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Abstract— Power allocation with peak-to-average power con-
straints over Nakagami-m block-fading channels with arbitrary
input distributions is studied. In particular, we find the solution
to the minimum outage power allocation scheme with peak-to-
average power constraints and arbitrary input distributions, and
show that the signal-to-noise ratio exponent for any systems with
a finite peak-to-average power ratio constraint is the same as that
of systems with peak-power constraints, resulting in an error
floor.

I. I NTRODUCTION

One major design challenge in wireless communication is
to cope with the varying nature of the channel. In practical
systems, codewords are transmitted over channels with a finite
number of degrees of freedom. Examples for such scenarios
are transmission over slowly varying channels with codeword
length larger than the channel bandwidth-time coherence prod-
uct, or transmission using OFDM over frequency-selective
channels. The block-fading channel, introduced in [1], [2], is
a mathematical channel model that captures the features of
these scenarios. In this model, a codeword is transmitted over
B flat fading blocks, where theB channel fading gains vary
according to a system-specific fading distribution.

Since each codeword experiences a finite numberB of
fading realizations, the largest achievable rate is a random vari-
able. For most practical fading statistics, the channel capacity
is zero since there is a non-zero probability that any positive
communication rate is not supported by the channel. A relevant
performance measure in this case is the information outage
probability, which is the probability that communication at a
rateR is not supported by the channel [1], [2]. This probability
is a lower bound on the word error rate over the channel [3].

When knowledge of the channel fading coefficients, also
known as channel state information (CSI), is available at
the transmitter, power allocation schemes can be employed
to minimize the outage probability. Transmitter CSI can be
obtained from a dedicated feedback channel or by reusing the
receiver CSI for transmission in time-division duplex (TDD)
systems [4]. The optimal power allocation problem has been
investigated in [3] for channels with Gaussian inputs, and in
[5], [6] for channels with arbitrary input constellations.The
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works in [3], [6] consider systems with peak (per-codeword)
and average power constraints, and show that systems with
average constraints perform significantly better than systems
with peak power constraints. However, systems with average
constraints employ very large (possibly infinite) peak power,
which is not feasible in practice.

In this work, we consider power allocation for systems with
both peak and average power constraints. This problem has
been solved for systems with Gaussian inputs in [3]. We extend
the results to systems with arbitrary input constellations. We
show that for a system with fixed peak-to-average power
ratio (PAPR) and a large peak power constraint, subject to
Nakagami-m fading statistics, the outage performance at large
signal-to-noise ratios is the same as that of systems with peak
power constraint only.

The remainder of the paper is organized as follows. Sections
II and III describe the system model and the information
theoretic framework of the work. Section IV reviews the
optimal power allocation schemes for systems with peak and
average power constraints. Performance of systems with peak-
to-average power ratio constraints, which is also the main
contribution of the paper, is discussed in Section V. Finally,
concluding remarks are given in Section VI.

II. SYSTEM MODEL

Consider transmission over a channel consisting ofB blocks
of L channel uses, in which, blockb, b = 1, . . . , B undergoes
an independent fading gainhb, corresponding to a power
fading gainγb , |hb|

2. Assume that the power fading gains
γ = (γ1, . . . , γB) are available at both the transmitter and
the receiver. Suppose that the transmit power is allocated
following the rule p(γ) = (p1(γ), . . . , pB(γ)). Then the
corresponding complex baseband channel model is given by

yb =
√

pb(γ)hbxb + zb, b = 1, . . . , B, (1)

whereyb ∈ C
L andxb ∈ XL, with X ⊂ C being the signal

constellation set, are the received and transmitted signals
in block b, respectively, andzb ∈ C

L is the noise vector
with independently identically distributed circularly symmetric
Gaussian entries∼ NC(0, 1). Assume that the signal con-
stellationX of size 2M satisfies

∑

x∈X |x|2 = 2M , then the



instantaneous received SNR at blockb is given bypb(γ)γb.
We consider systems with the following power constraints:

Average power: E [〈p(γ)〉] ≤ Pav

Peak power: 〈p(γ)〉 , 1
B

∑B

b=1 pb(γ) ≤ Ppeak.

Power allocation schemes for systems with peak and aver-
age power constraints has been studied in [3], [6]2. Power
allocation with average power constraints offers large per-
formance advantages but may require large peak powers [6],
[3]. Large peak powers, however, may prohibit application in
practical systems. In this work, we study the performance of
systems with peak power constraints in addition to average
power constraints [3]. In particular, we consider systems with
a constrainedpeak-to-average power ratio

PAPR ,
Ppeak

Pav
≥ 1.

For block b, the magnitude|hb| of the fading gain is
assumed to follow a Nakagami-m distribution

f|hb|(ξ) =
2mmξ2m−1

Γ(m)
e−mξ2

, ξ ≥ 0,

whereΓ(a) is the Gamma function,Γ(a) =
∫∞
0

ta−1e−tdt.
The pdf of the power fading gain is then given by

fγb
(γ) =

{

mmγm−1

Γ(m) e−mγ , γ ≥ 0

0, otherwise.
(2)

The Nakagami-m distribution represents a large class of
practical fading statistics. In particular, we can recoverthe
Rayleigh fading by settingm = 1 and approximate the Rician
fading with parameterK by settingm = (K+1)2

2K+1 [7].

III. M UTUAL INFORMATION AND OUTAGE PROBABILITY

Given a channel realizationγ and a power allocation
schemep(γ), the instantaneous input-output mutual informa-
tion of the block-fading channel given in (1) is given by

IB(p(γ),γ) =
1

B

B
∑

b=1

IX (pbγb),

where IX (ρ) is the input-output mutual information of the
channel with input constellationX and received SNRρ. With
Gaussian inputs, we have thatIXG

(ρ) = log2(1+ρ), while for
coded modulation over uniformly distributed discrete signal
constellations, we have that

IX (ρ)

= M −
1

2M

∑

x∈X
EZ

[

log2

(

∑

x′∈X
e−|√ρ(x−x′)+Z|2+|Z|2

)]

,

where the expectation is overZ ∼ NC(0, 1). We also con-
sider systems with bit-interleaved coded modulation (BICM)

2In the literature, peak power constraints have also been referred to as short-
term power constraints, and average power constraints as long-term power
constraints.

using the classical non-iterative BICM decoder proposed by
Zehavi in [8]. The input-output mutual information for a given
labelling rule can be expressed as [9]

IBICM
X (ρ) =

M −
1

2M

1
∑

c=0

M
∑

j=1

∑

x∈X j
c

EZ

[

log2

∑

x′∈X e−|√ρ(x−x′)+Z2|
∑

x′∈X j
c

e−|√ρ(x−x′)+Z2|

]

,

where the setsX j
c contain all signal constellation points with

bit c in the j-th binary labelling position.
For a fixed transmission rateR, communication is in outage

wheneverIB(p(γ),γ) < R, and the outage probability, which
is a lower bound to the word error probability, is given by

Pout (p(γ), P,R) , Pr (IB(p(γ),γ) < R) .

Using the channel knowledge at the transmitter and receiver,
the power allocation schemep(γ) aims at minimizing the
outage probability, improving system performance.

In deriving the optimal power allocation schemes, a useful
measure is the first derivative of the input-output mutual
informationIX (ρ) with respect to the signal-to-noise ratio [5],
[6]. From [10] we have that,

d

dρ
IX (ρ) =

1

log 2
MMSEX (ρ),

where MMSEX (ρ) is the minimum mean squared error
(MMSE) in estimating an input symbol inX transmitted
over an AWGN channel with SNRρ. For Gaussian inputs,
MMSEXG

(ρ) = 1
1+ρ

, while for general constellationX , we
have that [5]

MMSEX (ρ) =
1

2M

∑

x∈X
|x|2−

1

π

∫

C

∣

∣

∣

∑

x∈X xe−|y−√
ρx|2
∣

∣

∣

2

∑

x∈X e−|y−√
ρx|2 dy.

For systems with BICM, the first derivative of the input-
output mutual information with respect to signal-to-noiseratio
is given by [11]3

d

dρ
IBICM
X (ρ) =

1

2 log 2

M
∑

j=1

1
∑

c=0

(

MMSEX (ρ) − MMSEX j
c
(ρ)
)

, MMSEBICM
X (ρ).

In the remainder of the paper, we perform our analysis
for the coded modulation case. Results for the BICM case
can be obtained by simply replacingIX (ρ),MMSEX (ρ) by
IBICM
X (ρ) andMMSEBICM

X (ρ), respectively.

IV. PEAK AND AVERAGE POWER CONSTRAINTS

In this section, we review known results on peak and
average power constrained systems that will be used for our
main results. A detailed treatment of optimal and suboptimal
power allocation schemes for systems with peak and average
power constraints is given in [6].

3With some abuse of notation, we useMMSEBICM

X
(ρ) to denote the

first derivative with respect toρ of the mutual information. However,
MMSEBICM

X
(ρ) is not the minimum mean square error in estimating the

channel input from its output, since the noise is not Gaussian due to the
demodulation process.



A. Peak Power Constraint

For systems with peak power constraintPpeak, the optimal
power allocation scheme is the solution of the following
problem [3]











Minimize Pout (p(γ), Ppeak, R)

Subject to 〈p(γ)〉 ≤ Ppeak

pb ≥ 0, b = 1, . . . , B

(3)

The solution is given by [5], [6]

p
peak
b (γ) =

1

γb

MMSE−1
X

(

min

{

MMSEX (0),
η

γb

})

, (4)

for b = 1, . . . , B, whereη is chosen such that the peak power
constraint is met with equality. As shown in [6], one can
alternatively find the optimal power allocation with peak power
constraint by

p
peak(γ) =

{

℘(γ), if 〈℘(γ)〉 ≤ Ppeak

0, otherwise,
(5)

where℘(γ) is the solution of the problem










Minimize 〈℘(γ)〉

Subject to IB(℘(γ),γ) ≥ R

℘b ≥ 0, b = 1, . . . , B.

(6)

From [6], ℘(γ) is given by

℘b(γ) =
1

γb

MMSE−1
X

(

min

{

MMSEX (0),
η

γb

})

, (7)

for b = 1, . . . , B, whereη is now chosen such that the rate
constraint is met,

1

B

B
∑

b=1

IX

(

MMSE−1
X

(

min

{

MMSEX (0),
η

γb

}))

= R.

The minimum outage probability is given by

Pout

(

p
peak, Ppeak, R

)

, R = Pr(〈℘(γ)〉 > Ppeak). (8)

The power allocation scheme given in (4) is less complex
than the one given in (5) for systems with peak power
constraints. However, the two schemes are equivalent in terms
of outage probability, and the latter is useful for the analysis
of systems with average and peak-to-average power ratio
constraints. In the following, we only refer toppeak(γ) given
in (5) when considering systems with peak power constraints.

B. Average Power Constraint

Under average power constraint, the optimal power alloca-
tion scheme solves the following problem

{

Minimize Pr(IB(p(γ),γ) < R)

Subject to E [〈p(γ)〉] ≤ Pav.
(9)

From [6], the solutionpav(γ) of (9) is given by

p
av(γ) =

{

℘(γ), 〈℘(γ)〉 ≤ s

0, otherwise,
(10)

where℘(γ) is the scheme minimizing the peak power given
in (7) ands is such that
{

s = ∞, if lims→∞ E [〈pav(γ)〉] ≤ Pav

Pav = E [〈pav(γ)〉] , otherwise,
(11)

The thresholds is a function of℘(γ), Pav and the fading
statisticsfγb

(γ), thus s is fixed and can be predetermined.
The minimum outage probability is given by

Pout (pav(γ), Pav, R) = Pr(〈℘(γ)〉 > s). (12)

V. PEAK-TO-AVERAGE POWER RATIO CONSTRAINTS

Following [3], for systems with average powerPav and
peak-to-average power ratioPAPR, the optimal power allo-
cation scheme solves the following problem











Minimize Pr (IB(p(γ),γ) < R)

Subject to 〈p(γ)〉 ≤ Ppeak

E [〈p(γ)〉] ≤ Pav,

(13)

wherePpeak = PAPR · Pav.
Following the arguments in [3], we have the following result
Proposition 1: A solution to problem (13) is given by

p
⋆(γ) =

{

℘(γ), 〈℘(γ)〉 ≤ ŝ

0, otherwise,
(14)

where ℘(γ) is given in (7) andŝ = min{s, Ppeak} with s

defined as in (11).
Proof: If s ≤ Ppeak, then 〈p⋆(γ)〉 ≤ s ≤ Ppeak. Thus,

the peak power constraint is satisfied. Additionally, sinceŝ =
s, p

⋆(γ) coincides with the optimal power allocation scheme
p

av(γ) in (10) for system with average power constraintPav.
Therefore,p⋆(γ) is a solution for the problem in (13).

If s > Ppeak, then

p
⋆(γ) =

{

℘(γ), 〈℘(γ)〉 < Ppeak < s

0, otherwise.
(15)

Therefore,E [〈p⋆(γ)〉] < E [〈pav(γ)〉] ≤ Pav, and thus, the
average power constraint is satisfied. Additionally,p

⋆(γ) in
(15) is also an optimal power allocation scheme for systems
with peak power constraintPpeak given in (5). Thus,p⋆(γ)
is a solution for the problem in (13).

Remark 1: From the proof, depending onPav and the PAPR
(which is fixed), one of the power constraints is redundant
and the outage performance is dependent on the remaining
constraint. In particular we have that

• if s > Ppeak,

Pout (p⋆(γ), Pav, R) = Pout

(

p
peak(γ), Ppeak, R

)

.

• if s ≤ Ppeak,

Pout (p⋆(γ), Pav, R) = Pout (pav(γ), Pav, R) .



Consequently, the outage probability can also be evaluatedas

Pout (p⋆(γ), Pav, R) =

max
{

Pout

(

p
peak(γ), Ppeak, R

)

, Pout (pav(γ), Pav, R)
}

=

max
{

Pout

(

p
peak(γ),PAPR Pav, R

)

, Pout (pav(γ), Pav, R)
}

.

(16)

The above expression clearly highlights that in order to com-
pute the outage probability with peak-to-average power ratio
constraints, it is sufficient to translate the curve corresponding
to the peak power constraint byPAPR dB and then find
the maximum between the translated curve and the curve
corresponding to the average power constraint.

A. Asymptotic Analysis

In this section we study the asymptotic behavior of the
outage probability under peak-to-average power constraints. In
particular, we study the SNR exponents, i.e., the asymptotic
slope of the outage probability for large SNR. For largePav,
we have the following result.

Proposition 2: Consider transmission at rateR over the
block-fading channel given in (1) with power allocation
schemep

⋆(γ). Assume input constellationX of size 2M .
Further assume that the power fading gainsγ follow the
Nakagami-m distribution given in (2). Then, at largePav and
any PAPR < ∞, the outage probability behaves like

Pout (p⋆(γ), Pav, R)
.
= KP−md(R)

av (17)

whered(R) is the Singleton bound [12], [13], [14], [15]

d(R) = 1 +

⌊

B

(

1 −
R

M

)⌋

.

Proof: First, for very largePpeak we have that [6],

Pout

(

p
peak(γ), Ppeak, R

) .
= KpeakP

−md(R)
peak . (18)

Therefore, denoteP (s) as the average power as a function
of the thresholds in the allocation schemepav(γ) in (10).
Asymptotically withs, we have [6]

d

ds
P (s)

.
= Kpeakd(R)s−d(R).

From L’Hôpital’s rule, for anyPAPR, we have

lim
s→∞

PAPR · P (s)

s
= lim

s→∞
d

ds
PAPR · P (s)

= lim
s→∞

PAPR · Kd(R)s−d(R)

= 0.

It follows that for anyPAPR, there exists an average power
constraint P0 = P (s0) satisfying s0 = PAPR · P0 and
s > PAPR · Pav = Ppeak if P (s) > P0. Consequently,
Pout (p⋆(γ), Pav, R) = Pout

(

p
peak(γ),PAPR · Pav, R

)

for
Pav > P0. Thus, together with (18), asymptotically inPav,
we have

Pout (p⋆(γ), Pav, R)
.
= Pout

(

p
peak(γ),PAPR · Pav, R

)

.
= KpeakPAPR−md(R)P−md(R)

av

as stated in (17).
Let P0 be the largest root of the following equation

ER(P0) [〈℘(γ)〉] = PAPR · P0, (19)

we therefore have that

Pout (p⋆(γ), Pav, R) = Pout

(

p
peak(γ),PAPR · Pav, R

)

for Pav > P0. Therefore, for asymptotically largePav, the
outage probability for systems with a PAPR constraint is
determined by the outage probability of systems with peak
power constraintPpeak = PAPR · Pav. As a consequence of
the above analysis, we have that the delay-limited capacity
[16] is zero for any finitePAPR. This is illustrated by the
examples in the next section.

B. Numerical Results

For simplicity, we first consider the outage performance of
systems withB = 1 under Nakagami-m fading statistic. In
this case, the outage probability can be numerically evaluated
as follows. Letγ be the power fading gain, then

℘(γ) =
I−1
X (R)

γ
,

and (19) is equivalent to
∫ ∞

I
−1
X

(R)

P1

I−1
X (R)

γ

mmγm−1

Γ(m)
e−mγdγ = PAPR · P1

mm

Γ(m)
a

∫ ∞

a

γm−2e−mγdγ = PAPR

m

Γ(m)
aΓ(m − 1,ma) = PAPR,

where P1 ,
I
−1
X

(R)

a
and Γ(n, ξ) is the upper incomplete

Gamma function [17]Γ(n, ξ) =
∫∞

ξ
tn−1e−tdt. For P >

P1 (s > PAPR · P ) the outage probability is given by

Pout

(

p
peak(γ),PAPR · P,R

)

= Pr

(

γ <
I−1
X (R)

PAPR · P

)

= Fγ

(

I−1
X (R)

PAPR · P

)

,

where Fγ(ξ) = Pr(γ ≤ ξ) is the cumulative distribution
function of γ. For P < P1 (s < PAPR · P ), s in (10) is
obtained by solving

mI−1
X (R)

Γ(m)
Γ

(

m − 1,
mI−1

X (R)

s

)

= P,

and the outage probability is given by

Pout (pav(γ), P,R) = Pr

(

γ <
I−1
X (R)

s

)

= Fγ

(

I−1
X (R)

s

)

.

The analysis result is illustrated in Figure 1 for 16-QAM input
Rayleigh faded channel at rateR = 1. We observe that as
we increase the PAPR, the error floor occurs at lower error
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Fig. 1. Outage probability for systems with PAPR constraintsover Nakagami-
m block-fading channelsB = 1, m = 1, R = 1, 16-QAM inputs. The solid
and dashed lines correspondingly represent outage probability of systems with
coded modulation and BICM.

probability values, and eventually, at values below a target
quality of service error rate. We also observe that the loss
incurred by BICM is minimal.

For systems with anyB > 1, analytical result is not avail-
able. However, from (16), the outage probability of systems
with PAPR constraints can be obtained by considering systems
with peak power constraints and systems with average power
constraints separately. Moreover, at highPav, the outage prob-
ability can be obtained by the outage probability of systems
with only peak power constraintPav · PAPR. Simulation
results for a 16-QAM input, Rayleigh faded channel with 4
blocks at rateR = 3 using are given in Figure 2.

In both cases (B = 1 and B = 4), at high Pav, the
outage probability given by optimal power allocation scheme
is governed by the peak power constraints, and therefore, the
optimal outage diversity is given by the Singleton bound.

VI. CONCLUSIONS

We have studied power allocation schemes under peak-
to-average power constraints for block-fading channels with
arbitrary input distributions. We have computed the optimal
solution, and shown that the resulting outage probability can
easily be computed from the corresponding solutions with
peak and average power constraints. We have studied the SNR
exponents, and have shown that the asymptotic performance
for finite PAPR is always determined by the peak power, and
that the exponent is therefore given by the exponent of systems
with peak power constraints.
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