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Abstract—An achievable rate is given for discrete memoryless
channels with a given (possibly suboptimal) decoding rule. The
result is obtained using a refinement of the superposition coding
ensemble. The rate is tight with respect to the ensemble average,
and can be weakened to the LM rate of Hui and Csiszár-Körner,
and to Lapidoth’s rate based on parallel codebooks.

I. INTRODUCTION

In this paper, we consider the problem of channel cod-
ing over a discrete memoryless channel (DMC) W (y|x), in
which the decoder maximizes the symbol-wise product of a
given decoding metric q(x, y). If q(x, y) = W (y|x) then the
decoder is a maximum-likelihood (ML) decoder; otherwise,
the decoder is said to be mismatched [1]–[6]. More precisely,
the decoder estimates the message as

m̂ = arg max
j

n∏
i=1

q(x
(j)
i , yi), (1)

where n is the block length, x(j) = (x
(j)
1 , . . . , x

(j)
n ) is the

j-th codeword in the codebook, and y = (y1, . . . , yn) is the
received vector.

An error is said to have occurred if the estimated message
differs from the transmitted one. A rate R is said to be
achievable if, for all δ > 0, there exists a sequence of code-
books with at least exp(n(R − δ)) codewords and vanishing
error probability. The mismatched capacity, defined to be the
supremum of all achievable rates, is unknown in general, and
most existing work has focused on achievable random-coding
rates. Of particular note is the LM rate [3], [5], given by (see
Section I-A for notation)

ILM(Q)
4
= min

P̃XY : P̃X=Q,P̃Y =PY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]

IP̃ (X;Y ), (2)

where Q is an arbitrary input distribution, and PXY = Q ×
W . The generalized mutual information (GMI) [6] is defined
similarly, with the constraint P̃X = PX removed.

To our knowledge, only two improvements on the
LM rate have been reported in the literature. In [4],
Csiszár and Narayan show that better achievable rates can
be obtained by applying the LM rate to the channel
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W (2)
(
(y1, y2)|(x1, x2)

)
= W (y1|x1)W (y2|x2) with the met-

ric q(2)
(
(x1, x2), (y1, x2)

)
= q(x1, y1)q(x2, y2), and similarly

for the k-th order products of W and q. However, as k
increases, the required computation becomes prohibitively
complex, since the LM rate is non-convex in Q in general. In
[1], Lapidoth gives a single-letter improvement on the LM rate
using multiple-access coding techniques, in which multiple
codebooks are generated in parallel.

In this paper, we obtain a new single-letter improvement
on the LM rate using a refinement of superposition coding,
the standard version of which is typically used in broadcast
scenarios [7]. The results of this paper and the existing single-
letter results in the literature can be summarized by the
following list of random-coding constructions, in decreasing
order of rate (see Sections II-A to II-D for further discussion):

1) Refined Superposition Coding (Theorem 1),
2) Standard Superposition Coding ((11)–(12)),
3) Expurgated Parallel Coding ([1, Theorem 4]),
4) Constant-Composition Coding (LM rate [3], [5]),
5) i.i.d. Coding (GMI [6]).

A. Notation

The set of all probability distributions on an alphabet A is
denoted by P(A). The set of all empirical distributions (i.e.
types) corresponding to length-n sequences on A is denoted
by Pn(A). The set of all sequences of length n with a given
type PX is denoted by Tn(PX), and similarly for joint types.
See [8, Ch. 2] for an introduction to the method of types.

The marginals of a joint distribution PXY (x, y) are de-
noted by PX(x) and PY (y). Similarly, PY |X(y|x) denotes
the conditional distribution induced by PXY (x, y). We write
PX = P̃X to denote element-wise equality between two
probability distributions on the same alphabet. Expectation
with respect to a distribution PX(x) is denoted by EP [·].

Given a distribution Q(x) and a conditional distribution
W (y|x), the joint distribution Q(x)W (y|x) is denoted by
Q × W . Information-theoretic quantities with respect to a
given distribution (e.g. PXY (x, y)) are written with a subscript
(e.g. IP (X;Y )). We write [α]+ = max(0, α), and denote the
indicator function by 11{·}. Logarithms have base e, and rates
are in nats except in the examples, where bits are used.

II. MAIN RESULT

We begin by introducing the refined superposition coding
ensemble from which the achievable rate is obtained. We fix
a finite alphabet U , an input distribution QUX and the rates



R0 and {R1u}u∈U . We write M0
4
= enR0 and M1u

4
= enR1u .

We let PU (u) be the uniform distribution over the type class
Tn(QU,n), where QU,n ∈ Pn(U) is the most probable type
under QU . For each u ∈ U , we define

nu
4
= QU,n(u)n (3)

and let Qu,nu
∈ Pnu

(X ) be the most probable type under
QX|U=u for sequences of length nu. We let PXu(xu) be the
uniform distribution over the type class Tn1(Qu,nu). Thus,

PU (u) =
1

|Tn(QU,n)|
11
{
u ∈ Tn(QU,n)

}
(4)

PXu
(xu) =

1

|Tnu(Qu,nu
)|

11
{
xu ∈ Tnu(Qu,nu

)
}
. (5)

We randomly generate the length-n auxiliary codewords
{U (i)}M0

i=1 independently according to PU . For each i =
1, . . . ,M0 and u ∈ U , we further generate the length-nu
partial codewords {X(i,ju)

u }M1u
ju=1 independently according to

PXu
. For example, when U = {1, 2} we have{(
U (i),

{
X

(i,j1)
1

}M11

j1=1
,
{
X

(i,j2)
2

}M12

j2=1

)}M0

i=1

∼
M0∏
i=1

(
PU (u(i))

M11∏
j1=1

PX1
(x

(i,j1)
1 )

M12∏
j2=1

PX2
(x

(i,j2)
2 )

)
. (6)

The codebook on Xn is indexed as (m0,m11, . . . ,m1|U|).
To transmit a given message, we treat U (m0) as a time-
sharing sequence; at the indices where U (m0) equals u, we
transmit the symbols of X(m0,m1u)

u . There are M0

∏
uM1u

codewords, and hence the rate is R = R0 +
∑
uQU,n(u)R1u.

We will see that in the mismatched setting, this ensemble
yields higher achievable rates than the standard constant-
composition superposition coding ensemble [7] in which, for
all i = 1, . . . ,M0, the codewords {X(i,j)}M1

j=1 are condition-
ally independent given U (i).

The main result of this paper is stated in the following
theorem, which is proved in Section III. We define the set

T0(PUXY )
4
=
{
P̃UXY ∈ P(U × X × Y) : P̃UX = PUX ,

P̃Y = PY ,EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]
}
.

(7)

Theorem 1. For any finite set U and input distribution QUX ,
the rate

R = R0 +
∑
u

QU (u)R1u (8)

is achievable provided that R0 and {R1u}|U|u=1 satisfy

R1u ≤ ILM(QX|U=u) (9)

R0 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y )

+

[
max
K⊆U

∑
u∈K

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)]+
. (10)

By combining the techniques of [9, Section III-C] and [1,
Thm. 3], it can be shown that, subject to minor technical
conditions, the achievable rate of Theorem 1 is tight with
respect to the ensemble average. That is, Theorem 1 gives the
best possible achievable rate for the random coding ensemble
under consideration. A similar statement holds for the random-
coding error exponent given in the proof in Section III (cf.
(30)). Furthermore, a similar analysis can be applied to the
mismatched broadcast channel with degraded message sets, in
which a secondary user attempts to recover only the index m0.

A. Comparison to Existing Results

The LM rate in (2) is recovered from (8)–(10) by setting
|U| = 1 and R0 = 0.

Using standard constant-composition superposition coding
[7], a similar (yet simpler) analysis to Section III yields the
achievability of all R = R0 +R1 such that (R0, R1) satisfy

R1 ≤ min
P̃UX=QUX ,P̃UY =PUY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]

IP̃ (X;Y |U) (11)

R0 +R1 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y )≤R0

IP̃ (U,X;Y ) (12)

This achievability result can be obtained by weakening that
of Theorem 1 with the identification R1 =

∑
uQU (u)R1u.

Roughly speaking, we obtain (11) by summing the |U| rates
in (9) weighted by QU (·), identifying the corresponding |U|
joint distributions P̃XY in (2) with P̃XY |U=u, and relaxing
the constraints on the metric in (2) to hold on average with
respect to QU , rather than for each u ∈ U . Furthermore, we
obtain (12) from (10) by replacing the maximum over K ⊆ U
with the particular choice K = U , noting that (10) always
holds when the minimizing P̃UXY satisfies IP̃ (U ;Y ) > R0,
and using the chain rule for mutual information.

The achievable rate of Lapidoth [1, Thm. 4] was derived
by (i) fixing the finite auxiliary alphabets X1 and X2, the
input distributions QX1

∈ P(X1) and QX2
∈ P(X2), and the

function φ : X1 × X2 → X , (ii) coding for the mismatched
multiple-access channel W ′(y|x1, x2)

4
= W (y|φ(x1, x2)) with

the metric q′(x1, x2, y)
4
= q(φ(x1, x2), y) and input distribu-

tions QX1 and QX2 , and (iii) expurgating all codeword pairs
except those of a given joint type. The analysis in [1] yields
the achievability of all R′ = R′1 + R′2 such that (R′1, R

′
2)

satisfy

R′1 ≤ min
P̃X1X2

=QX1
×QX2

P̃X2Y =PX2Y

EP̃ [log q′]≥EP [log q′]

IP̃ (X1;Y |X2) (13)

R′2 ≤ min
P̃X1X2

=QX1
×QX2

P̃X1Y =PX1Y

EP̃ [log q′]≥EP [log q′]

IP̃ (X2;Y |X1) (14)

R′1 +R′2 ≤ min
P̃X1X2

=QX1
×QX2

,P̃Y =PY

EP̃ [log q′]≥EP [log q′]

IP̃ (X1;Y )≤R′
1, IP̃ (X2;Y )≤R′

2

IP̃ (X1, X2;Y ), (15)



where PX1X2Y = QX1
× QX2

× W ′, each minimization is
over all P̃X1X2Y satisfying the specified constraints, and we
write EP̃ [log q′] as a shorthand for EP̃ [log q′(X1, X2, Y )].

Proposition 1. After the optimization of U and QUX , the
achievable rate R = maxR0,R1 R0 + R1 described by
(11)–(12) is at least as high as the achievable rate R′ =
maxR′

1,R
′
2
R′1 + R′2 described by (13)–(15) with optimized

parameters X1, X2, QX1
, QX2

and φ(x1, x2).

Proof: We fix the alphabets X1 and X2, the distributions
QX1

(x1) and QX2
(x2), and the function φ(·, ·) arbitrarily. We

consider the superposition coding parameters U = X2 and

QUX(u, x) =
∑
x1

QX1
(x1)QX2

(x2)11
{
x = φ(x1, x2)

}
.

(16)
Since the (U,X) marginal of P̃UXY is constrained to be equal
to QUX in both (11) and (12), we can equivalently rewrite
each optimization as a minimization over P̃Y |UX . The corre-
sponding objectives and constraints depend on P̃Y |UX(y|u, x)

only through P̃Y |X1X(y|x1, φ(x1, x2)), which is a conditional
distribution on Y given X1 and X2. Thus, the bounds can be
weakened by taking the minimizations over all distributions on
Y given X1 and X2 satisfying similar constraints to (11)–(12).
With some simple algebra and by renaming R1 = R′1 and
R0 = R′2, we obtain the achievability of (R′1, R

′
2) satisfying

(13) and (15) with the constraint IP̃ (X1;Y ) ≤ R′1 removed.
Repeating these steps with U = X1, R1 = R′2, R0 = R′1 and

QUX(u, x) =
∑
x2

QX1
(x1)QX2

(x2)11{x = φ(x1, x2)}, (17)

we obtain the achievability of (R′1, R
′
2) satisfying (14) and

(15) with the constraint IP̃ (X2;Y ) ≤ R′2 removed.
Finally, we make use of [10, Lemma 1], which states that

R1 + R2 satisfies the inequality in (15) if and only if R1 +
R2 satisfies at least one of two similar inequalities, each of
the same form as (15) with one constraint IP̃ (Xν ;Y ) ≤ Rν
(ν = 1, 2) removed. It follows that the union of the above two
derived regions contains the region in (13)–(15), and hence
the former yields a sum rate at least as high as the latter.

B. Discussion

The benefits of both parallel and superposition coding
arise from the dependence among the randomly generated
codewords. Under parallel coding without expurgation [1],
one generates the codewords {X(i)

1 }
M1
i=1 and {X(j)

2 }
M2
j=1 in-

dependently. One can picture the overall codewords as being
arranged in an M1 × M2 grid, where the (i, j)-th entry is
a deterministic function of (X

(i)
1 ,X

(j)
2 ). In this case, every

codeword in row i depends on X
(i)
1 , and every codeword

in column j depends on X
(j)
2 . Similarly, under superposition

coding, one can arrange the codewords in an M0 ×M1 grid
in which every codeword in the i-th row depends on U (i).

The dependence among both rows and columns under paral-
lel coding yields two constraints of the form IP̃ (Xν ;Y ) ≤ Rν
(ν = 1, 2) in (15), whereas (12) has just one analogous

constraint. However, from [10, Lemma 1], at most one of the
two constraints affects the minimization for any given rate pair.

Superposition coding allows one to specify a joint com-
position of (U,X), yielding the constraint P̃UX = QUX in
(11)–(12). On the other hand, one cannot specify the joint
composition of (X1, X2) under parallel coding. However,
using the expurgation step of [1], one recovers a codebook
in which the joint composition is fixed.

While the ability to choose the joint distribution QUX in
(11)–(12) may appear to give more freedom than the ability
to choose QX1

and QX2
in (13)–(15), it can be shown

that any joint distribution of (X1, X) (or (X2, X)) can be
induced in the latter setting with the additional freedom in
choosing φ(·, ·). This observation suggests that for many (and
possibly all) channels and decoding metrics the converse to
Proposition 1 holds true, i.e. that the achievable rates of
standard superposition and expurgated parallel coding coincide
after the full optimization of the parameters. On the other hand,
we believe that the local optimization of the former rate over
(U , QUX) has a lower computational complexity than the local
optimization of the latter rate over (X1,X2, QX1

, QX2
, φ).

Since computational complexity generally prohibits the global
optimization of the random-coding parameters, the ability to
perform such local optimizations is of great interest.

Finally, the advantage of the refined superposition coding
ensemble over that of standard superposition coding arises
from a stronger dependence among the codewords in a given
row. Specifically, unlike the former ensemble, the latter en-
semble has codewords in each row which are conditionally
independent given given U (i).

C. Example 1: Sum Channel

Given two channels (W1,W2) respectively defined on the
alphabets (X1,Y1) and (X2,Y2), the sum channel is defined
to be the channel W (y|x) with |X | = |X1|+ |X2| and |Y| =
|Y1| + |Y2| such that one of the two subchannels is used on
each transmission [11]. One can similarly combine two metrics
q1(x1, y1) and q2(x2, y2) to form a sum metric q(x, y).

Let (W, q) be the sum channel and metric associated with
(W1, q1) and (W2, q2), and let Q̂1 and Q̂2 be the distribu-
tions which maximize the LM rate in (2) on the respective
subchannels. We set U = {1, 2}, QX|U=1 = (Q̂1,0) and
QX|U=2 = (0, Q̂2), where 0 denotes the zero vector. We leave
QU to be specified.

Combining the constraints P̃UX = QUX and
EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )] in (7), it is
straightforward to show that the minimizing P̃UXY (u, x, y)
in (10) only takes on non-zero values for (u, x, y) such that
(i) u = 1, x ∈ X1 and y ∈ Y1, or (ii) u = 2, x ∈ X2 and
y ∈ Y2, where we assume without loss of generality that
the subchannel alphabets are disjoint (i.e. X1 ∩ X2 = ∅ and
Y1 ∩ Y2 = ∅). It follows that U is a deterministic function of
Y under the minimizing P̃UXY , and hence

IP̃ (U ;Y ) = H(QU )−HP̃ (U |Y ) = H(QU ). (18)



Therefore, the right-hand side of (10) is lower bounded by
H(QU ). Using (8) and performing a simple optimization of
QU , it follows that the rate log

(
eI

LM
1 (Q̂1) + eI

LM
2 (Q̂2)

)
is

achievable, where ILMν is the LM rate for subchannel ν. An
analogous result has been proved in the setting of matched
decoding using the known formula for channel capacity [11].
It should be noted that the LM rate of (W, q) can be strictly
less than log

(
eI

LM
1 (Q̂1) + eI

LM
2 (Q̂2)

)
even for simple examples

(e.g. binary symmetric subchannels).

D. Example 2

We consider the channel and decoding metric described by
the entries of the matrices

W =


0.99 0.01 0 0
0.01 0.99 0 0
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 (19)

q =


1 0.5 0 0

0.5 1 0 0
0.05 0.15 1 0.05
0.15 0.05 0.5 1

 . (20)

We have intentionally chosen a highly asymmetric channel
and metric, since such examples generally yield larger gaps
between the various achievable rates. Using an exhaustive
search to three decimal places, we find the optimized LM rate
to be R∗LM = 1.111 bits/use, which is achieved by the input
distribution Q∗X = (0.403, 0.418, 0, 0.179).

The global optimization of (8)–(10) over U and QUX is
difficult. Setting |U| = 2 and applying local optimization
techniques using a number of starting points, we obtained
an achievable rate of R∗ = 1.313 bits/use, with QU =
(0.698, 0.302), QX|U=1 = (0.5, 0.5, 0, 0) and QX|U=2 =
(0, 0, 0.528, 0.472). We denote the corresponding input dis-
tribution by Q(1)

UX .
Applying similar techniques to the standard superposition

coding rate in (11)–(12), we obtained an achievable rate of
R∗SC = 1.236 bits/use, with QU = (0.830, 0.170), QX|U=1 =
(0.435, 0.450, 0.115, 0) and QX|U=2 = (0, 0, 0, 1). We denote
the corresponding input distribution by Q(2)

UX .
The achievable rates for this example are summarized in

Table I, where Q
(LM)
UX denotes the distribution in which U

is deterministic and the X-marginal maximizes the LM rate.
While the achievable rate of Theorem 1 coincides with that
of (11)–(12) under Q(2)

UX , the former is significantly higher
under Q(1)

UX . Both types of superposition coding yield a strict
improvement over the LM rate.

Our parameters may not be globally optimal, and thus we
cannot conclude from this example that Theorem 1 yields a
strict improvement over (11)–(12) (and hence over (13)–(15))
after optimizing U and QUX . However, since the optimization
of the input distribution can be a non-convex problem even for
the LM rate, finding the global optimum is computationally
infeasible in general. Thus, improvements for fixed |U| and
QUX are of great interest.

Table I
ACHIEVABLE RATES FOR THE MISMATCHED CHANNEL IN (20)-(21).

Input Distribution Refined SC Standard SC

Q
(1)
UX 1.313 1.060

Q
(2)
UX 1.236 1.236

Q
(LM)
UX 1.111 1.111

III. PROOF OF THEOREM 1

For clarity of exposition, we present the proof in the case
that U = {1, 2}. The same arguments apply to the general
case. We let Ξ(u,x1,x2) denote the function for constructing
the length-n codeword from the auxiliary sequence and partial
codewords, and write

X(i,j1,j2) 4= Ξ(U (i),X
(i,j1)
1 ,X

(i,j2)
2 ). (21)

For the remainder of the proof, we let yu(u) denote the
subsequence of y corresponding to the indices where u equals
u. Furthermore, we define qn(x,y)

4
=
∏n
i=1 q(xi, yi) and

Wn(y|x)
4
=
∏n
i=1W (yi|xi).

Upon receiving y, the decoder forms the estimate

(m̂0, m̂1, m̂2) = arg max
(i,j1,j2)

qn(x(i,j1,j2),y) (22)

= arg max
(i,j1,j2)

qn1
(
x
(i,j1)
1 ,y1(u(i))

)
qn2
(
x
(i,j2)
2 ,y2(u(i))

)
,

(23)

where the objective in (23) follows by separating the indices
where u = 1 from those where u = 2. By writing the
objective in this form, it is easily seen that for any given
i, the pair (j1, j2) with the highest metric is the one for
which j1 maximizes qn1(x

(i,j1)
1 ,y1(u(i))) and j2 maximizes

qn2(x
(i,j2)
2 ,y2(u(i))). Therefore, we can split the error event

into three (not necessarily disjoint) events:
(Type 0) m̂0 6= m0

(Type 1) m̂0 = m0 and m̂11 6= m11

(Type 2) m̂0 = m0 and m̂12 6= m12

We denote the corresponding random-coding error probabili-
ties by pe,0, pe,1 and pe,2 respectively.

From the construction of the random-coding ensemble, the
type-1 error probability pe,1 is precisely that of the single-user
constant-composition ensemble with rate R11, length n1 =
nQU (1), and input distribution QX|U=1. A similar statement
holds for the type-2 error probability pe,2, and the analysis for
these error events is identical to the derivation of the LM rate
[3], [5], yielding the rate conditions in (9). For the remainder
of this section, we analyze the type-0 event.

We assume without loss of generality that (m0,m1,m2) =
(1, 1, 1). We let U and X be the codewords corresponding
to (1, 1, 1), and let U , X1 and X2 be the codewords corre-
sponding to an arbitrary message with m0 6= 1. For the index
i corresponding to U , we write X

(j1)

1 , X
(j2)

2 and X
(j1,j2)

in place of X(i,j1)
1 , X(i,j2)

2 and X(i,j1,j2) respectively. Thus,
from (21), we have X

(j1,j2)
= Ξ(U ,X

(j1)

1 ,X
(j2)

2 ).



The error probability for the type-0 event satisfies

pe,0 ≤ P

⋃
i6=1

⋃
j1,j2

{
qn(X(i,j1,j2),Y )

qn(X,Y )
≥ 1

} , (24)

where (Y |X = x) ∼ Wn(·|x). Writing the probability as
an expectation given (U ,X,Y ) and applying the truncated
union bound, we obtain

pe,0 ≤ E

[
min

{
1, (M0 − 1)

×E

[
P
[ ⋃
j1,j2

{
qn(X

(j1,j2)
,Y )

qn(X,Y )
≥ 1

} ∣∣∣∣U]
∣∣∣∣∣U ,X,Y

]}]
,

(25)

where we have written the probability of the union over j1
and j2 as an expectation given U .

Let the joint types of (U ,X,Y ) and (U ,X
(j1,j2)

,Y ) be
denoted by PUXY and P̃UXY respectively. We claim that

qn(X
(j1,j2)

,Y )

qn(X,Y )
≥ 1 (26)

if and only if

P̃UXY ∈ T0,n(PUXY )
4
= T0(PUXY )∩Pn(U ×X ×Y), (27)

where T0(PUXY ) is defined in (7). The constraint P̃UX =
PUX follows from the construction of the random cod-
ing ensemble, P̃Y = PY follows since (U ,X,Y )

and (U ,X
(j1,j2)

,Y ) share the same Y sequence, and
EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )] coincides with the con-
dition in (26). Thus, expanding (25) in terms of types yields

pe,0 ≤
∑
PUXY

P
[(
U ,X,Y

)
∈ Tn(PUXY )

]
min

{
1,

(M0 − 1)
∑

P̃UXY ∈T0,n(PUXY )

P
[(
U ,y

)
∈ Tn(P̃UY )

]

× P
[ ⋃
j1,j2

{(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY )

}]}
, (28)

where we write (u,y) to denote an arbitrary pair such that
y ∈ Tn(PY ) and (u,y) ∈ Tn(P̃UY ). The dependence of
these sequences on PY and P̃UY is kept implicit.

Using a similar argument to the discussion following (23),
we observe that

(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY ) if and only

if
(
X

(ju)

u ,yu(u)
)
∈ Tnu(P̃XY |U=u) for u = 1, 2. Thus,

for any subset K of U , we can upper bound the probability
that

(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY ) by the probability that(

X
(ju)

u ,yu(u)
)
∈ Tnu(P̃XY |U=u) for all u ∈ K. By further

upper bounding via the union bound, we obtain

P
[ ⋃
j1,j2

{(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY )

}]
≤ min

{
1,

min
u=1,2

M1uP
[(
Xu,yu(u)

)
∈ Tnu(P̃XY |U=u)

]
,

M11M12P
[ ⋂
u=1,2

{(
Xu,yu(u)

)
∈ Tnu(P̃XY |U=u)

}]}
,

(29)

where the four terms in the minimization correspond to the
four subsets of {1, 2}.

Substituting (29) into (28), applying the property of types
in [8, Ex. 2.3(b)] multiple times, and using the fact that the
number of joint types is polynomial in n, we obtain

lim
n→∞

− 1

n
log pe,0

≥ min
PUXY

min
P̃UXY ∈T0(PUXY )

D(PUXY ‖QUX ×W ) +

[
IP̃ (U ;Y )

+

[
max
K⊆U

∑
u∈K

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)]+
−R0

]+
,

(30)

where the minimization over PUXY is subject to PUX =
QUX . Taking PUXY → QUX ×W , we obtain that the right-
hand side of (30) is positive whenever (10) holds with strict
inequality, thus concluding the proof.

One can show that (30) holds with equality by following
the steps of [9, Section III-C]. Thus, the analysis presented in
this section is exponentially tight for the given ensemble.
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