for (R1, R2) satisfying (1)–(3), where each minimization is
further subject to P̃X1X2

= Q1 × Q2. As noted in [1], such
expurgation is not allowed in the multiple-access setting, since
it implies cooperation between the users.

By combining the techniques of [1] and the present paper,
one can obtain the following theorem, whose proof is omitted
due to space constraints. The key difference in the derivation
compared to that of [1, Thm. 4] is that instead of keeping
codewords pairs of a given joint empirical distribution, we
only keep pairs such that the empirical means of L joint
cost functions al(x1, x2) (l = 1, · · · , L) are close to the
corresponding true means, similarly to (17).

Theorem 4. Let a single-user channel W (y|x) with decoding
metric q(x, y) be given. Fix any alphabets X1 and X2, input
distributions Q1 and Q2, and function φ : X1 × X2 → X .
An achievable rate for the single-user channel is given by
R = R1 +R2 for any (R1, R2) satisfying

R1 ≤ sup
s≥0,a(·,·)

E

[
log

q
(
φ(X1, X2), Y

)s
ea(X1,X2)

E
[
q
(
φ(X1, X2), Y

)s
ea(X1,X2) |X2, Y

]]
(40)

R2 ≤ sup
s≥0,a(·,·)

E

[
log

q
(
φ(X1, X2), Y

)s
ea(X1,X2)

E
[
q
(
φ(X1, X2), Y

)s
ea(X1,X2) |X1, Y

]]
(41)

and at least one of

R1 ≤ sup
ρ2∈[0,1],s≥0,a(·,·)

−ρ2R2 − E

[
logE

[
(
E
[
q
(
φ(X1, X2), Y

)s
ea(X1,X2)

∣∣X1

]
q
(
φ(X1, X2), Y

)s
ea(X1,X2)

)ρ2 ∣∣∣∣∣X1, X2, Y

]]
(42)

R2 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

−ρ1R1 − E

[
logE

[
(
E
[
q
(
φ(X1, X2), Y

)s
ea(X1,X2)

∣∣X2

]
q
(
φ(X1, X2), Y

)s
ea(X1,X2)

)ρ1∣∣∣∣∣X1, X2, Y

]]
(43)

under the joint distribution in (29) with W (y|x1, x2)
4
=

W (y|φ(x1, x2)). Each supremum over a(·, ·) is taken over all
real-valued functions on X1×X2 such that the second moment
of a(X1, X2) is finite.

In the discrete memoryless setting, it can be shown using
Lagrange duality that Theorem 4 coincides with [1, Thm.
4]. The proof follows the same steps as those use to prove
the equivalence of (34)–(37) and (1)–(3). The only difference
is the additional constraint P̃X1X2

= Q1 × Q2 in each
primal expression, and the use of joint (rather than individual)
functions a(x1, x2) in each dual expression.

VI. CONCLUSION

We have analyzed the memoryless MAC with general
alphabets. Random-coding union (RCU) bounds on the error
probabilities have been given, and error exponents for the
cost-constrained ensemble have been given. The resulting
achievable rate region coincides with that of Lapidoth [1] for
any DM-MAC, and remains valid for more general alphabets.
The application to the single-user setting has been discussed.
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