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Abstract— Random-coding exact characterizations and bounds

to the error probability of joint source-channel coding are pre-

sented. In particular, upper bounds using maximum-a-posteriori

and threshold decoding are derived as well as a lower bound

motivated by Verdú-Han’s lemma.

I. INTRODUCTION

The joint source-channel coding (JSCC) theorem consists of
two parts. The direct part states that reliable transmission of a
source over a channel is possible if the minimum achievable
coding rate of a given source is strictly below the channel
capacity. The converse part states that reliable transmission is
not possible for source coding rates strictly larger than the
channel capacity. The theorem was first proved by Shannon
in [2] for the case of stationary memoryless sources and
channels. Since then, the result has been generalized in various
ways. For memoryless sources and channels, the approach
based on the reliability function (or error exponent), pioneered
by Gallager [3], was elaborated by Csiszár [4], [5] and more
recently by Zhong et al. [6]. In parallel, the JSCC theorem has
been extended to general classes of sources and channels [1],
[7]–[10] refining the sufficient and necessary conditions for a
source to be transmissible over a channel. These conditions
are based on the tail distribution of specific random variables
called information spectrum measures (see [11] for a review
on information spectrum methods).

Most of the above results rely on the assumption that the
source and channel blocklength can increase without bound.
Instead, in this paper, we study the error probability of joint
source-channel codes for arbitrary, i.e., finite, blocklengths.
More specifically, we derive new tight achievability bounds
based on the average error probability under maximum a
posteriori (MAP) and threshold decoding. The new bounds
are inspired by [12], strengthen classical results [1], [3], [13],
[14], and can be applied to prove the direct part of the general
JSCC theorem [8].

II. JOINT SOURCE-CHANNEL CODING

We define a discrete source [11] over a finite alphabet V as
a sequence of k-dimensional random variables V � {V k}∞k=1,
where each V k takes values in Vk. Similarly, a discrete
channel [11] is defined as a sequence W � {Wn : Xn →
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Fig. 1. Block diagram of joint source-channel coding.

Yn}∞n=1 of n-dimensional probability transition matrices Wn,
where Wn(y|x) (xn ∈ Xn, yn ∈ Yn) is the conditional
probability of yn given xn.

A joint source-channel code with transmission rate t is
defined as follows. Given a source V , and a channel W , we fix
k and n such that t = k

n , and we consider an encoder mapping,
φ : Vk → Xn, and a decoder mapping, ψ : Yn → Vk. If
Xn = φ(V k) is the encoded n-dimensional vector (associated
to the k-dimensional source vector V k), Y n the output vector
corresponding to the input Xn, and V̂ k = ψ(Y n) the decoded
vector, the joint source-channel code is characterized by the
following Markov-chain relation (see Fig. 1),

V k φ→ Xn→Y n ψ→ V̂ k. (1)

We wish to evaluate the average error probability of code
(φ, ψ) defined as

�k,n �
�

v∈Vk

PV k(v) Pr {ψ(Y n) �= v} . (2)

In the following, a joint source-channel code (φ, ψ) with
average error probability equal to �k,n > 0 will be called
a �k,n-code.

For ease of exposition of our results, we shall drop the
dimension of the vector random variables V k, Xn, Y n and
transition probabilities Wn(.|.), as it will be clear from the
context that the source outputs are k-dimensional and the
channel inputs and outputs are n-dimensional. We shall use
Pr{.} to denote the probability of an event. Similarly E[.]
will be used to denote the expectation of a random variable.

III. MAP DECODING UPPER BOUNDS

In this section, we present new random-coding upper bounds
to the error probability with MAP decoding. As we shall see,
each bound follows from subsequent relaxations stemming
from an exact characterization. For a particular y let Dφ(y)
be the set of source outputs whose MAP decoding metric is
maximum and |Dφ(y)| = � its cardinality. For a given v, let



the ensemble of subsets of T (v) � Vk \ {v} with cardinality
�, be defined as P(T (v), �) � {A ⊆ T (v), |A| = �}, and be
denoted by P(T (V ), �) when v is not specified. Hence, for a
given transmitted message v, P(T (v), �) denotes the ensemble
of all possible combinations of decoding ties with v. Then,
simple combinatorial arguments yield the following result.

Theorem 1: The random-coding average error probability
of JSCC under MAP decoding and arbitrary PX|V is given by

�̄MAP
k,n � 1−

�

�≥0

1
� + 1

E [Pr{�|V XY }] , (3)

where

Pr{�|V XY } (4)

=
�

A∈P(T (V ),�)

�

v�∈A
Pr

�
PV (v�)W (Y |X̄)
PV (V )W (Y |X)

= 1

�����V XY

�
×

×
�

v��∈T (V )\{A}

Pr

�
PV (v��)W (Y |X̄)
PV (V )W (Y |X)

< 1

�����V XY

�
,

(5)

and X̄ (the codeword corresponding to v�, v�� �= v) is assumed
to be independent of X .

The computation of the exact random coding error proba-
bility is challenging even for small (k, n). In the following,
we provide a looser version of Eq. (3) by assuming that the
decoder always resolves all ties in error.

Theorem 2 (Max-bound): For every (k, n), there exists an
�k,n-code such that

�k,n ≤ E
�
Pr

�
maxv� �=V PV (v�)W (Y |X̄)

W (Y |X)PV (V )
≥ 1

����V XY

��
,

(6)

where v� �= V is an abuse of notation.
In practice, the computation of the bound (6) typically

involves an exponential number of products, which requires
a high degree of numerical precision as each factor can be
fairly small. In order to obtain simpler bounds we can use the
union bound

Pr
�

max
i

Ai ≥ 1
�
≤ min

�
1,

�

i

Pr{Ai ≥ 1}
�

, (7)

where Ai is a real-valued random variable.
Based on Eq. (7), we can extend the RCU bound for channel

coding [12, Th. 16] to JSCC.
Corollary 1 (RCU bound): There exists an �k,n-code such

that

�k,n ≤ RCU(k, n) (8)

� E



min




1,
�

v� �=V

Pr
�

PV (v�)W (Y |X̄)
PV (V )W (Y |X)

≥ 1
����V XY

�






 .

(9)
The bound in Eq. (8) turns out to be a good bound,

especially when the error event is sufficiently small, as most
of the pairwise error probabilities are very small. Furthermore,

we can relax Eq. (8) by applying Markov’s inequality to each
term in the sum, which yields

�̄k,n ≤ E



min




1,
�

v� �=V

E
�
PV (v�)sW (Y |X̄)s|Y

�

PV (V )sW (Y |X)s








 .

(10)

By using the identity min{1, x} = exp(−| log x−1|+), ∀x ∈
R+, where |x|+ = max(x, 0), a new family of upper bounds
parameterized by s > 0 follow.

Theorem 3 (Tilted RCU bounds): For s > 0, there exists a
�k,n-code such that

�n,k ≤ RCUs(k, n) = E
�
e−n|js(V,X,Y )|+

�
, (11)

where

js(V,X, Y ) � 1
n

log
PV (V )sW (Y |X)s

�
v� PV (v�)s

�
x� PX|V (x�|v�)W (Y |x�)s

.

(12)
In particular, when s = 1 equation (12) takes the form
j1(V,X, Y ) = i(X,Y ) − th(V ), where i(X, Y ) and h(V )
are the information and entropy density rates, respectively
[11]. Hence, Theorem 3 can be used to prove the direct part
of the general JSCC theorem [8]. For ease of notation, we
shall use j(V,X, Y ) to denote j1(V,X, Y ) in the rest of the
paper. Moreover, when X is independent of V , js(V,X, Y )
decomposes into a source and a channel term

js(V,X, Y ) = is(X,Y )− ths(V ), (13)

where is(X, Y ) � 1
n log W (Y |X)s

E[W (Y |X)s|Y ] and hs(V ) �
1
n log PV (V )s

�
v� PV (v�)s .

Gallager’s upper bound [3, Prob. 5.16] can be obtained from
Eq. (10) by assuming that V and X are independent, by using
min(1, x) ≤ xρ for 0 ≤ ρ ≤ 1 and by letting s = 1

1+ρ :

�̄k,n ≤ e−Ẽ0(ρ, 1
1+ρ ,W)+Es(ρ, 1

1+ρ ,PV ), (14)

where

Ẽ0(ρ, s,W ) � max
PX

E0(ρ, s, PX , W ) (15)

E0(ρ, s, PX , W ) � − log E
��

E [W (Y |X)s|Y ]
W (Y |X)s

�ρ�
(16)

Es(ρ, s, PV ) � log E
��

E
�
PV (V )s−1

�

PV (V )s

�ρ�
. (17)

Equation (14) gives a lower bound to the JSCC exponent
that was strengthened for memoryless sources and channels
by Csiszár [4]. Csiszár’s original bound has been formulated
as [6]

�̄k,n ≤ e−n(E0(ρ,W )−tEs(ρ, 1
1+ρ ,PV ))+o(n), (18)

where E0 (ρ, W ) is the convex hull of Ẽ0(ρ, 1
1+ρ , W ) over

ρ ∈ [0, 1]. However, the original proof is based on the method
of types [15] and uses a maximum mutual information decoder
at the receiver. In this context, we have recently rederived
Csiszár’s lower bound as a random-coding exponent with MAP
decoding [16].



IV. THRESHOLD DECODING UPPER BOUNDS

We now study upper bounds to the error probability using
(suboptimal) threshold decoders. We assume that the source
vectors v1, v2, . . . , vMs are indexed according to their corre-
sponding probabilities such that PV (v1) ≥ PV (v2) ≥ · · · ≥
PV (vMs). In case of equality between source probabilities the
indexes are set arbitrarily. We define the decoding function
Tγ : V × Y → {0, 1} by

Tγ(vm, y) = 11 {j(vm, x(vm), y) > γ(vm)} , (19)

where 11{·} is the indicator function. Given a transmitted
codeword x and a received sequence y the threshold decoder
ψγ returns the lowest index m̂ (associated to the highest
probable source vector) for which Tγ(vm̂, y) = 1. For this
decoder, we have the following exact expression.

Theorem 4: The average random-coding error probability
of JSCC under threshold decoding is given by

�̄TD
k,n = 1−

Ms�

m=1

PV (vm) Pr {ψ(Y ) = vm} , (20)

where

Pr {v̂m = vm} = E
�
Pr {j(vm, X, Y ) > γ(vm)|Y }×

×
m−1�

l=1

Pr
�
j(vl, X̄, Y )) ≤ γ(vl)|Y

�
�
,

(21)

where the probabilities in the second term assume that X̄ and
Y are independent.
Optimizing the above exact expression over all possible
source-dependent thresholds is computationally challenging.
In order to overcome this limitation, we follow the arguments
in [12] and apply the union bound to Eq. (21). This results in
the extension of the dependence-testing (DT) bound [12, Th.
17] to JSCC:

�̄k,n ≤Pr {j(V,X, Y ) ≤ γ(V )}
+

�

v

Pr {S(v)}Pr
�
j(v, X, Ȳ ) > γ(v)

�
, (22)

where
S(v) �

�
v� ∈ Vk | PV (v�) ≤ PV (v)

�
, (23)

and Ȳ is independent of X . Following the arguments of
[12] we find that the optimal threshold is given by γ(v) =
1
n log Pr {S(v)}, and that Eq. (22) can be rewritten as follows.

Theorem 5 (Optimized DT Bound): There exists an �k,n-
code that satisfies

�k,n ≤ DT�(k, n) = E
�
e−n|j(V,X,Y )−γ(V )|+

�
. (24)

We can apply the Chernoff bound to (24) to lower-bound
the exponent achieved by threshold decoding as [16]

DT�(k, n) ≤ e−Ẽ0(ρ,1,W )+Es(ρ, 1
1+ρ ,PV ). (25)

The particularization of Theorem 5 to channel coding leads
to a marginally tighter result than the original DT bound as it

is observed in [17]. Also DT�(k, n) is tighter than RCUs(k, n)
with s = 1 as γ(v) ≤ 0, ∀v ∈ Vk.

We now use equation (22) to recover Feinstein’s bound [8,
Lemma 3.1]. If we fix γ(V ) = γ to be a constant for each
source sequence and upper-bound the second term in (22) by
using Markov’s inequality we obtain

�̄k,n ≤Pr {j(V,X, Y ) ≤ γ}+ e−nγ
�

v

PV (v) Pr {S(v)}

(26)
= Pr {j(V,X, Y ) ≤ γ}+ e−nγ , (27)

which corresponds to Feinstein’s bound.

V. LOWER BOUNDS

In this section, we describe a generalization of the Verdú-
Han lower bound [1] for JSCC. To do that, we define a set G,
and upper-bound its probability as

Pr{G} ≤ �k,n + Pr{G ∩ no error}. (28)

The choice

G =
�
(v, y) : PV (v)W (y|x(v)) ≤ γ(y)

�
(29)

with γ(y) ≥ 0 yields the following result.
Theorem 6 (Generalized Verdú-Han lower bound): For a

given source and channel, a (φ, ψ)-code satisfies

�k,n ≥ Pr {PV (V )W (Y |φ(V )) ≤ γ(Y )}−
�

y

γ(y). (30)

It is easy to see that we can recover a Verdú-Han’s lower
bound for JSCC [8, Lemma 3,2],

�k,n ≥ Pr
�

PV (V )W (Y |φ(V ))
PY (Y )

≤ −γ�
�
− γ�, (31)

by setting γ(y) = PY (y)γ�, with γ� > 0 and PY the average
output density for a given code. Computing (30) for the
best code is in general intractable. In any event, one has
the freedom to choose PY such that Y is independent of
X = φ(V ) and average (31) over the set of randomly selected
codes. Indeed, by defining γ(y) = E [W (y|X)] e−nγ�

in (30)
we get the following bound on the average error probability
�̄k,n,

�̄k,n ≥ LB(k, n, γ) = Pr {j(V,X, Y ) ≤ −γ�}− e−nγ�
, (32)

where j(V,X, Y ) is as defined in Eq. (12) for s = 1. While
the above bound cannot be used to prove a converse, it may
be used to lower-bound the random-coding error probability.

VI. APPLICATION TO BMS-BSC AND BMS-BEC
In the following, we numerically compare the upper bounds

RCU(k, n), RCUs(k, n), and DT�(k, n) and the lower bound
LB(k, n, γ) for the source-channel pairs BMS-BSC and BMS-
BEC and establish links with classical results. BMS’s are
parameterized by δ denoting the probability of bit 1. For the
sake of simplicity we consider n = k, i.e., transmission rate
t = 1. We evaluate our bounds over the ensemble of random
source-channel codes generated by the capacity achieving



distribution PX(x) = 2−n. In each case, the tilted RCU bound
is computed with the s that optimizes Gallager’s upper bound
(14) and will be denoted as RCUsG(n). We also denote by
LB(n) the lower bound obtained by optimizing LB(n, γ) over
γ > 0.
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Fig. 2. JSCC error bounds for a BMS with δ = 0.05 and BEC channel with
erasure probability ξ = 0.5.
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Fig. 3. JSCC error bounds for a BMS with δ = 0.05 and a BSC with
crossover probability ξ = 0.11.

Fig. 2 shows upper and lower bounds for a BMS with δ =
0.05 that is transmitted over a BEC with erasure probability
ξ = 0.5. obtained with s = 1. The three new upper bounds

showed in Fig. 2 significantly outperform Gallager’s (14) and
Feinstein’s (27) bounds in the whole range of blocklengths.
In particular, the threshold decoding bound DT�(n) (24) has
the same exponent as the MAP decoding bounds RCU(n)
(8) and RCUsG(n) (11). For the BEC, the Ẽ0 function (15)
is independent of s and thus, equation (25) coincides with
(14) and the exponents are equal. Besides, Gallager’s error
exponent is equal to Csiszár’s (18) as the channel is symmetric
[4], [6].

Fig. 3 shows the error bounds for the same BMS transmitted
over a BSC with crossover probability ξ = 0.11. The three new
bounds are also tighter than Gallager’s and Feinstein’s bounds
over the blocklength range in Fig. 3. However, the threshold
decoding bound DT�(n) does not have the optimal exponent
and it is expected to perform poorer than Gallager’s bound for
sufficiently large blocklength. Indeed, in this example sG <
1 and Gallager’s exponent is strictly larger than DT�(n) on
account of (24).
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