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Abstract�—We study the information rates of non-coherent,
stationary, Gaussian, multiple-input multiple-output (MIMO)
at-fading channels that are achievable with nearest neighbour
decoding and pilot-aided channel estimation. In particular, we
analyse the behaviour of these achievable rates in the limit as the
signal-to-noise ratio (SNR) tends to innity. We demonstrate that
nearest neighbour decoding and pilot-aided channel estimation
achieves the capacity pre-log�—which is dened as the limiting
ratio of the capacity to the logarithm of SNR as the SNR tends
to innity�—of non-coherent multiple-input single-output (MISO)
at-fading channels, and it achieves the best so far known lower
bound on the capacity pre-log of non-coherent MIMO at-fading
channels.

I. INTRODUCTION

Coherent multiple-input multiple-output (MIMO) at-fading
channels have a capacity that increases with the signal-to-
noise ratio (SNR) asmin(nt, nr) log SNR, where nt and nr are
the number of transmit and receive antennas, respectively [1],
[2]. This capacity growth can be achieved using independent
and identically distributed (i.i.d.) Gaussian inputs with nearest
neighbour decoding. The nearest neighbour decoder is a simple
decoder that selects the codeword that is closest to the channel
output. In a coherent channel with additive Gaussian noise, this
decoder is the maximum-likelihood decoder and is therefore
optimal in the sense that it minimises the error probability
(see [3] and references therein). However, the coherent channel
model assumes that there is a genie that provides the fading
coefcients to the decoder, which is difcult to achieve in
practice. We exclude the role of the genie by studying a
scheme that estimates the fading via pilot symbols. Note
that with imperfect fading estimations, the nearest neighbour
decoder that treats the fading estimate as if it were perfect is
not necessarily optimal. Nevertheless, we show that, in some
cases, nearest neighbour decoding and pilot-aided channel
estimation is optimal at high SNR in the sense that it achieves
the capacity pre-log. The pre-log is dened as the limiting ratio
of the achievable rate to log SNR as SNR tends to innity.
The capacity pre-log is dened in the same way but with the
achievable rate replaced by the capacity.
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The capacity of non-coherent fading channels, where the
receiver has no knowledge of the fading coefcients, has been
studied in a number of works. Building upon [4], Hassibi and
Hochwald [5] studied the capacity of the block-fading channel
and used pilot symbols (also known as training symbols)
to obtain reasonably accurate fading estimates. Lozano and
Jindal [6] provided tools for a unied treatment of pilot-based
channel estimation in both block and stationary bandlimited
fading channels. In these works, lower bounds on the channel
capacity were obtained. Lapidoth [7] studied a single-input
single-output (SISO) fading channel for more general fading
processes and showed that, depending on the predictability of
the fading process, the capacity growth in SNR can be, inter
alia, logarithmically or double logarithmically. The extension
of [7] to multiple-input single-output (MISO) fading channels
can be found in [8]. A lower bound on the capacity of MIMO
fading channels was derived by Etkin and Tse in [9].
Lapidoth and Shamai [10] and Weingarten et al. [11]

studied non-coherent fading channels from a mismatched-
decoding perspective. In particular, they studied achievable
rates with Gaussian inputs and nearest neighbour decoding.
In both works, it is assumed that there is a genie that provides
imperfect estimates of the fading coefcients.
In our work, we add the estimation of the fading coefcients

to our analysis. In particular, we study a communication
system where the transmitter emits at regular intervals pilot
symbols, and where the receiver performs channel estimation
and data detection, separately. Based on the channel outputs
corresponding to pilot transmissions, the channel estimator
produces estimates for the remaining time instants using a
linear minimum mean-square error (LMMSE) interpolator.
Using these estimates, the data detector employs a nearest
neighbour decoder to decide what the transmitted message
was. We study the achievable rates of this communication
scheme at high SNR. In particular, we study the pre-log for
fading processes of bandlimited power spectral densities.
For SISO fading channels, using some simplifying argu-

ments, Lozano [12] and Jindal and Lozano [6] showed that
this scheme achieves the capacity pre-log. In this paper, we
prove this result without any simplifying assumptions and
extend it to MIMO fading channels. If the inverse of twice
the bandwidth of the fading process is an integer, then for
MISO channels, the above scheme is optimal in the sense that



it achieves the capacity pre-log derived by Koch and Lapidoth
[8]. For MIMO channels, the above scheme achieves the best
so far known lower bound on the capacity pre-log obtained in
[9].
The paper is organised as follows. Section II describes

the channel model and introduces the encoding and decoding
scheme. Section III denes the pre-log and presents the main
result. And Section IV outlines the proof of this result.

II. SYSTEM MODEL

We consider a discrete-time nr × nt MIMO at-fading
channel, whose channel output at time instant k ∈ ! (where
! denotes the set of integers) is the complex-valued nr-
dimensional random vector given by

Yk =
√

SNR

nt
Hkxk + Zk. (1)

Here xk ∈ "nt denotes the time-k channel input vector (with
" denoting the set of complex numbers);Hk ∈ "nr×nt denotes
the fading matrix at time k; and Zk ∈ "nr denotes the additive
noise vector at time k.
The noise process {Zk, k ∈ !} is a sequence of inde-

pendent and identically distributed (i.i.d.) complex Gaussian
random vectors of zero mean and covariance matrix Inr , where
Inr is the nr × nr identity matrix. SNR denotes the average
SNR for each received antenna.
The fading process {Hk, k ∈ !} is stationary, ergodic and

Gaussian. We assume that the nr ·nt processes {Hk(r, t), k ∈
!}, r = 1, . . . , nr, t = 1, . . . , nt are independent and have the
same law, with each process having zero-mean, unit-variance
and power spectral density fH(λ), − 1

2 ≤ λ ≤ 1
2 . Thus, fH(·)

is a non-negative function satisfying

E
[
Hk+m(r, t)H†

k(r, t)
]

=
∫ 1/2

−1/2
ei2πmλfH(λ)dλ (2)

where (·)† denotes complex conjugation. We further assume
that the power spectral density fH(·) has bandwidth λD <
1/2, i.e., fH(λ) = 0 for |λ| > λD and fH(λ) > 0 otherwise.
We nally assume that the fading process {Hk, k ∈ !} and

the noise process {Zk, k ∈ !} are independent and that their
joint law does not depend on {xk, k ∈ !}.
The transmission involves both codewords and pilots. The

former convey the message to be transmitted, and the latter are
used to facilitate the estimation of the fading coefcients at
the receiver. The codeword is selected from the codebook C,
which is drawn i.i.d. from a zero-mean unit-variance complex
Gaussian distribution. The codeword is assumed to satisfy the
average-power constraint

1
N

N∑

n=1

E
[
‖X̄n(m)‖2

]
≤ nt, m ∈ M (3)

where M =
{
1, . . . , eNR

}
is the set of possible messages,

and N and R denote the codeword length and the coding rate.
To estimate the fading matrix, we transmit orthogonal pilot

vectors. The pilot vector pt used to estimate the fading

coefcients corresponding to the t-th transmit antenna is given
by pt(t) = 1 and pt(t′) = 0 for t′ &= t. For example, the rst
pilot vector is p1 = (1, 0, · · · , 0)T, where (·)T denotes the
transpose. To estimate the whole fading matrix, we thus need
to send the nt pilot vectors p1, . . . , pnt .
The transmission scheme is as follows. Every L time

instants (for some L ∈ !), we transmit the nt pilot vectors
p1, . . . , pnt . Each codeword is then split up into blocks of
L − nt data vectors, which will be transmitted after the nt

pilot vectors. The process of transmitting L− nt data vectors
and nt pilot vectors continues until all N data vectors are
completed. Herein we assume that N is an integer multiple
of L − nt.1 Prior to transmitting the rst data block, and
after transmitting the last data block, we introduce a guard
period of L(T −1) time instants (for some T ∈ !), where we
transmit every L time instants the nt pilot vectors p1, . . . , pnt ,
but we do not transmit data vectors in between. The guard
period ensures that, at every time instant, we can employ a
channel estimator that bases its estimation on the channel
outputs corresponding to the T past and the T future pilot
transmissions. This facilitates the analysis and does not incur
a loss in terms of achievable rate. The above transmission
scheme is illustrated in Figure 1. The channel estimator is
described below.
Note that the total block-length of the above transmission

scheme (comprising data vectors, pilot vectors and guard
period) is given by

N ′ = Np + N + Nun (4)

whereNp denotes the number of channel uses for pilot vectors,
and where Nun denotes the number of channel uses during the
silent guard period, i.e.,

Np =
(

N

L − nt
+ 1 + 2(T − 1)

)
nt (5)

Nun = 2(L − nt)(T − 1). (6)

We now turn to the decoder. Let D denote the set of time
indices where data vectors of a codeword are transmitted,
and let P denote the set of time indices where pilots are
transmitted. The decoder consists of two parts: a channel
estimator and a data detector. The channel estimator considers
the channel output vectors Yk, k ∈ P corresponding to the past
and future T pilot transmissions and estimates Hk(r, t) using
a linear interpolator, i.e., the estimate Ĥ(T )

k (r, t) of the fading
coefcient Hk(r, t) is given by

Ĥ(T )
k (r, t) =

k+TL∑

k′=k−TL:
k′∈P

ak′(r, t)Yk′ (r) (7)

where the coefcients ak′ (r, t) are chosen in order to minimize
the mean-squared error.

1If N is not an integer multiple of L − nt, then the last L − nt instants
are not fully used by data vectors and contain therefore time instants where
we do not transmit anything. The thereby incurred loss in information rate
vanishes as N tends to innity.
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Fig. 1. Structure of pilot and data transmission for nt = 2, L = 7 and T = 2.

Note that, since the pilot vectors transmit only from one
antenna, the fading coefcients corresponding to all transmit
and receive antennas (r, t) can be observed. Further note that,
since the fading processes {Hk(r, t), k ∈ !}, r = 1, . . . , nr,
t = 1, . . . , nt are independent, estimating Hk(r, t) only based
on {Yk(r), k ∈ !} rather than on {Yk, k ∈ !} incurs no loss
in optimality.
Since the time-lags betweenHk, k ∈ D and the observations

Yk′ , k′ ∈ P depend on k, it follows that the interpolation error

E(T )
k (r, t) = Hk(r, t) − Ĥ(T )

k (r, t) (8)

is not stationary but cyclo-stationary with period L. Neverthe-
less, it can be shown that, irrespective of (r, t), the variance
of the interpolation error

σ2
e,T (#, r, t) = E

[∣∣∣Hk(r, t) − Ĥ(T )
k (r, t)

∣∣∣
2
]

(9)

tends to the following expressions as T tends to innity [13]

σ2
e(#) ! lim

T→∞
σ2

e,T (#, r, t) (10)

= 1 −
∫ 1/2

−1/2

SNR|fHL,#(λ)|2

SNRfHL,0(λ) + 1
dλ (11)

where # = k mod L denotes the remainder of k/L. Here
fHL,#(·) is given by

fHL,#(λ) =
1
L

L−1∑

j=0

f̄H

(
λ − j

L

)
ei2π# λ−j

L (12)

and f̄H(·) is the periodic function of period [−1/2, 1/2) that
coincides with fH(λ) for −1/2 ≤ λ ≤ 1/2. If

L ≤ 1
2λD

(13)

then |fHL,#(·)| becomes

|fHL,#(λ)| = fHL,0(λ) =
1
L

fH

(
λ

L

)
, − 1

2
≤ λ ≤ 1

2
. (14)

In this case the interpolation error is given by

σ2
e(#) = 1−

∫ 1/2

−1/2

SNR
(
fH(λ)

)2

SNRfH(λ) + L
dλ, # = 0, . . . , L−1 (15)

which vanishes as the SNR tends to innity. Recall that λD

denotes the bandwidth of fH(·). Thus, (13) implies that no
aliasing occurs as we undersample the fading process L times.
The channel estimator feeds the sequence of fading esti-

mates {Ĥ(T )
k , k ∈ D} (which is composed of the matrix entries

{Ĥ(T )
k (r, t), k ∈ D}) to the data detector. We shall denote its

realisation by {Ĥ(T )
k , k ∈ D}. Based on the channel outputs

{yk, k ∈ D} and fading estimates {Ĥ(T )
k , k ∈ D}, the data

detector uses a nearest neighbour decoder to guess which
message was transmitted. Thus, the decoder decides on the
message m̂ that satises

m̂ = arg min
m∈M

D(m) (16)

where

D(m) !
∑

k∈D

∥∥∥yk −
√

SNR/nt Ĥ(T )
k xk(m)

∥∥∥
2

(17)

and where ‖ · ‖ denotes the Euclidean norm.

III. THE PRE-LOG
We say that a rate is achievable if the error probability

tends to zero as the codeword length tends to innity. In this
work, we study the maximum rate R∗(SNR) that is achiev-
able with nearest neighbour decoding and pilot-aided channel
estimation. We focus on the achievable rates at high SNR. In
particular, we are interested in the maximum achievable pre-
log, dened as

ΠR∗ ! lim sup
SNR→∞

R∗(SNR)
log SNR

. (18)

The capacity pre-log�—which is given by (18) but with
R∗(SNR) replaced by the capacity C(SNR)�—of SISO fading
channels was computed by Lapidoth [7] as

ΠC = µ
(
{λ : fH(λ) = 0}

)
(19)

where µ(·) denotes the Lebesgue measure on the interval
[−1/2, 1/2]. Koch and Lapidoth [8] extended this result to
MISO fading channels and showed that if the fading processes
{Hk(t), k ∈ !}, t = 1, . . . , nt are independent and have the
same law, then the capacity pre-log of MISO fading channels
is equal to the capacity pre-log of the SISO fading channel
with fading process {Hk(1), k ∈ !}. Using (19), the capacity
pre-log of MISO fading channels with power spectral density
of bandwidth λD can be evaluated as

ΠC = 1 − 2λD. (20)

Since R∗(SNR) ≤ C(SNR), it follows that ΠR∗ ≤ ΠC .
To the best of our knowledge, the capacity pre-log of MIMO

fading channels is unknown. For independent fading processes
{Hk(r, t), k ∈ !}, t = 1, . . . , nt, r = 1, . . . , nr that have the
same law, the best so far known lower bound on the MIMO



pre-log is due to Etkin and Tse [9]

ΠC ≥ min(nt, nr)
(
1 − min(nt, nr)µ

(
{λ : fH(λ) > 0}

))
.
(21)

For power spectral densities that are bandlimited to λD, this
becomes

ΠC ≥ min(nt, nr)
(
1 − min(nt, nr) 2λD

)
. (22)

Observe that (22) specialises to (20) for nr = 1. It should
be noted that the capacity pre-log for MISO and SISO fading
channels was derived under a peak-power constraint on the
channel inputs, whereas the lower bound on the capacity pre-
log for MIMO fading channels was derived under an average-
power constraint. Clearly, the capacity pre-log corresponding
to a peak-power constraint can never be larger than the
capacity pre-log corresponding to an average-power constraint.
It is believed that the two pre-logs are in fact identical (see
the conclusion in [7]).
In this paper, we show that a communication scheme that

employs nearest neighbour decoding and pilot-aided channel
estimation achieves the following pre-log.
Theorem 1: Consider the above Gaussian MIMO at-fading

channel with nt transmit antennas and nr receive antennas.
Then, the transmission and decoding scheme described in
Section II achieves

ΠR∗ ≥ min(nt, nr)
(

1 − min(nt, nr)
L∗

)
(23)

where L∗ is the largest integer satisfying L∗ ≤ 1
2λD

.
Proof: Due to page limitations, only an outline of the

proof is given in Section IV.
Remark 1: We derive Theorem 1 for i.i.d. Gaussian inputs

satisfying the average-power constraint (3). Nevertheless, us-
ing truncated Gaussian inputs, it can be shown that Theorem
1 also holds when the channel inputs have to satisfy a peak-
power constraint, i.e., with probability one |X̄k| ≤ 1.
If 1/(2λD) is an integer, then (23) becomes

ΠR∗ ≥ min(nt, nr)
(
1 − min(nt, nr) 2λD

)
. (24)

Thus, in this case nearest neighbour decoding together with
pilot-aided channel estimation achieves the capacity pre-log of
MISO fading channels (20), as well as the lower bound on the
capacity pre-log of MIMO fading channels (22).
Comparing (23) and (22) with the capacity pre-log

min(nt, nr) for coherent fading channels [1], [2], we ob-
serve that, for a fading process of bandwidth λD, the
penalty for not knowing the fading coefcients is roughly(
min(nt, nr)

)22λD. Consequently, the lower bound (23) does
not grow linearly with min(nt, nr), but it is a quadratic
function of min(nt, nr) that achieves its maximum at

min(nt, nr) =
L∗

2
. (25)

This gives rise to the lower bound

ΠR∗ ≥ L∗

4
(26)

which cannot be larger than 1/(8λD). The same holds for the
lower bound (21).

IV. PROOF OUTLINE
We rst note that it sufces to consider the case where nt =

nr. If nt > nr, then we employ only nr transmit antennas, and
if nr > nt, then we ignore nr − nt antennas at the receiver.
This yields in both cases a lower bound on the achievable rate.
To prove Theorem 1, we analyse the generalized mutual

information (GMI) for the above channel and communication
scheme. The GMI, denoted by Igmi(SNR), species the high-
est information rate for which the average probability of error,
averaged over the ensemble of i.i.d. Gaussian codebooks, tends
to zero as the codeword length N tends to innity (see [3],
[10], [11] and references therein).
Let E(T )

k denote the estimation error in estimating Hk, i.e.,
E(T )

k is composed of the matrix entries E(T )
k (r, t) (8). Then,

for the above channel model, the GMI can be evaluated as

Igmi(SNR) = sup
θ≤0

(
θB(SNR) − κ(θ, SNR)

)
(27)

where

B(SNR) =
1
L

L−nt∑

#=1

E

[
nr +

√
SNR/nt

∥∥∥E(T )
#

∥∥∥
2

F

]
(28)

(with ‖ · ‖F denoting the Frobenius norm); and where
κ(θ, SNR) is the conditional log moment-generating function
of the metric D(m′) associated with an incorrect message�—
conditioned on the channel outputs and on the fading
estimates�—which is given by

κ(θ, SNR)

=
1
L

L−nt∑

#=1

E

[
θY †

#

(
Inr − θ

SNR

nt
Ĥ(T )

# Ĥ†(T )
#

)−1

Y#

]

− 1
L

L−nt∑

#=1

E

[
log det

(
Inr − θ

SNR

nt
Ĥ(T )

# Ĥ†(T )
#

)]
. (29)

Following [14] it can be shown that for θ ≤ 0

E

[
θY †

#

(
Inr − θ

SNR

nt
Ĥ(T )

# Ĥ(T )
#

)−1

Y#

]
≤ 0. (30)

As observed in [14], the choice θ = − 1
nr+(SNR/nt)ntnrσ2

e∗,T
yields a good lower bound at high SNR. Here

σ2
e∗,T = max

r,t,#
E

[∣∣∣E(T )
# (r, t)

∣∣∣
2
]

. (31)

Substituting this choice to the right-hand side (RHS) of (27),
and applying (30) to upper-bound κ(θ, SNR), we obtain

Igmi(SNR)

≥ 1
L

L−nt∑

#=1

E

[
log det

(
Inr +

SNR Ĥ(T )
# Ĥ†(T )

#

ntnr + ntnrSNRσ2
e∗,T

)]

− L − nt

L
. (32)



We continue by analysing the RHS of (32) in the limit as
the size of the observation window T of the channel estimator
tends to innity. To this end, we note that, for L ≤ 1

2λD
, the

interpolation error tends to (15), namely

σ2
e∗ = lim

T→∞
σ2

e∗,T = 1 −
∫ 1/2

−1/2

SNR
(
fH(λ)

)2

SNRfH (λ) + L
dλ. (33)

Similarly, since by the orthogonality principle Ĥ(T )
# and E(T )

#
are independent, and since all entries in H# have unit variance,
it follows that

σ2
ĥ

= lim
T→∞

(
1 − σ2

e∗,T

)
=

∫ 1/2

−1/2

SNR
(
fH(λ)

)2

SNRfH(λ) + L
dλ. (34)

We thus have by (34) that, irrespective of #, the estimate
Ĥ(T )

# tends to H̄ in distribution

Ĥ(T )
# Ĥ†(T )

#

ntnr + ntnrSNRσ2
e∗,T

d−→ H̄H̄†

ntnr + ntnrSNRσ2
e∗

(35)

as T tends to innity, where the entries of H̄ are i.i.d.,
circularly-symmetric, complex Gaussian random variables
with zero mean and variance 1 − σ2

e∗ . Consequently, since
the function A )→ log det(I + A) is continuous and bounded
from below, we obtain from Portmanteau�’s Lemma [15] that

lim
T→∞

E

[
log det

(
Inr +

SNR Ĥ(T )
# Ĥ†(T )

#

ntnr + ntnrSNRσ2
e∗,T

)]

≥ E

[
log det

(
Inr +

SNR H̄H̄†

ntnr + ntnrSNRσ2
e∗

)]
(36)

which yields the following lower bound on the GMI:

lim
T→∞

Igmi(SNR)

≥ L − nt

L
E

[
log det

(
Inr +

SNR H̄H̄†

ntnr + ntnrSNRσ2
e∗

)]

− L − nt

L
(37)

≥ L − nt

L

(
E

[
log det

(
SNR H̄H̄†

ntnr + ntnrSNRσ2
e∗

)]
− 1

)
(38)

=
L − nt

L

(
nt log SNR − nt log

(
nt

2 + nt
2SNR σ2

e∗
)

+ E
[
log det H̄H̄†] − 1

)
. (39)

Here the second step follows by lower-bounding log det(I +
A) ≥ log det A; and the third step follows by evaluating the
determinant and by using that, by our assumption, nt = nr.
To compute a lower bound on the pre-log

ΠR∗ ! lim
SNR→∞

Igmi(SNR)
log SNR

(40)

we rst note that, by [16], E[log det H̄H̄†] is nite. We further

note that

SNR σ2
e∗ =

∫ 1/2

−1/2

SNRfH(λ)L
SNRfH(λ) + L

dλ ≤ L (41)

which implies that log
(
nt

2+nt
2SNRσ2

e∗
)
is nite, too. Thus,

computing the ratio of the RHS of (39) to log SNR in the limit
as the SNR tends to innity, we obtain the lower bound

ΠR∗ ≥
(
1 − nt

L

)
nt (42)

= min(nt, nr)
(

1 − min(nt, nr)
L

)
, L ≤ 1

2λD
(43)

where we have used that nt = nr = min(nt, nr). The
condition L ≤ 1/(2λD) is necessary since otherwise (15)
would not hold. This proves Theorem 1.
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