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Abstract�— We study analogue source transmission over MIMO
block-fading channels with receiver-only channel state infor-
mation. Unlike previous work which considers the end-to-end
expected distortion as a gure of merit, we study the distortion
outage probability. We rst consider the well known transmitter
informed bound, which yields a benchmark lower bound to
the distortion outage probability of any coding scheme. We
next compare the results with source-channel separation. The
key difference from the expected distortion approach is that if
the channel code rate is chosen appropriately, source-channel
separation can not only achieve the same diversity exponent, but
also the same distortion outage probability as the transmitter
informed lower bound.

I. INTRODUCTION

The block-fading channel was introduced in [1] in order to
model delay-limited transmission over slowly varying wireless
communications channels. In the channel, each codeword
spans only a nite and xed number N of independent fading
blocks. Practical scenarios include OFDM and frequency hop-
ping for low-mobility wireless scenarios. Under this setup, it
follows that the Shannon capacity of this channel is zero since
there is an irreducible probability that a given transmission rate
Rc is not supported by a particular channel realisation [1],
[2]. In particular, a communication outage occurs whenever
the instantaneous mutual information is less than the target
data rate we wish to communicate at [1], [2]. As shown in
[3], the outage probability is the natural fundamental limit of
the channel. An important reliability metric over block-fading
channels is the SNR exponent or outage diversity, dened as
the high-SNR slope of the outage probability in a log-log scale.

Inspired by the work by Laneman et al. [4], the end-to-
end expected distortion has been studied to characterise the
performance of continuous or analogue source transmission
over outage-limited multiple-antenna fading channels [5], [6],
[7], [8]. The above works consider the SNR exponent of the
end-to-end expected distortion (where the expectation is also
taken over the fading) as a performance metric for a number of
joint source-channel coding schemes. In particular, when the
expected distortion is considered, these references illustrate
the suboptimality of source-channel separation. In order to
improve the performance, a number of joint-source channel
schemes based on hybrid analogue-digital or multi-layered
coding have been proposed [5], [6], [7], [8].

The expected distortion is the natural performance metric
for ergodic fading channels, or channels with no stringent
delay constraints. However, for outage-limited channels or
channels with stringent delay constraints, the expected distor-
tion fails to characterise the true end-to-end performance of
such wireless systems, and thus it might not be the appropriate
performance metric. In this paper, we take a different approach
to the same problem. In particular, our contribution is the study
of the distortion outage probability instead of the expected
distortion as a gure of merit for system performance. The
distortion outage probability is dened as the probability that
the instantaneous distortion (a random variable that depends
on the channel realisation and SNR) is larger than a target
quality-of-service (QoS) distortion, i.e.,

Pout(snr, D̄) = Pr
{

D(H, snr) > D̄
}

(1)

where D(H , snr) is the instantaneous distortion achieved at
SNR snr for a given nt × nr multiple-input multiple-output
(MIMO) channel realisation H , and D̄ is the target distortion
level characterizing the acceptable QoS of the systems. We are
particularly interested in the distortion-outage SNR exponents.

In this work, similarly to previous works [4], [5], [6], [7],
[8] we rst study a lower bound on the distortion outage
performance, i.e., the transmitter informed bound. This bound
assumes perfect channel state information at the transmitter
(CSIT), and allows to adapt the joint source-channel code to
the instantaneous channel conditions. In particular, we nd out
the relationships between this lower bound on the distortion
outage probability and the information outage probability [1],
[2], as well as the corresponding SNR exponents.

We next consider source-channel separation [9], and show
that the separation scheme achieves the same SNR exponent as
the transmitter informed bound. We also show that, when the
channel coding rate is chosen appropriately, then the separation
scheme yields the same distortion outage probability (not only
the exponent) as the transmitter informed lower bound. This
result, rather surprising a priori �–separation is known to be
largely suboptimal when the expected distortion SNR exponent
is considered [4], [5], [6], [7], [8]�– shows that separation can
be optimal, when the distortion outage probability is used as
a gure of merit for system design.



II. SYSTEM MODEL

A. Channel Model

We consider a MIMO block-fading channel model with N
fading blocks, nt transmit and nr receive antennas, and block
length L. The channel model is expressed as

Y i =

√

snr

nt
HiXi + Zi, i = 1, . . . , N (2)

where Hi ∈ Cnr×nt , Xi ∈ Cnt×L, Y i ∈ Cnr×L, and
Zi ∈ Cnr×L are the channel matrix, transmitted, received
and AWGN signals corresponding to block i. We assume
that the entries of Hi and Zi are independently circularly
symmetric complex Gaussian with zero mean and unit variance
∼ NC(0, 1). We dene the space-time codewords as X =
[X1, . . . ,XN ], and we assume they are normalized in energy,
i.e., satisfying 1

ntNL
tr

(

E

[

X
H

X

])

≤ 1. The input and
output alphabets are denoted by Xnt and Ynr , respectively.
We consider both random codes constructed using Gaussian
and discrete channel inputs (PSK, QAM). For discrete channel
inputs we dene m = log2 |X |.

We dene H = diag(H1, . . . ,HN ), assumed to be known
perfectly to the receiver. For simplicity we assume that the
entries of Hi are i.i.d. ∼ NC(0, 1) (Rayleigh fading), so that

1
ntnr

tr
(

E

[

H
H
i Hi

])

≤ 1 and the average SNR per receive
antenna is snr. We assume that the transmitter knows the
statistics of the channel, but not the channel realisation. Let

IH(snr) =
1

N

N
∑

i=1

E

[

log2

PY i|Xi,Hi
(Y i|Xi,Hi)

PY i|Hi
(Y i|Hi)

∣

∣

∣

∣

Hi

]

(3)

denote the instantaneous mutual information of the channel,
for a given channel realisation H .

B. Joint Source-Channel Coding

We consider transmission of analogue sources over the
MIMO block-fading channel described in Section II-A. Con-
sider a real continuous source that outputs K-length vector
s ∈ RK . A K-to-(nt × NL) joint source-channel encoder
is a mapping φ : RK → Cnt×NL that maps blocks of
K source symbols s ∈ RK onto length NL space-time
channel codewords X = [X1, . . . ,XN ]. At the receiver
end, the corresponding source-channel decoder is a mapping
ϕ : Cnr×NL → RK that, for every channel realisation H ,
maps the channel output Y = [Y 1, . . . ,Y N ] into ŝ ∈ CK , a
reconstruction of the block of source symbols. In order to
make explicit the dependencies on snr and H , we denote
the reconstructed block of symbols ŝ(snr,H). The bandwidth
ratio of the code is dened as

b !
NL

K
channel uses per source symbol (4)

The bandwidth ratio can also be expressed as b = Wc/Ws,
where Ws,Wc are the source and channel bandwidths, respec-
tively. The source rate is denoted by Rs = 1/Ws and the

channel rate is denoted by Rc = 1/Wc. The average quadratic
distortion for a xed H is given by

D(H, snr) =
1

K
E

[

|s − ŝ(snr,H)|2
∣

∣H

]

(5)

where expectation is with respect to s, ŝ and the channel
noise, but depends on snr and on the channel realisation
H . Mirroring results from channel coding for block-fading
channels [1], [2], [3], we dene distortion outage probability

Pout(snr, D̄) ! Pr
{

D(H, snr) > D̄
}

. (6)

We consider a family of joint source-channel coding schemes
{Cb} of bandwidth ratio b. The distortion outage probability
SNR exponent of the family is dened as

d∗out(b, D̄) = sup
Cb

lim
snr→∞

− log Pout(snr, D̄)

log snr

. (7)

in the forthcoming sections we study the distortion outage
probability and the corresponding SNR exponents, and we
compare them to those obtained using the expected distortion
as a gure-of-merit.

III. INFORMED TRANSMITTER

We now study the distortion outage probability exponent
for the transmitter informed bound which assumes availability
of channel state information at the transmitter (CSIT). Hence,
the transmitter can choose the coding rate Rc(H) equal to
the instantaneous mutual information of the N -block MIMO
fading channel, and the source rate Rs = Rc(H)b. As shown
in [4], [5], [6], [7], [8], this scheme is pointwise optimal
for each H , and its distortion outage probability is a lower
bound on the minimum achievable distortion outage proba-
bility for any system of the original channel. In particular,
the transmitter informed bound selects the channel coding
rate Rc(H) = IH(snr). Then, the instantaneous end-to-end
distortion for a given channel realisation with a Gaussian
source of unit variance and an informed transmitter is

D(H, snr) = 2−2bIH(snr). (8)

Substituting Equation (8) into Equation (6), we can write the
transmitter informed bound on the distortion outage probabil-
ity as

Pout(snr, D̄) = Pr

{

IH(snr) < −
log2 D̄

2b

}

(9)

which shows that the transmitter informed bound on the
distortion outage probability can be written as the information
outage probability Pr{IH(snr) < R} [1], [2] evaluated at
target rate R = − log2(D̄)/2b. We next examine the behavior
of the SNR exponent. Following closely the arguments in [10],
we have the following result.

Theorem 1: The SNR exponents of the transmitter informed
lower bound for any xed bandwidth ratio b > 0, any xed
target distortion level 0 ≤ D̄ ≤ 1 are given by

dtx
out(b, D̄) = ntnrN (10)



for Gaussian channel inputs, while for discrete channel inputs

dtx
out(b, D̄) = nr

(

1 +

⌊

N

(

nt −
Rs(D̄)

bm

)⌋)

(11)

where Rs(D̄) ! − log2(D̄)
2 is the rate-distortion region of the

source evaluated at D̄.
Proof: The transmitter informed lower bound on the

distortion outage probability can be written as the information
outage probability [1], [2] evaluated at R = − log2(D̄)

2b
(see Eq.

(9)). For Gaussian inputs, the SNR exponent of the information
outage probability is ntnrN for R > 0. Since 0 ≤ D̄ ≤ 1,
− log2(D̄)

2b
is positive. Then, the resulting SNR exponent is also

ntnrN . For discrete inputs we have that the SNR exponent of
the information outage probability is given by the Singleton
bound nr

(

1 +
⌊

N
(

nt − R
m

)⌋)

for 0 ≤ R ≤ m [11], [12].
Then, the resulting SNR exponent with discrete inputs is given
by nr

(

1 +
⌊

N
(

nt −
Rs(D̄)

b m

)⌋)

for Rc(D̄) = − log2(D̄)
2b

∈

[0,m].
It is important to note that, since the transmitter informed

lower bound on the distortion outage probability has the
exponents given by Theorem 1, the SNR exponents of any
coding scheme will be upper bounded by Eqs. (10) and (11).

Remark 1 (Diversity-Multiplexing Tradeoff): The results of
Theorem 1 for Gaussian channel inputs can be generalized
to a family of joint source and channel codes whose rate
increases with snr. In particular, letting Rs = rs log snr and
Rc = rc log snr with b = rs

rc
results in a diversity-multiplexing

tradeoff dtx
out(b, D̄, rc) given by the piecewise linear function

joining the points (rc, d(rc))

d(rc) = N(nt − rc)(nr − rc) (12)

achieving the result of Theorem 1 for rc = 0 [10].
Remark 2 (Comparison with Expected Distortion): The

SNR exponent of the informed transmitter lower bound with
Gaussian channel inputs when the expected distortion is used
as performance metric is given by [7],

dtx
exp = N

min(nr,nt)
∑

i=1

min

{

2b

N
, 2i − 1 + |nt − nr|

}

(13)

In Figure 1, we illustrate the SNR exponents of the trans-
mitter informed bound for Gaussian channel inputs, from
both distortion-outage and expected distortion perspectives.
We observe that the distortion-outage exponent is always
larger (for small bandwidth ratios) or equal to the expected
distortion exponent. In Figure 2, we compare the distortion-
outage SNR exponents of Gaussian random codes with that
of discrete inputs. We observe that full diversity (Nnrnt) is
achieved when the we have a large bandwidth ratio for all
inputs, and that a larger constellation size results in a larger
support with full diversity. Note that Singleton bound is valid
when Rc ≤ m, hence we can obtain a bound on b, which is
b ≥ − log2 D̄

2m
. For b smaller than this threshold, the exponent

is zero.
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Fig. 1. Distortion-outage vs. expected distortion SNR exponents in a 4 × 4
MIMO block-fading channel with N = 2, Gaussian inputs and D̄ = 0.05.
Solid lines correspond to the distortion-outage exponents, while dashed and
dash dotted lines correspond to expected distortion exponents.
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Fig. 2. Distortion-outage SNR exponents in a 4 × 4 MIMO block-fading
channel with N = 2, different channel inputs and D̄ = 0.05.

IV. SEPARATION

A source-channel coding separation scheme consists of the
concatenation of a xed-length block source encoder φs :
RK → RK , of rate Rs bits per source sample, with a
space-time channel encoder φc : RK → Cnt×NL of rate
Rc bits per channel use. Source and space-time coding rates
are related through the bandwidth ratio as Rs = Rcb. Let
Ds(Rs) denote the distortion-rate function of the source and
Pe(snr,H) denote the error probability of the channel code
for a particular snr and channel realisation H . Following [13],
[14, Ch. 7], we write the distortion achieved by the separation



scheme for a xed channel realisation H as

Dsep(H, snr)

= D(snr |H , no channel error) Pr{no channel error |H}

+ D(snr | channel error,H) Pr{channel error |H}. (14)

Following [13][14, Ch. 7], we can upperbound (14) as

Dsep(H, snr) ≤ Ds(Rs) + d0Pe(snr,H) (15)

where d0 is a bound to the mean MSE distortion and d2
0

upperbounds its variance [14, Sec. 7.5]. Since the channel
realisation is unknown to the transmitter, the average distortion
when there is no channel error is the distortion-rate function
of the source code, and that it does not depend on H nor
snr. Using Gallager�’s error exponents for channel coding, we
further upperbound (15) as [15]

Dsep(H, snr) ≤ Ds(Rs) + d02
−nEr(Rc,H) (16)

where n = NL is the codeword length,

Er(Rc,H) = sup
0≤ρ≤1

E0(ρ,H) − ρRc (17)

is the random coding error exponent, and E0(ρ,H) is
the Gallager function [15]. According to Gallager�’s noisy
channel coding theorem, the random coding error exponent
Er(Rc,H) > 0 whenever Rc < IH(snr) and Er(Rc,H) = 0
when Rc ≥ IH(snr) [15].

It is also clear from (16), that any separation scheme will
achieve a distortion that is upperbounded by

Dsep(H, snr) < Ds(Rs) + d0. (18)

Furthermore, for large n we have that

lim
n→∞

Pe(snr,H) =

{

1 Rc ≥ IH(snr)

0 Rc < IH(snr)
(19)

Therefore, in the limit for large n, we obtain that the distortion
obtained with separation can be upper bounded as

Dsep(H, snr) ≤ Ds(Rs) + d011 {IH(snr) ≤ Rc} . (20)

where 11{E} is the indicator function of the event E .
The corresponding distortion outage probability is therefore

simply bounded as

P sep
out (snr, D̄) = Pr

{

Dsep(H, snr) > D̄
}

≤ Pr
{

Ds(bRc) + d011{IH(X;Y ) ≤ Rc} > D̄
}

. (21)

We have the following result.
Theorem 2: The distortion outage SNR exponent of a tan-

dem separation scheme is given by

dsep
out(Rc, b, D̄) = Nntnr (22)

for Gaussian channel inputs, while for discrete channel inputs

dsep
out(Rc, b, D̄) = nr

(

1 +

⌊

N

(

nt −
Rc

m

)⌋)

. (23)

Proof: From (21) we have

P sep
out (snr, D̄) ≤ Pr

{

Ds(bRc) + d011 {IH(snr) ≤ Rc} > D̄
}

= Pr

{

11 {IH(snr) ≤ Rc} >
D̄ − Ds(bRc)

d0

}

.

(24)

We note that the quantity D̄−Ds(bRc)
d0

∈ [0, 1), since

Ds(bRc) ≤ D̄ < Ds(bRc) + d0. (25)

Then, since the indicator function takes only the values 0 or
1, we rewrite (24) as

P sep
out (snr, D̄) ≤Pr

{

11 {IH(snr) ≤ Rc} >
D̄ − Ds(bRc)

d0

}

= Pr {IH(snr) ≤ Rc} , (26)

which is exactly the information outage probability of the
MIMO block fading channel when the channel coding rate
equals to Rc. Hence, the result follows from [10], [11], [12].

Remark 3: From the above result and Remark 1 it is clear
that the same diversity-multiplexing tradeoff will be achieved
in the case of separation as well.

From (25), we nd that for each D̄, there is a range of values
for coding rate Rc that we can use to achieve the exponents
in (22) and (23).

D̄ − d0 <2−2bRc ≤ D̄ (27)

which readily implies 1
b
Rs(D̄) ≤ Rc < 1

b
Rs(D̄ − d0), where

1
b
Rs(D̄) = − log2 D̄

2b
for the real Gaussian source. Equation

(26) implies that when Rc = 1
b
Rs(D̄), the distortion outage

probability for separation can be upper bounded by

P sep
out (snr, D̄) ≤ Pr

{

IH(snr) ≤ −
log2 D̄

2b

}

(28)

which coincides with the transmitter informed bound, and
hence achieves the minimum possible distortion outage prob-
ability making separation with this particular choice of the
channel coding rate distortion-outage optimal.

Remark 4 (Comparison with Expected Distortion): The
expected distortion exponent for separation scheme for N

block-fading channel is given by [5], for 1
b
∈

[

2(j−1)
d∗(j−1) ,

2j
d∗(j)

)

dsep
exp = N

2b(jd∗(j − 1) − (j − 1)d∗(j))

2b + d∗(j − 1) − d∗(j)
(29)

for j = 1, . . . ,min(nr, nt). Where d∗(k) is the optimal
tradeoff curve given by d∗(k) = N(nr − k)(nt − k).
We observe from Figure 1 that the distortion-outage exponent
of separation exhibits a large gain over its expected distortion
exponent counterpart for all bandwidth ratios. Remark that
Theorem 2 shows that the distortion outage exponents are
equal to those of the transmitter informed bound.

As examples, we show in Figure 3 the distortion outage
probability of a 2 × 2 MIMO block-fading channel with
i.i.d. Rayleigh fading with N = 1, 2 and D̄ = 0.05, for
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Fig. 3. Transmitter informed lower bound and separation upper bound on the
distortion outage probability with Gaussian source and channel inputs, b = 2,
d0 = 0.5 in a 2 × 2 MIMO system. In this case, R∗

c = 1

b
Rs(D̄) = 1.08.

Gaussian source and channel inputs. As predicted by our
results, the transmitter informed lower bound for distortion
outage probability using informed transmitter always has a
slope that equals to Nntnr and it is independent of channel
coding rate Rc, target distortion D̄ and bandwidth ratio b. The
gure validates our results that the SNR exponent of distortion
outage probability of separation scheme is equal to Nntnr.
We also note that when the channel coding rate is chosen to
be Rc = 1

b
RQ(D̄), the resulting distortion outage probability

upperbound matches the transmitter informed bound. We also
have shown in Figure 4 the distortion outage probability of a
2× 2 MIMO block-fading channel with N = 2 for D̄ = 0.06
with BPSK. We observe an exponent of 4 when R∗

c = 1.353,
and 2 when Rc = 1.7, as predicted by the Singleton bound. We
remark that for high Rc, there is a signicant loss in distortion
outage probability (not only in gain, but also in exponent) due
to the Singleton bound.

V. CONCLUSIONS

We have revisited analogue source transmission over MIMO
block-fading channels and proposed the distortion outage
probability as a new performance metric for system design.
We have argued that the distortion outage probability is the
natural performance metric for delay-limited channels. We
have derived the SNR exponents for both Gaussian and coded
modulation inputs. We have shown that the distortion-outage
SNR exponents are always larger than the expected distortion
exponents, in both, transmitter informed bound and separation.
We have furthermore shown that source-channel separation can
not only achieve the SNR exponent of the transmitter informed
bound, but also the actual distortion outage probability, when
the channel coding rate is chosen appropriately.
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Fig. 4. Transmitter informed lower bound and separation upper bound on
the distortion outage probability with Gaussian source and BPSK channel
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REFERENCES

[1] L. H. Ozarow, S. Shamai, and A. D. Wyner, �“Information theoretic
considerations for cellular mobile radio,�” IEEE Trans. Vehic. Technol.,
vol. 43, no. 2, pp. 359�–378, May 1994.

[2] E. Biglieri, J. Proakis, and S. Shamai, �“Fading channels: Informatic-
theoretic and communications aspects,�” IEEE Trans. Inf. Theory, vol.
44, no. 6, pp. 2619�–2692, Oct. 1998.

[3] E. Malkämaki and H. Leib, �“Coded diversity on block-fading channels,�”
IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 771�–781, 1999.

[4] J. N. Laneman, E. Martinian, G. W. Wornell, and J. G. Apostolopoulos,
�“Source-channel diversity for parallel channels,�” IEEE Trans. Inf.
Theory, vol. 51, no. 10, pp. 3518�–3539, Oct. 2005.

[5] G. Caire and K. Narayanan, �“On the distortion SNR exponent of hybrid
digial-analog space-time coding,�” IEEE Trans. Inf. Theory, vol. 53, no.
8, pp. 2867�–2878, Oct. 2007.

[6] D. Günduz and E. Erkip, �“Source and channel coding for cooperative
relaying,�” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3454�–3475, Oct.
2007.

[7] D. Günduz and E. Erkip, �“Joint source-channel codes for MIMO block-
fading channels,�” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 116�–134,
Jan. 2008.

[8] T. Holliday, A. J. Goldsmith, and H. V. Poor, �“Joint source and channel
coding for MIMO systems: Is it better to be robust or quick?,�” IEEE
Trans. Inf. Theory, vol. 54, no. 4, pp. 1393�–1405, Apr. 2008.

[9] T. M. Cover and J. A. Thomas, �“Elements of information theory,�” 2006,
Wiley.

[10] L. Zheng and D. N. C. Tse, �“Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,�” IEEE Trans. Inf. Theory, vol. 49,
no. 5, pp. 1073�–1096, May 2003.

[11] K. D. Nguyen, Adaptive Transmission for Block-Fading Channels, Ph.D.
thesis, Inst. Telecommun. Research, Uni. South Aust., August 2009.

[12] K. D. Nguyen, L. K. Rasmussen, A Guillén i Fàbregas, and N. Letzepis,
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