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Abstract— Power allocation with peak-to-average power con- works in [3], [6] consider systems with peak (per-codeword)
straints over Nakagami-m block-fading channels with arbitrary  and average power constraints, and show that systems with

input distributions is studied. In particular, we find the solution average constraints perform significantly better thanesmst
to the minimum outage power allocation scheme with peak-to- g P g y SH

average power constraints and arbitrary input distributions, and with peak power constraints. However, systems with average

show that the signal-to-noise ratio exponent for any systems with constraints employ very large (possibly infinite) peak powe
a finite peak-to-average power ratio constraint is the same as tha which is not feasible in practice.

of systems with peak-power constraints, resulting in an error  |n this work, we consider power allocation for systems with
floor. both peak and average power constraints. This problem has
|. INTRODUCTION been solved for systems with Gaussian inputs in [3]. We ekten

. . N ... the results to systems with arbitrary input constellatione
One major design challenge in wireless communication i N
to cope with the varying nature of the channel. In practicgﬁqw that for a system with fixed peak-to—ayerage power

: ratio (PAPR) and a large peak power constraint, subject to

systems, codewords are transmitted over channels withta ﬁrRl : . S
akagamim fading statistics, the outage performance at large
number of degrees of freedom. Examples for such scenarigs

are transmission over slowly varying channels with CoddNO:rygnal—to-nmse ratios is the same as that of systems wak pe

length larger than the channel bandwidth-time coherenog-pr power const.ralnt only. . . .
uct, or transmission using OFDM over frequency-selecti The remainder of the paper is organized as follows. Sections

v : : :
channels. The block-fading channel, introduced in [1], [&] If and 111 describe the system model and the information

a mathematical channel model that captures the featurestho?.OretIC framework of the work. Section IV reviews the

these scenarios. In this model, a codeword is transmitted ogP imal power aIIocatiqn schemes for systems with pgak and

B flat fading blocks, where thé& channel fading gains vary average power constr{:unts. Perfqrmancr? or: s_ystelms Vﬁ'm pea

according to a system-specific fading distribution. to-avgrage power ratio C‘?”Stf""'”ts’ which 1S aiso t € main
Since each codeword experiences a finite numbeof contribution of the paper, is discussed in Section V. Fnall

fading realizations, the largest achievable rate is a nanetri- concluding remarks are given in Section V.
able. For most practical fading statistics, the channehciip
is zero since there is a non-zero probability that any pasiti
communication rate is not supported by the channel. A raeteva Consider transmission over a channel consisting tlocks
performance measure in this case is the information outagfel channel uses, in which, blodkb = 1,..., B undergoes
probability, which is the probability that communicationaa an independent fading gaih,, corresponding to a power
rate R is not supported by the channel [1], [2]. This probabilitfading gain~y, = |hy|?. Assume that the power fading gains
is a lower bound on the word error rate over the channel [3}. = (71,...,v5) are available at both the transmitter and
When knowledge of the channel fading coefficients, algbe receiver. Suppose that the transmit power is allocated
known as channel state information (CSI), is available #&llowing the rule p(y) = (p1(%),...,p5(v)). Then the
the transmitter, power allocation schemes can be employaatresponding complex baseband channel model is given by
to minimize the outage probability. Transmitter CSI can be
obtained from a dedicated feedback channel or by reusing the Yo = Vo (Y)hoay + 2, b=1,..., B, @)
receiver CSI for transmission in time-division duplex (TpD
systems [4]. The optimal power allocation problem has be
investigated in [3] for channels with Gaussian inputs, amd
[5], [6] for channels with arbitrary input constellationshe

Il. SYSTEM MODEL

wherey, € CL' andz;, € X%, with X C C being the signal
E8nstellation set, are the received and transmitted signal
In block b, respectively, ancdk, € C’ is the noise vector
with independently identically distributed circularlyraynetric

1This work has been supported by the Australian Research clauder Gaussian entries- N@(O, 1)- Assume that the S'Qnal con-

ARC grants RN0459498 and DP0558861. stellation X of size 2! satisfies}” ., |z|> = 2, then the



instantaneous received SNR at blogks given by p,(v)y,. using the classical non-iterative BICM decoder proposed by
We consider systems with the following power constraints: Zehavi in [8]. The input-output mutual information for a giv
labelling rule can be expressed as [9]
Average power: E [(p('y)A>] < P, FBICM

Peak power:  (p(7)) £ £ Y01 m(Y) < Poeak- .

1 1 M Egg’e)( e—|\/ﬁ(.’c—ac/)+22‘
Power allocation schemes for systems with peak and avéf- ~ 537 Z Z Z Ez |log, S s e W=+ 27 |

age power constraints has been studied in [3]2.[6lower e=07=1 zex! wexs

allocation with average power constraints offers large- pavhere the setst’ contain all signal constellation points with

formance advantages but may require large peak powers [, ¢ in the j-th binary labelling position.

[3]. Large peak powers, however, may prohibit application i For a fixed transmission rate, communication is in outage

practical systems. In this work, we study the performance wheneveriz (p(~),~) < R, and the outage probability, which

systems with peak power constraints in addition to averagea lower bound to the word error probability, is given by

power constraints [3]. In particular, we consider systenth w Pou (p(7), P, R) 2 Pr (In(p(+),7) < R).

a constrainegeak-to-average power ratio
Using the channel knowledge at the transmitter and recgeiver
> 1. the power allocation schemg(y) aims at minimizing the
outage probability, improving system performance.
For block b, the magnitude|h| of the fading gain is  In deriving the optimal power allocation schemes, a useful

Ppeak

PAPR 2

av

assumed to follow a Nakagami-distribution measure is the first derivative of the input-output mutual
omme2m=1 ) information I (p) with respect to the signal-to-noise ratio [5],
Sin1(§) = W‘?im , £20, [6]. From [10] we have that,
d 1
whereI'(a) is the Gamma function[(a) = [ t* e 'dt. %Ix(p) = @MMSEX(P%

The pdf of the power fading gain is then given by where MMSEx(p) is the minimum mean squared error

mmy" T —my >0 (MMSE) in estimating an input symbol it transmitted
fr (7)) = 0 T'(m) " otherwise (2)  over an AWGN channel with SNR. For Gaussian inputs,
’ ' MMSEx, (p) = 1, while for general constellatio’, we
The Nakagamin distribution represents a large class ohave that [5]
practical fading statistics. In particular, we can recoties 512
Rayleigh fading by setting: = 1 and approximate the Rician 1 1 ‘Z.’EEX we ™1V VPl
fading with parameteis’ by settingm = &+0° [7] MMSEx (p) = o Z |1'|27*/ eyl
2K+1 : = TJe Ypexe VTVP

[Il. M UTUAL INFORMATION AND OUTAGE PROBABILITY  For systems with BICM, the first derivative of the input-

Given a channel realizationy and a power allocation output mutual information with respect to signal-to-naiato
schemep(~), the instantaneous input-output mutual informas given by [117
tion of the block-fading channel given in (1) is given by d

M 1
1
BICM _ o .
M) = 5105 S (MMSEX(p) MMSEXg(p))

1 & —

I , _ I , j=1c¢=0

B(P(),7) B ;::1 x(Po ) s MMSEE}CM(p).
where Ix(p) is the input-output mutual information of theln the remainder of the paper, we perform our analysis
channel with input constellatioA’” and received SNR. With  for the coded modulation case. Results for the BICM case
Gaussian inputs, we have thiat, (p) = log,(1+p), while for can be obtained by simply replacing (p), MMSEx (p) by
coded modulation over uniformly distributed discrete sign I5'°M(p) and MMSES ™ (), respectively.
constellations, we have that

V. PEAK AND AVERAGE POWER CONSTRAINTS
Ix(p) In this section, we review known results on peak and

1 B average power constrained systems that will be used for our
=M - o5 > Ez |log, <Z e~ Wple—a)+ 217 +|Z] )] ., main results. A detailed treatment of optimal and subogtima
T€EX T/ EX power allocation schemes for systems with peak and average

where the expectation is ovef ~ A(0,1). We also con- POWEr constraints is given in [6].
sider systems with bit-interleaved coded modulation (B)CM swith some abuse of notation, we usdMSERICM () to denote the
first derivative with respect tg of the mutual information. However,
2|n the literature, peak power constraints have also beenresf to as short- MMSEEICM(p) is not the minimum mean square error in estimating the
term power constraints, and average power constraints rastésm power channel input from its output, since the noise is not Ganssiae to the
constraints. demodulation process.



A. Peak Power Constraint where p() is the scheme minimizing the peak power given
For systems with peak power constraiy,., the optimal N (7) ands is such that

ower allocation scheme is the solution of the followin
problem [3] ’ { = oo, i lim, oo E[(p™ ()] < Pas
P, =E[(p™(v))], otherwise,
Minimize Pyt (P(7); Ppeaks R) (11)
Subject to  (P(Y)) < Ppeak (3) The thresholds is a function ofp(v), P., and the fading
pp>0,b=1,...,B statistics f,, (), thus s is fixed and can be predetermined.

o The minimum outage probability is given by
The solution is given by [5], [6]

ak 1 . " Pout (P (), Pav, B) = Pr((p(7)) > 5).  (12)
Py (y) = —MMSEy (min {MMSEX(O), }) , (4)
T 7o V. PEAK-TO-AVERAGE POWER RATIO CONSTRAINTS
forb=1,..., B, wheren is chosen such that the peak power

constraint is met with equality. As shown in [6], one can Following [3], for systems with average poweét, and

alternatively find the optimal power allocation with peakyss  PE2k-to-average power ratibAPR, the optimal power allo-
constraint by cation scheme solves the following problem

peak, v ) ©2(7), if (9(7)) < Ppeak Minimize — Pr(/p(p(7),7) < R)
PPt () = {0, otherwise, ®) Subject to  (p(7)) < Ppeak (13)
E [(p(7))] < Pav,

where Pyeak = PAPR - Py,
Following the arguments in [3], we have the following result

where («) is the solution of the problem

Minimize  {(p(v))

Subject to Ip(p(7),7) =2 R ©) Proposition 1: A solution to problem (13) is given by
opb >0, b=1,...,B.
o <3
From [6], p() is given by pi(y) = £ 0D =5 14)
1 0, otherwise,
= —MMSEZ! (min { MMSEx(0), L \ ), o .
ee(7y) Yo X (mm{ x(0) 7;,}) where p(v) is given in (7) ands = min{s, Pyeax} With s
for b = 1,...,B, wheres is now chosen such that the ratélefined as in (11).
constraint is met, Proof: If s < Pyeak, then(p*(v)) < s < Ppeax. Thus,

5 the peak power constraint is satisfied. Additionally, sidce
1 -1 . n o s, p*(y) coincides with the optimal power allocation scheme
B ;IX (MMSEX (mm {MMSEX (0), o })) =k p*¥ () in (10) for system with average power constraifyt .
. L Therefore,p*(«) is a solution for the problem in (13).
The minimum outage probability is given by If 5> Pyear, then
Pout (Ppeak, Pyeax; R) s R= Pr((p('y)) > Ppeak)' 8

The power allocation scheme given in (4) is less complex
than the one given in (5) for systems with peak power
constraints. However, the two schemes are equivalentinsterrnerefore E [(p*(v))] < E [(p™(7))] < Pay, and thus, the

of outage probability, and the latter is useful for the asly average power constraint is satisfied. Additionapy(~) in

of systems with average and peak-to-avera%e power ralid) is also an optimal power allocation scheme for systems
constraints. In the following, we only refer o"***(v) given ith peak power constrainP,.,. given in (5). Thusp*(y)

in (5) when considering systems with peak power constrains 5 solution for the problem in (13). u

B. Average Power Constraint Rgmark 1: From the proof, depending df,, 'and 'the PAPR
g/vh|ch is fixed), one of the power constraints is redundant
ca- . .
and the outage performance is dependent on the remaining
constraint. In particular we have that

{Minimize Pr(I5(p(7),7) < R) © 5> P

p(y) = {m), (00) < Poewe <5 ge0

0, otherwise.

Under average power constraint, the optimal power allo
tion scheme solves the following problem

Subject to  E [(p(7))] < Pay- .
i X . Pout (p (7)’ P&\H R) = Pout (ppcak(7)7 Ppeak, R) .
From [6], the solutionp®¥ () of (9) is given by

o if s < Ppeaky
pav(,y) _ P(7)a <BO(7)> <s (10)
0, otherwise, Pous (P*(7), Pav, R) = Pout (P™ (), Pav, R) .



Consequently, the outage probability can also be evaluzgedas stated in (17). [ ]
N Let P, be the largest root of the following equation
Pout (p ('7)7PaV7R) =

max{ Pyt (PP (7), Pocas R) » Pous (0™ (7), Pav, B)} = Er(py) [(0(7))] = PAPR - R, (19)
max{ Poyt (PP (7), PAPR Py, R) , Pous (P™ (), Pav, R)}. we therefore have that

(16) Pout (p* (7)7 Pav7 R) = Pout (ppeak(‘Y), PAPR : PaV7 R)
The above expression clearly highlights that in order to-com )
pute the outage probability with peak-to-average poweo rafor Fav > Fo. Therefore, for asymptotically larg&,,, the
constraints, it is sufficient to translate the curve coroesing ©utage probability for systems with a PAPR constraint is
to the peak power constraint BYAPR dB and then find determined by the outage probability of systems with peak

the maximum between the translated curve and the cuR@Wer constraint’,c.x = PAPR - P.,. As a consequence of

corresponding to the average power constraint. the above analysis, we have that the delay-limited capacity
[16] is zero for any finitePAPR. This is illustrated by the
A. Asymptotic Analysis examples in the next section.

In this section we study the asymptotic behavior of thg Numerical Results
outage probability under peak-to-average power consgrdim o } .
particular, we study the SNR exponents, i.e., the asyneptoti FOr 5|mp_I|C|ty, we first consider the_ outage perfo_rmance of
slope of the outage probability for large SNR. For lafig, sy_stems withB = 1 under N_a_kagamm fading ;tatlstlc. In
we have the following result. this case, the outage probability can be numerically etatlia

Proposition 2: Consider transmission at ratg over the 2S follows. Lety be the power fading gain, then
block-fading channel given in (1) with power allocation I=YR

. . . x (R)
schemep*(v). Assume input constellatiost’ of size 2M. p(v) = T
Further assume that the power fading gaipsfollow the _ )
Nakagami= distribution given in (2). Then, at large,, and 2nd (19) is equivalent to
any PAPR < oo, the outage probability behaves like /00 I;{l(R) mmym—1
I

Pout (0" (7). Py, ) = KP4 (17) Ll oy T(m)
whered(R) is the Singleton bound [12], [13], [14], [15]

e ™dy=PAPR - P,

m'rn oo
m—2 -m7YJ~ = PAPR
r(m)“/u e

R m
=1 B(l1-— . —_— — =
d(R) + i e al'(m — 1,ma) = PAPR,
Proof: First, for very largePy..x We have that [6], .
where P, £ IXT(R) and I'(n, &) is the upper incomplete

eak RS eak p—md(R) . 00
Pour (PP (), Pocare, R) = KPP 07 (18) - Gamma function [17]0(n, &) = f5 tn~le~tdt. For P >
Therefore, denotd(s) as the average power as a functiod1 (s > PAPR - P) the outage probability is given by

of the thresholds in the allocation schemg®'(~) in (10). . I3Y(R)
Asymptotically with s, we have [6] Pous (PP**(7), PAPR - P, R) = Pr (v < M)},MD>
ip(s) = [CPeakg(R) s~ _F Iy (R)
_ ds T"\PAPR-P )’
From LHOpital's rule, for anyPAPR, we have where F,(§) = Pr(y < &) is the cumulative distribution
lim PAPR - P(s) ~ fim iPAPR-P(s) funcpon of 4. For P < Py (s < PAPR - P), s in (10) is
5—00 s s—oo ds obtained by solving
— 1 . —d(R)
= lim PAPR - Kd(R)s mIz(R) mI3'(R)
—2X I (m—1,—2 ) =P,
=0. L'(m) s
It follows that for anyPAPR, there exists an average poweRnd the outage probability is given by
constraint Py = P(sp) satisfying sy = PAPR - P, and I34(R)
s > PAPR - P,y = Ppeax If P(s) > F,. Consequently, Pyt (p™(v), P,R) = Pr <7 < XS >
Pout (p* ('7)7 Py, R) = Lout (ppeak(,y)’ PAPR - Pay, R) for 1
P,. > P,. Thus, together with (18), asymptotically iR,,, _r (Ix (R)) '
we have ’ s

Pout (9" (%), Pavs R) = Pous (ppcak(,y)’ PAPR - PaV7R) The aﬂaly3|s result is illustrated in Figure 1 for 16-QAM inp
, , Rayleigh faded channel at rate = 1. We observe that as
- K:peakPAPR_md(R)P_md(R) .
av we increase the PAPR, the error floor occurs at lower error



Fout(p*: Pav, R)
out (P Pav, R)

F

Fig. 1. Outage probability for systems with PAPR constraivisr Nakagami-
m block-fading channel8 = 1,m = 1, R = 1, 16-QAM inputs. The solid
and dashed lines correspondingly represent outage piitpabisystems with
coded modulation and BICM.

probability values, and eventually, at values below a targd?]
quality of service error rate. We also observe that the loss
incurred by BICM is minimal. [3]
For systems with any3 > 1, analytical result is not avail-
able. However, from (16), the outage probability of sy:stem?4
with PAPR constraints can be obtained by considering system
with peak power constraints and systems with average power
constraints separately. Moreover, at high, the outage prob-
ability can be obtained by the outage probability of systems
with only peak power constrainf,, - PAPR. Simulation [6]
results for a 16-QAM input, Rayleigh faded channel with 4
blocks at rateR = 3 using are given in Figure 2. 7]
In both casesB = 1 and B = 4), at high P,,, the [8]
outage probability given by optimal power allocation sckeem 4
is governed by the peak power constraints, and therefoee, th
optimal outage diversity is given by the Singleton bound. [10]

VI. CONCLUSIONS [11]

We have studied power allocation schemes under peak-
to-average power constraints for block-fading channeld wi[12]
arbitrary input distributions. We have computed the optim?ls]
solution, and shown that the resulting outage probabiléty c
easily be computed from the corresponding solutions wifim]

peak and average power constraints. We have studied the SNR
exponents, and have shown that the asymptotic performangg

for finite PAPR is always determined by the peak power, and
that the exponent is therefore given by the exponent of Byste

) . 16
with peak power constraints. [16]
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