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Abstract—Communication over delay-constrained block- number of receive antennas, the number of fading blocks, the
fading channels with discrete inputs and imperfect channebtate constellation size, the code rate, as well as the SNR exponen

information at the transmitter (CSIT) is studied. The CSIT ¢ the CSIT noise variance and the peak exponent constraint.
mismatch is modeled as a Gaussian random variable, whose

variance decays as a power of the signal-to-noise ratio (SNR Il. SYSTEM MODEL

We focus on the large-SNR behavior of the outage probability . o .
when transmit power control is used. We derive the outage  Consider transmission over a block-fading channel vith

exponent as a function of the system parameters, includinghe sub-channels, where each sub-channel has a single transmit
CSIT noise variance exponent and the exponent of the peak andm receive antennas (cf. Fig. 1). The mutually independent
power constraint. It is shown that CSIT, even if noisy, is avays  channel vectord, . .., hp have independent and identically

beneficial and leads to significant gains in terms of exponesit It s . . .
is also shown that when precoders are used at the transmitter distributed (i.i.d.) complex Gaussian components withozer

further exponent gains can be attained at the expense of high mean af_‘d unit variance. The channel gains are constangdurin
decoding complexity. one fading block but change independently from one block

to the next. This models a typical delay-limited scenario in
|. INTRODUCTION wireless communications, where the delay constraint tdidta

Temporal power control across fading states can lead Q% higher-layer applications prevents the system fromyfull
dramatic improvement in the outage performance of blo@kploiting time diversity [1].
fading channels [1]. The intuition behind this phenomermn i The corresponding discrete-time complex baseband input-
that power saved in particularly bad channel conditionstimn output relation for theth sub-channel can be written as
used in good channel realizations. Power control over block 7 ST ‘
fading channels was originally studied under the idealisti Yi=hiVhal + W, @
assumptions of perfect channel state information (CSI) whereY; € C™*1 is the received signal matrix corresponding
the transmitter (CSIT) and Gaussian signal constellatjohs to blocki, z; € CE is the transmitted vector in block x"
Acquiring perfect CSIT is however a challenging task due ®@enotes the transpose ef and W, € C™*% denotes the
the temporal variation of wireless media, as well as due¢o thomplex additive white Gaussian noise whose entries age i.i
processing and transmission. with zero mean and unit variance. We denote the block length
This work considers a block fading channel willscrete by L and the power in block by P;. Hence, a codeword
input, where the transmitter has access to a noisy version of g¢@responds td3 L channel uses.
CSI. Similarly to [2], we model the CSIT noise as a Gaussian We assume perfect CSIR, i.e., the receiver has perfect
random variable whose variance decays as a negative poWwegwledge about all the channel gains and the powers
of the SNR. The rate of decaying of the CSIT noise can al§a/rthermore, we assume that the transmitter has access to a
be related to practical parameters in wireless systemdii3].noisy versionh; of the true channel realizatioh;, so that
sharp contrast to the assumption of using Gaussian codebook he—h 4+ e, i—1 B @)
[2]-[4], the current work assumes that the input symbols are ! Y Ty N
taken from adiscrete distribution such as M-QAM or PSK. wheree; € C™ is the CSIT noise vector, independent/of,
Focusing on the high signal-to-noise ratio (SNR) regime, weith i.i.d. Gaussian components with zero mean and variance
establish the diversity gain of block fading channels undegf. This model of the CSIT has been well motivated in many
the noisy CSIT model of interest. Note that unlike in theifferent contexts, such as in scenarios with delayed feekib
diversity—multiplexing tradeoff analysis [5] where thedeo noisy feedback, or in systems exploiting channel recipyoci
rate grows with the SNR, herein we keep the constellati@], [7]. We further assume, as in [2], that the CSIT noise
size to be2™ at all values of the SNR and we do not levariance decays as a power of the SNR, = SNR ‘%,
the code rate scale with the SNR. The results will shed sorftg somed. > 0. Thus we consider a family of channels
light into the interplay in the high-SNR regime between thehere the second-order statistic of the CSIT noise variéls wi



) ~_ Y with |z ] bging the largest ir_1teger that is_ not larger than
: T and [z] being the smallest integer that is not smaller than
hy ;

x, is the Singleton bound on the block-diversity of the coded
modulation schemév [10], [12], [13].

The transmitter can adapt the transmitted powerso the
(noisy) channel condition§. We consider power allocation
algorithms that treat the noisy CSH as if it were perfect.
We consider an average power constraint, such that

Transmitter . H . Receiver

B
1 ~ ~
E lﬁ Y A@®H)| =E[P(F)] < SNR 5)
ST oSR =t
3 VP Pp ~ 1 B ~\ .
where P(y) = 5 >_;_, P;(¥) is the instantaneous average
Fig. 1. System model and CSI assumptions. power allocated givefy. The SNR herein has the meaning of

the average transmit power over infinitely many fading b#ock
We introduce a peak-to-average power constraint
SNR. If the CSIT for example is estimated from the reverse N
link (exploiting reciprocity in a TDD system), its qualityiliv P(¥) < SNR== ©6)
depend on the SNR of reverse link and not the forward "”bvhered .x is interpreted as the peak-to-average power SNR
. . pea
However, while the SNRs of the forward and reverse links aponent. The casé ... — 1 represents a system whose
. . . . . . pea -
different, this difference will be fully captured by changithe  _;,5cated power is dominated by the peak-power constraint.
values ofd,. For con\\//gnience, we introduce the normalizegy allowing d.,.... to take an arbitrary value, we can model a
g P} . -~ = . pea. ’
channel gainsh; = -+ hi. Given h; then h; is complex ymijy of systems with different behavior in the peak power
Gaussian with mean,,ﬁfhi and a scaled identity covarianceconstraint. In the high-SNR regime of interest, we can for

matrix. A _ _ example scale the right hand side of (6) by a constant without
Let 7; = ||h;||* be the fading magnitude of blockand  changing any conclusion. That is, any constant, finite satio

~ = [y1---7B|. Further denotey; EY ||ﬁl-|\2, Ai 2 ||hi||2, between the peak and the average power provides the same

52 [y 95 andd 2 [51 - - 4] asymptotic behavior ag,c.x = 1.

The corresponding minimum-outage power allocation rule

. PRELIMINARIES is the solution to the following problem

We assume transmission at a fixed-r&teusing a coded

modulation schemeM ¢ CBL of length BL constructed Minimize  Pout(R)

over a signal constellatio’¥ c C of size 2M such as subject to E %Zilpi(fy) < SNR
2M_pPSK or QAM. We denote the codewords ot by g 1; ) < SRt (7)
e = (z,...,2])" € CBL. We assume that the signal 5 iz 1(9) <

constellationX is zero mean and normalized in energy, i.e., F(7) 20, i=1....B.

— 2]
]E[X]d,_ 0 andd ]EHX"]bI_ 1, wdhereX r(ilenotes dt_he.gor.re- Solving the minimum-outage power allocation problem even
sponding random variable. We denote the input distrioudien ., aricaly s difficult in general, given our noisy CSIT nedd
Q(z). The instantaneous Input-output mutual information cgnd the discreteness @f. Nevertheless, we can characterize
the channel is given by(v) = 5 > ;2 Ix(P;7:) where the asymptotic behavior of the optimal solution in the high
1Y —VEX|? SNR regime. Following [5], note that the outage exponent of
NV Ve 2 (3) the optimal algorithm is the same as that of a power control
Yiwex Q@)e system that allocates power uniformly across the blocks, i.
is the input-output mutual information of an AWGN channeP;(¥) = P(¥), Vi=1,...,B.
with SNR s using the signal constellatiafr.
The outage probability is commonly defined as [8], [9] IV. AsYMPTOTIC OUTAGE BEHAVIOR

P,ui(R) 2 Pr{l(v) < R}. In this work, we are interested o Main Result

in the SNR exponents of the outage probability [5], [10],
i.e., dout 2 limsNR— oo —%. We adopt the notation
g(SNR) = SNR' > limsnr oo 2L = 4.

It has been shown in [10], [11] that the outage expone

without CSIT is given byd,.; = mds,(R) where

Ix(s) =E |log,

In this section, we study the asymptotic behavior of the
outage probability. In particular, our main results in terof
outage SNR exponents are stated as follows.

M Theorem 1: Consider transmission at rafé over a block-

fading channel described by (1) with Rayleigh fading with
A R BR mismatched CSIT modeled by (2) with inputs drawn from

dsp(R) =1+ {B (1 B M)J =B- { -‘ +L (4 X. The transmitter uses power control with an average power



w

de=2 ' ' order of magnitude as2. When d,c.x is smaller, however,
= ] the system cannot “invert” the worst channel realizationd a
the peak exponent becomes the limiting factor.

I B. Improving the Outage Exponent with Rotations

& e In [14], it is shown that a precoding technique can be used
o to improve the outage exponent over fading channels with
10 ‘ 1 discrete inputs. We demonstrate how that idea can be applied
e in the current noisy CSIT setting of interest to further iy
,,,,,,,,,,,,,, the outage exponents. To simplify the presentation, we vemo
0 025 05 0.75 1 the peak exponent constraint (settidg... = cc), focusing
H only on the effects of the CSIT noise.

We briefly recall the precoding technique of [14]. First
consider reformatting the codewords € M as matrices
X € CB*L. We now obtainX as

Fig. 2. Outage exponents f@# = 4, m = 1 anddpcax > 1+mdedy, (R).

constraint (5) and a peak-to-average power constraint (6). X =MS )
Then, the outage exponents are given by where
dyp(R)dpeat d duy(R)d My 00
S ea. ea. S 1 S €
d(R7de7dpeak) = " b( ) peak pealk tm b( ) M = 0 0 S (CBXB (10)
mds,(R) (1 + mdg,(R)d.) otherwise
is a unitary block-diagonal matrix, and the entries $fe
Proof: See Appendix A. B CB*L pelong to the signal constellatiot with size2 sym-
In Fig. 2 we plot the outage exponents fBr= 4, m = 1 bols. The matriced,..., Mg € CN*N are theK unitary

with no CSIT (ord. = 0) and with noisy CSIT withi, = 1,2 rotation matrices of dimensioiN each. M(s — s’) # 0
whendpeax > 1+mdeds, (R). As we observe from the figure, componentwise, for alt # x’ € XV. This implies that if the
increasingd. yields a better exponent. Note that in this casegctor(s —s’) has a positive number of nonzero entries, then,
when the CSIT is perfect the exponent is infinitely large.Evets rotated version will have alN entries different from zero.
with imperfect CSIT, large gains are possible by power aintr ~ According to [14], with no CSIT we obtain the exponent
In the extreme cas€,e.x = 1, we obtaind(R,de, 1) = douwe = mdip*(R) where
mdgy,(R), which is the outage exponent for a system without A B R BR
power control [10], [11]. Increasind,c. Subsequently leads dip*(R) = N (1 + {N (1 — M)J) B+N-N {MN-‘
to an improvement in the outage performance. However,
when dpeax €xceeds a certain threshold, the diversity gain With noisy CSIT, completely similarly to the previous
is “saturated” due to the limitation on the accuracy of thgection we have the following result.
CSIT. In other words, a stringent constraint on the peak powe Theorem 2: Consider transmission over a block-fading
exponent leads to a lot more pronounced detrimental effectdhannel described by (1) with mismatched CSIT modeled by
the case of accurate CSIT than in the case of very noisy CS(Z) with inputs obtained as the rotation of a coded modufatio
In the cased. | 0 (very noisy CSIT) we have scheme overX as described by (9), using full diversity
d(R, de, dpeax) — mdg,(R), equal the outage exponent whemotations. The transmitter uses power control with an ayera
there is no CSIT [10], [11]. Thus if the CSIT noise variancpower constraint (5). Then, the outage exponents are giyen b
has the same order of magnitude as the channel gains, then ‘o ‘o
no extra diversity gain can be obtained from power control. d(R,de) = mdgy'(R) (1 +mds t(R)dc) ' (11)
In cased, — oo (CSIT noise variance decays exponentially
or faster with the SNR){(R, d.) — oo, VR < M, as long as  We illustrate in Fig. 3 the effect of full-diversity rotatio
the peak exponent constraint is also relaxed to satisfyi > matrices on the outage exponent of the coded modulation
14mdg,(R)d.. For strictly positive and finitel., using power system with mismatched CSIT. This precoding method clearly
control, even with noisy CSIT, provides an extra diversityng leads to a higher diversity gain even at high code rates eat th
of (mdsb(R)) d. compared to the no-CSIT case, as long asxpense of increasing receiver complexity.
the peak constraint is sufficiently relaxed. In the caseV = B, i.e. when a single matrix that rotates all
We also learn from the analysis in Appendix A that at higB output symbols is used, thel{R, d,) = mB(1 + mBd,).
SNR, whendpeax > 1+ mde (B — [%} + 1), the dominant This is the maximum diversity gain we can achieve in this sce-
outage event occurs when exaqilﬁ%} —1 of the channel gain nario, even with codes drawn from a Gaussian ensemble [3].
estimatesy;’s are much larger than the noise variam¢e and However, the receiver complexity will increase exponélytia
the remainingB — [%1 + 1 channel estimates have the samm N. Note also in terms of exponents, there is nothing to gain



2 N=4 In particular, ifa; < (&) — de thenIy (P(%)y;) — M bits
) per channel use. Otherwidg (P(¥)v;) — 0.
vt v=2 Thus the asymptotic outage set is given by
= {a a:
S0t i : B
; BR
‘ iiiiiiiiiiiiiiiiiiiiiiiiiii Smln dpcak51+mjzlag _dc < W
wherel(-) is the indicator function. We then have
0 0.5 1

& Pou(R / fle a)dada. a7

Fig. 3. Outage exponents fd8 = 4, m = 1, de = 1 and full-diversity ) N R .
rotations of sizeNV = 1 (dotted line),N = 2 (dashed line) andv = 4 (solid  Notice that f(¥|7) = Hi:l f(%:l%:), where the conditional

line). p.d.f £(%:|%:) is a non-central chi-square one witlm degrees
of freedom. Using a result in [3], we can asymptotically
expand the integral (17), showing thd{R;dc, dpeax) =

in optimizing the full precoding matrix. Finally, we notiteat min(do,...,dp) with d,, being defined such that

determining the outage exponent in the more general medtipl Ben

B
input multiple-transmit settings remains an open problem. / H SNR- i —mai H SNR ™% davda = SNR- %

APPENDIX A ONBn i=1 j=B-n+1
PROOF OFTHEOREM 1 (SKETCH) where

Let us invoke the standard change of variables as in [5&, A .
& = —lé‘;gSnR and &; = —léZgSnR. We also perform the Br = {@ & :{a1 > 0,41 > dejn- -
change of variabler(3) = w(&) = 22500 m{O‘B—f > 0,65 2 de} A

The power constraint (5) asymptotically becomes [3] M0 < dp-—nt1 < de;Ap—nt1 = Qp—nt1 —de} N+~

N . m{0§d3<dc,@32d3—de}}.
[ SNRF)i £ SR (12) . | |
Thus applying Varadhan’s integral lemma gives

The 4;'s are mutually independent and follow Chi-square

distribution with 2m degrees of freedom. AlsoE[y;] = . . _

E[||hi||?] — E[||e:]|?] = SNR’. Changing variables frorsy dn = @ag}gfmgn mZ;O” tm ; G- (18)
to &, we readily obtain = -

_ B oA . Over B,,, we havea; = &; —d, for all i > B—n+1, thus
/ SNRF(®SNR ™Xi=1 %gdg < SNR'.  (13)
acRB B—n B

Herein we have neglected the terms irrelevant to the SNR= | & & : Z 1| <min dpeak’1+mzdj —de

exponent, noticing that for any set containimg< 0, its prob- =1 =1
ability measure decays exponentially in SNR [5]. Applying B B BR
Varadhan’s integral lemma we then have + Z 1| & <min | dpeak, 1 + mzdj <
i=B—n+1 j=1
ASUDEB {W(a) - mz dz} <L (14)  To computed,,, we consider two mutual exclusively cases.
ac

Case 1 dpeak < 14+m Zf 1 &;. Denote the SNR exponent
Since outage probability is a non-increasing function ahts  gyer the intersection of this region am}, asd.,".
mit power, we conclude that with the optimal power allocatio case 1.1 If dpearc < do then 1 (& < dpea — de) = 0,

B Vi € {1,..., B —n}. The outage set reduces to
(&) = min <dpcak, L+my  ai, ) (15)
- B BR
_ = O=a: > 1(6 <dpea) <=7 (- (19
where we need to introdueg,..x to take into account (6). i—Bomi1 M
From [10] it is known that as SNR— oo the mutual ) . -
information in sub-channel Iy (P(5)7:), tends to eithe)s ~Because fo =1,..., B —n, the termsq; and a; are not
or 0 depending only on the behavior of the term present in the outage set, we have the optimal solution to
(18)a; =---=ay , =0andX 7" ar = max(dpedk

PRy = SNRM(dpear, 1+m 7L, 65) —de—ai (16) 1,m(B—n)d,), due to the constraimt,c,i < 1+m ZJ LGy



After some manipulation, we have thatdf.., < d. then Case B 1+ mde (B — [BE] + 1) < dpeak < 1+ mBde.

m(B — n)d i b1 -, Thisimpliesf7 > [47]-1> B L1t can be shown
d) = ¢ 5 . AL~ that in this case
m(B — n)de + Mdpeax (n — [W] + 1) if 25 <n.
(20) d(R dca dpcak)
Case 1.2 On the other hand, itl,ca > de, then fori = = d(ﬁ;ﬂ )
B—-n+1,...,B we havel(d; < dpeax) = 1 because i3,
&; < d. for these values of. The outage set reduces to =m (B — {%-‘ + 1) (1 +m (B — {%-‘ + 1) de) i

B—n
~ BR
0= {d,a : E 1(@; < dpeax — de) < ST n} . (21) Case C dpcak < 1+ mde (B — [BE] +1). This implies
i=1 (—] —-1<B- & . Thus for any integer such that, <

Note that if 22 < n then 4V — 5 because the set of “bad” B2 BE thenn < B— ‘h’;;—k leading tod,cax < 1+mde(B—n).

channel realizations is empty [4]. Hence from (22) we have
After some manipulation, we have thatdf..x > d. then
P besi My o) (B = +1 = [5 — n])

m(dpeak — de) (B —n+1—[EF —n]) dV = { +md.(B — n) if 25 >n
dV = { + max (dpeax — 1,m(B — n)de) if 28 > 00 if % <n.
00 if ?\f < n.

(22) Sincen < BE leads todpeak < 1 + mde(B — n), we also
Case 2 dpeax > 1+m2 ~_1 &;. Note that ovei3,, we have haved;, ?) = 0o, Vn. Thus

B
ZFl &; > (B—n)d, thus Case 2 can only happendjfe.x > (R, de, dpeat) = mm(d(l) . 7d591))
1+ m(B — n)de. Forn such thatd,eax < 1+ m(B — n)de, BR (26)
we use the conventiod\?) = co. Then, over, = mdpeak (B { -‘ )
BR
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