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Abstract—Communication over delay-constrained block-
fading channels with discrete inputs and imperfect channelstate
information at the transmitter (CSIT) is studied. The CSIT
mismatch is modeled as a Gaussian random variable, whose
variance decays as a power of the signal-to-noise ratio (SNR).
We focus on the large-SNR behavior of the outage probability
when transmit power control is used. We derive the outage
exponent as a function of the system parameters, including the
CSIT noise variance exponent and the exponent of the peak
power constraint. It is shown that CSIT, even if noisy, is always
beneficial and leads to significant gains in terms of exponents. It
is also shown that when precoders are used at the transmitter,
further exponent gains can be attained at the expense of higher
decoding complexity.

I. I NTRODUCTION

Temporal power control across fading states can lead to
dramatic improvement in the outage performance of block
fading channels [1]. The intuition behind this phenomenon is
that power saved in particularly bad channel conditions canbe
used in good channel realizations. Power control over block
fading channels was originally studied under the idealistic
assumptions of perfect channel state information (CSI) at
the transmitter (CSIT) and Gaussian signal constellations[1].
Acquiring perfect CSIT is however a challenging task due to
the temporal variation of wireless media, as well as due to the
processing and transmission.

This work considers a block fading channel withdiscrete
input, where the transmitter has access to a noisy version of the
CSI. Similarly to [2], we model the CSIT noise as a Gaussian
random variable whose variance decays as a negative power
of the SNR. The rate of decaying of the CSIT noise can also
be related to practical parameters in wireless systems [3].In
sharp contrast to the assumption of using Gaussian codebooks
[2]–[4], the current work assumes that the input symbols are
taken from adiscrete distribution such as M-QAM or PSK.
Focusing on the high signal-to-noise ratio (SNR) regime, we
establish the diversity gain of block fading channels under
the noisy CSIT model of interest. Note that unlike in the
diversity–multiplexing tradeoff analysis [5] where the code
rate grows with the SNR, herein we keep the constellation
size to be2M at all values of the SNR and we do not let
the code rate scale with the SNR. The results will shed some
light into the interplay in the high-SNR regime between the

number of receive antennas, the number of fading blocks, the
constellation size, the code rate, as well as the SNR exponent
of the CSIT noise variance and the peak exponent constraint.

II. SYSTEM MODEL

Consider transmission over a block-fading channel withB

sub-channels, where each sub-channel has a single transmit
andm receive antennas (cf. Fig. 1). The mutually independent
channel vectorsh1, . . . , hB have independent and identically
distributed (i.i.d.) complex Gaussian components with zero
mean and unit variance. The channel gains are constant during
one fading block but change independently from one block
to the next. This models a typical delay-limited scenario in
wireless communications, where the delay constraint dictated
by higher-layer applications prevents the system from fully
exploiting time diversity [1].

The corresponding discrete-time complex baseband input-
output relation for theith sub-channel can be written as

Y i = hi

√
Pi xT

i + W i (1)

whereY i ∈ C
m×L is the received signal matrix corresponding

to block i, xi ∈ CL is the transmitted vector in blocki, xT

denotes the transpose ofx, and W i ∈ Cm×L denotes the
complex additive white Gaussian noise whose entries are i.i.d.
with zero mean and unit variance. We denote the block length
by L and the power in blocki by Pi. Hence, a codeword
corresponds toBL channel uses.

We assume perfect CSIR, i.e., the receiver has perfect
knowledge about all the channel gains and the powersPi.
Furthermore, we assume that the transmitter has access to a
noisy versionĥi of the true channel realizationhi, so that

hi = ĥi + ei, i = 1, . . . , B (2)

whereei ∈ Cm is the CSIT noise vector, independent ofĥi,
with i.i.d. Gaussian components with zero mean and variance
σ2

e . This model of the CSIT has been well motivated in many
different contexts, such as in scenarios with delayed feedback,
noisy feedback, or in systems exploiting channel reciprocity
[6], [7]. We further assume, as in [2], that the CSIT noise
variance decays as a power of the SNR,σ2

e = SNR−de ,
for somede > 0. Thus we consider a family of channels
where the second-order statistic of the CSIT noise varies with
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Fig. 1. System model and CSI assumptions.

SNR. If the CSIT for example is estimated from the reverse
link (exploiting reciprocity in a TDD system), its quality will
depend on the SNR of reverse link and not the forward link.
However, while the SNRs of the forward and reverse links are
different, this difference will be fully captured by changing the
values ofde. For convenience, we introduce the normalized
channel gainsh̄i =

√
2

σe
hi. Given ĥi then h̄i is complex

Gaussian with mean
√

2
σe

ĥi and a scaled identity covariance
matrix.

Let γi
∆
= ‖hi‖

2 be the fading magnitude of blocki and

γ = [γ1 · · · γB]. Further denotēγi
∆
= ‖h̄i‖

2, γ̂i
∆
= ‖ĥi‖

2,

γ̄
∆
= [γ̄1 · · · γ̄B] and γ̂

∆
= [γ̂1 · · · γ̂B].

III. PRELIMINARIES

We assume transmission at a fixed-rateR using a coded
modulation schemeM ⊂ CBL of length BL constructed
over a signal constellationX ⊂ C of size 2M such as
2M -PSK or QAM. We denote the codewords ofM by
x = (xT

1 , . . . , x
T
B)

T
∈ CBL. We assume that the signal

constellationX is zero mean and normalized in energy, i.e.,
E[X ] = 0 and E[|X |2] = 1, where X denotes the corre-
sponding random variable. We denote the input distributionas
Q(x). The instantaneous input-output mutual information of
the channel is given byI(γ) = 1

B

∑B

i=1 IX (Piγi) where

IX (s) = E

[
log2

e−|Y −√
sX|2

∑
x′∈X Q(x′)e−|Y −√

sx′|2

]
(3)

is the input-output mutual information of an AWGN channel
with SNR s using the signal constellationX .

The outage probability is commonly defined as [8], [9]
Pout(R)

∆
= Pr{I(γ) < R}. In this work, we are interested

in the SNR exponents of the outage probability [5], [10],
i.e., dout

∆
= limSNR→∞ − log Pout(R)

log SNR . We adopt the notation

g(SNR)
.
= SNRa ⇔ limSNR→∞

log g(SNR)
log SNR = a.

It has been shown in [10], [11] that the outage exponent
without CSIT is given bydout = mdsb(R) where

dsb(R)
∆
= 1 +

⌊
B

(
1 −

R

M

)⌋
= B −

⌈
BR

M

⌉
+ 1, (4)

with ⌊x⌋ being the largest integer that is not larger thanx

and ⌈x⌉ being the smallest integer that is not smaller than
x, is the Singleton bound on the block-diversity of the coded
modulation schemeM [10], [12], [13].

The transmitter can adapt the transmitted powersPi to the
(noisy) channel conditionŝγ. We consider power allocation
algorithms that treat the noisy CSIT̂γ as if it were perfect.
We consider an average power constraint, such that

E

[
1

B

B∑

i=1

Pi(γ̂)

]
= E [P (γ̂)] ≤ SNR (5)

where P (γ̂) = 1
B

∑B

i=1 Pi(γ̂) is the instantaneous average
power allocated given̂γ. The SNR herein has the meaning of
the average transmit power over infinitely many fading blocks.
We introduce a peak-to-average power constraint

P (γ̂) ≤ SNRdpeak (6)

wheredpeak is interpreted as the peak-to-average power SNR
exponent. The casedpeak = 1 represents a system whose
allocated power is dominated by the peak-power constraint.
By allowing dpeak to take an arbitrary value, we can model a
family of systems with different behavior in the peak power
constraint. In the high-SNR regime of interest, we can for
example scale the right hand side of (6) by a constant without
changing any conclusion. That is, any constant, finite ratios
between the peak and the average power provides the same
asymptotic behavior asdpeak = 1.

The corresponding minimum-outage power allocation rule
is the solution to the following problem






Minimize Pout(R)

subject to E

[
1
B

∑B

i=1 Pi(γ̂)
]
≤ SNR

1
B

∑B

i=1 Pi(γ̂) ≤ SNRdpeak

Pi(γ̂) ≥ 0, i = 1, . . . , B.

(7)

Solving the minimum-outage power allocation problem even
numerically is difficult in general, given our noisy CSIT model
and the discreteness ofX . Nevertheless, we can characterize
the asymptotic behavior of the optimal solution in the high
SNR regime. Following [5], note that the outage exponent of
the optimal algorithm is the same as that of a power control
system that allocates power uniformly across the blocks, i.e,
Pi(γ̂) = P (γ̂), ∀i = 1, . . . , B.

IV. A SYMPTOTIC OUTAGE BEHAVIOR

A. Main Result

In this section, we study the asymptotic behavior of the
outage probability. In particular, our main results in terms of
outage SNR exponents are stated as follows.

Theorem 1: Consider transmission at rateR over a block-
fading channel described by (1) with Rayleigh fading with
mismatched CSIT modeled by (2) with inputs drawn from
X . The transmitter uses power control with an average power
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Fig. 2. Outage exponents forB = 4, m = 1 anddpeak > 1+mdedsb(R).

constraint (5) and a peak-to-average power constraint (6).
Then, the outage exponents are given by

d(R, de, dpeak) =

{
mdsb(R)dpeak dpeak ≤ 1 + mdsb(R)de,

mdsb(R) (1 + mdsb(R)de) otherwise.
(8)

Proof: See Appendix A.
In Fig. 2 we plot the outage exponents forB = 4, m = 1

with no CSIT (orde = 0) and with noisy CSIT withde = 1, 2
whendpeak > 1+mdedsb(R). As we observe from the figure,
increasingde yields a better exponent. Note that in this case,
when the CSIT is perfect the exponent is infinitely large. Even
with imperfect CSIT, large gains are possible by power control.

In the extreme casedpeak = 1, we obtaind(R, de, 1) =
mdsb(R), which is the outage exponent for a system without
power control [10], [11]. Increasingdpeak subsequently leads
to an improvement in the outage performance. However,
when dpeak exceeds a certain threshold, the diversity gain
is “saturated” due to the limitation on the accuracy of the
CSIT. In other words, a stringent constraint on the peak power
exponent leads to a lot more pronounced detrimental effect in
the case of accurate CSIT than in the case of very noisy CSIT.

In the case de ↓ 0 (very noisy CSIT) we have
d(R, de, dpeak) → mdsb(R), equal the outage exponent when
there is no CSIT [10], [11]. Thus if the CSIT noise variance
has the same order of magnitude as the channel gains, then
no extra diversity gain can be obtained from power control.

In casede → ∞ (CSIT noise variance decays exponentially
or faster with the SNR),d(R, de) → ∞, ∀R < M , as long as
the peak exponent constraint is also relaxed to satisfydpeak >

1+mdsb(R)de. For strictly positive and finitede, using power
control, even with noisy CSIT, provides an extra diversity gain
of
(
mdsb(R)

)2
de compared to the no-CSIT case, as long as

the peak constraint is sufficiently relaxed.
We also learn from the analysis in Appendix A that at high

SNR, whendpeak ≥ 1 + mde

(
B −

⌈
BR
M

⌉
+ 1
)
, the dominant

outage event occurs when exactly
⌈

BR
M

⌉
−1 of the channel gain

estimateŝγi’s are much larger than the noise varianceσ2
e , and

the remainingB−
⌈

BR
M

⌉
+1 channel estimates have the same

order of magnitude asσ2
e . When dpeak is smaller, however,

the system cannot “invert” the worst channel realizations and
the peak exponent becomes the limiting factor.

B. Improving the Outage Exponent with Rotations

In [14], it is shown that a precoding technique can be used
to improve the outage exponent over fading channels with
discrete inputs. We demonstrate how that idea can be applied
in the current noisy CSIT setting of interest to further improve
the outage exponents. To simplify the presentation, we remove
the peak exponent constraint (settingdpeak = ∞), focusing
only on the effects of the CSIT noise.

We briefly recall the precoding technique of [14]. First
consider reformatting the codewordsx ∈ M as matrices
X ∈ CB×L. We now obtainX as

X = MS (9)

where

M =




M1 0 0

0
. . . 0

0 0 MK



 ∈ C
B×B (10)

is a unitary block-diagonal matrix, and the entries ofS ∈
CB×L belong to the signal constellationX with size2M sym-
bols. The matricesM1, . . . , MK ∈ C

N×N are theK unitary
rotation matrices of dimensionN each.Mk(s − s′) 6= 0

componentwise, for allx 6= x′ ∈ XN . This implies that if the
vector(s−s′) has a positive number of nonzero entries, then,
its rotated version will have allN entries different from zero.

According to [14], with no CSIT we obtain the exponent
dout = mdrot

sb (R) where

drot
sb (R)

∆
= N

(
1 +

⌊
B

N

(
1 −

R

M

)⌋)
= B+N−N

⌈
BR

MN

⌉
.

With noisy CSIT, completely similarly to the previous
section we have the following result.

Theorem 2: Consider transmission over a block-fading
channel described by (1) with mismatched CSIT modeled by
(2) with inputs obtained as the rotation of a coded modulation
scheme overX as described by (9), using full diversity
rotations. The transmitter uses power control with an average
power constraint (5). Then, the outage exponents are given by

d(R, de) = mdrot
sb (R)

(
1 + mdrot

sb (R)de

)
. (11)

We illustrate in Fig. 3 the effect of full-diversity rotation
matrices on the outage exponent of the coded modulation
system with mismatched CSIT. This precoding method clearly
leads to a higher diversity gain even at high code rates, at the
expense of increasing receiver complexity.

In the caseN = B, i.e. when a single matrix that rotates all
B output symbols is used, thend(R, de) = mB(1 + mBde).
This is the maximum diversity gain we can achieve in this sce-
nario, even with codes drawn from a Gaussian ensemble [3].
However, the receiver complexity will increase exponentially
in N . Note also in terms of exponents, there is nothing to gain
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in optimizing the full precoding matrix. Finally, we noticethat
determining the outage exponent in the more general multiple-
input multiple-transmit settings remains an open problem.

APPENDIX A
PROOF OFTHEOREM 1 (SKETCH)

Let us invoke the standard change of variables as in [5],
ᾱi = − log γ̄i

log SNR and α̂i = − log γ̂i

log SNR. We also perform the

change of variableπ(γ̂) ≡ π(α̂)
∆
= log P (γ̂)

log SNR .
The power constraint (5) asymptotically becomes [3]

∫
SNRπ(γ̂)f(γ̂)dγ̂ ≤̇ SNR1. (12)

The γ̂i’s are mutually independent and follow Chi-square
distribution with 2m degrees of freedom. Also,E[γi] =
E[‖hi‖

2] − E[‖ei‖
2]

.
= SNR0. Changing variables from̂γ

to α̂, we readily obtain
∫

α̂∈R
B
+

SNRπ(α̂)SNR−m
∑

B
i=1 α̂idα̂ ≤̇ SNR1. (13)

Herein we have neglected the terms irrelevant to the SNR
exponent, noticing that for any set containingαi < 0, its prob-
ability measure decays exponentially in SNR [5]. Applying
Varadhan’s integral lemma we then have

sup
α̂∈R

B
+

{
π(α̂) − m

B∑

i=1

α̂i

}
≤ 1. (14)

Since outage probability is a non-increasing function of trans-
mit power, we conclude that with the optimal power allocation,

π(α̂) = min

(
dpeak, 1 + m

B∑

i=1

α̂i,

)
(15)

where we need to introducedpeak to take into account (6).
From [10] it is known that as SNR→ ∞ the mutual

information in sub-channeli, IX (P (γ̂)γi), tends to eitherM
or 0 depending only on the behavior of the term

P (γ̂)γi = SNRmin(dpeak,1+m
∑

B
j=1

α̂j)−de−ᾱi . (16)

In particular, if ᾱi ≤ π(α̂) − de thenIX (P (γ̂)γi) → M bits
per channel use. OtherwiseIX (P (γ̂)γi) → 0.

Thus the asymptotic outage set is given by

O = {ᾱ, α̂ :

B∑

i=1

1



ᾱi ≤ min



dpeak, 1 + m

B∑

j=1

α̂j



− de



 <
BR

M






where1(·) is the indicator function. We then have

Pout(R)
.
=

∫

O
f(ᾱ|α̂)f(α̂)dᾱdα̂. (17)

Notice thatf(γ̄|γ̂) =
∏B

i=1 f(γ̄i|γ̂i), where the conditional
p.d.ff(γ̄i|γ̂i) is a non-central chi-square one with2m degrees
of freedom. Using a result in [3], we can asymptotically
expand the integral (17), showing thatd(R; de, dpeak) =
min(d0, . . . , dB) with dn being defined such that

∫

O∩Bn

B−n∏

i=1

SNR−mα̂i−mᾱi

B∏

j=B−n+1

SNR−mα̂j dᾱdα̂
.
= SNR−dn

where

Bn
∆
= {ᾱ, α̂ : {ᾱ1 > 0, α̂1 ≥ de} ∩ · · ·

∩{ᾱB−n > 0, α̂B−n ≥ de}

∩{0 ≤ α̂B−n+1 < de, ᾱB−n+1 = α̂B−n+1 − de} ∩ · · ·

∩{0 ≤ α̂B < de, ᾱB = α̂B − de}} .

Thus applying Varadhan’s integral lemma gives

dn = inf
ᾱ,α̂∈O∩Bn




m

B∑

i=1

α̂i + m

B−n∑

j=1

ᾱj




 . (18)

OverBn, we haveᾱi = α̂i − de for all i ≥ B −n + 1, thus

O =




ᾱ, α̂ :

B−n∑

i=1

1



ᾱi ≤ min



dpeak, 1 + m

B∑

j=1

α̂j



− de





+

B∑

i=B−n+1

1



α̂i ≤ min



dpeak, 1 + m

B∑

j=1

α̂j







 <
BR

M




 .

To computedn, we consider two mutual exclusively cases.
Case 1: dpeak < 1+m

∑B

j=1 α̂j . Denote the SNR exponent

over the intersection of this region andBn asd
(1)
n .

Case 1.1: If dpeak < de then 1 (ᾱi ≤ dpeak − de) = 0,
∀i ∈ {1, . . . , B − n}. The outage set reduces to

O =

{
α̂ :

B∑

i=B−n+1

1 (α̂i ≤ dpeak) <
BR

M

}
. (19)

Because fori = 1, . . . , B − n, the termsα̂i and ᾱi are not
present in the outage set, we have the optimal solution to
(18) ᾱ∗

1 = · · · = ᾱ∗
B−n = 0 and

∑B−n

i=1 α̂∗
i = max(dpeak −

1, m(B−n)de), due to the constraintdpeak < 1+m
∑B

j=1 α̂j .



After some manipulation, we have that ifdpeak < de then

d(1)
n =

{
m(B − n)de if BR

M
> n,

m(B − n)de + mdpeak

(
n −

⌈
BR
M

⌉
+ 1
)

if BR
M

≤ n.

(20)
Case 1.2: On the other hand, ifdpeak ≥ de, then for i =

B −n + 1, . . . , B we have1(α̂i ≤ dpeak) = 1 because inBn,
α̂i < de for these values ofi. The outage set reduces to

O =

{
ᾱ, α̂ :

B−n∑

i=1

1 (ᾱi ≤ dpeak − de) <
BR

M
− n

}
. (21)

Note that if BR
M

≤ n thend
(1)
n = ∞ because the set of “bad”

channel realizations is empty [4].
After some manipulation, we have that ifdpeak ≥ de then

d(1)
n =






m(dpeak − de)
(
B − n + 1 −

⌈
BR
M

− n
⌉)

+ max (dpeak − 1, m(B − n)de) if BR
M

> n

∞ if BR
M

≤ n.
(22)

Case 2: dpeak ≥ 1+m
∑B

j=1 α̂j . Note that overBn we have∑B

j=1 α̂j ≥ (B−n)de thus Case 2 can only happen ifdpeak ≥
1 + m(B − n)de. For n such thatdpeak < 1 + m(B − n)de,
we use the conventiond(2)

n = ∞. Then, overBn

O =




ᾱ, α̂ :

B−n∑

i=1

1



ᾱi ≤ 1 + m

B∑

j=1

α̂j − de



 <
BR

M
− n




 .

If BR
M

≤ n then the outage probability decays exponentially
in SNR. We obtainα̂∗

1 = · · · = α̂∗
B−n = de and α̂∗

B−n+1 =
· · · = α̂∗

B = 0. We also havēα∗
i = 1 + m(B − n)de − de, for

exactlyB −n−
⌈

BR
M

− n
⌉
+ 1 of the ᾱi’s, and the other̄αi’s

are zero. Thus

d(2)
n =






m(B − n)de + m
(
B − n −

⌈
BR
M

− n
⌉

+ 1
)
×

×(1 + m(B − n)de − de) if BR
M

> n,

∞ if BR
M

≤ n.
(23)

We combine the results in Case 1 and 2 to find
d(R, de, dpeak). If dpeak < de then we have

d(R, de, dpeak) = min(d
(1)
0 , d

(1)
1 , . . . , d

(1)
B )

= mdpeak

(
B −

⌈
BR

M

⌉
+ 1.

)
(24)

We now consider the casedpeak ≥ de, where thed(1)
n ’s are

given by (22). There are three possibilities.
Case A: If dpeak ≥ 1+mBde thendpeak ≥ 1+m(B−n)de,

∀n = 0, . . . , B. Thus

d(1)
n =






m(dpeak − de)
(
B − n + 1 −

⌈
BR
M

− n
⌉)

+dpeak − 1 if BR
M

> n

∞ if BR
M

≤ n.

(25)

It can then be shown that

d(R, de, dpeak) = min(d
(2)
0 , d

(2)
1 , . . . , d

(2)
B )

= m

(
B −

⌈
BR

M

⌉
+ 1

)(
1 + m

(
B −

⌈
BR

M

⌉
+ 1

)
de

)
.

Case B: 1 + mde
(
B −

⌈
BR
M

⌉
+ 1
)

< dpeak < 1 + mBde.
This impliesBR

M
≥
⌈

BR
M

⌉
−1 > B−

dpeak−1
mde

. It can be shown
that in this case

d(R, de, dpeak)

= d
(2)

⌈BR
M ⌉−1

= m

(
B −

⌈
BR

M

⌉
+ 1

)(
1 + m

(
B −

⌈
BR

M

⌉
+ 1

)
de

)
.

Case C: dpeak ≤ 1 + mde
(
B −

⌈
BR
M

⌉
+ 1
)
. This implies⌈

BR
M

⌉
−1 ≤ B−

dpeak−1
mde

. Thus for any integern such thatn <
BR
M

thenn < B−
dpeak−1

mde
leading todpeak < 1+mde(B−n).

Hence from (22) we have

d(1)
n =






m(dpeak − de)
(
B − n + 1 −

⌈
BR
M

− n
⌉)

+mde(B − n) if BR
M

> n

∞ if BR
M

≤ n.

Sincen < BR
M

leads todpeak < 1 + mde(B − n), we also

haved
(2)
n = ∞, ∀n. Thus

d(R, de, dpeak) = min(d
(1)
0 , . . . , d

(1)
B )

= mdpeak

(
B −

⌈
BR

M

⌉
+ 1

)
.

(26)
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[13] E. Malkamäki and H. Leib, “Coded diversity on block-fading channels,”
IEEE Trans. Inf. Theory, vol. 45, pp. 771–781, Mar. 1999.
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