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Abstract— We characterize the asymptotic outage performance for a specific class of fading statistics, power control for

of power allocation techniques for systems with average power average power constraints may give zero outage, yielding a
constraints. We show that the outage diversity of a system with non-zero delay-limited capacity [4]

average power constraints can be obtained from the diversity . .
of the corresponding system with peak power constraints. The [N this work, we perform an asymptotic performance analy-
characterization is therefore useful since the asymptotic perie ~ Sis of systems with average power constraints and Nakagami-

mance of systems with peak power constraints is well known in m fading statistics. We show the duality between the power

the literature. allocation rules resulting from peak and average power con-
I. INTRODUCTION straints. This duality is instrumental in characterizirge t

asymptotic performance of systems with average power con-

) In many practical com_mumcatlon systems,_ codewords raints based on that of systems with peak constraints. The
fixed rate are to be delivered over slowly time/frequency-

. . . . Tesult can be applied to any system whose performance at
varying fading channels under stringent delay constrain grge peak power constraints is known. This is a useful tesul

Examples of such cases are Orthogonal Frequency Divisi : : :
Multiplexing (OFDM) or slow frequency-hopping systemsglﬂce the asymptotic behavior of systems with peak power

) o . constraints is obtainable, e.g., in [7], [8], [9], [10], [6]
used for fixed-rate transmission over slowly varying chésne ) . .
. . The remainder of the paper is organized as follows. The
The block-fading channel [1], [2] is useful for the study ) . )
of such communication scenarios. In this model. fixed ra:f‘gstem model and the information theoretic base of the work

codewords are transmitted within a finite number of block'ss, given in Sections Il and IIl. Sections IV and V discuss the

each of which is affected by an independent fading coefficie ower allocation schemes for systems with peak and average

Therefore, each codeword experiences a finite number hgpver c_onstraints and the_ir as_ymptot_ic performance. Binal

degrees of freedom. Consequently, for most fading stedisti concluding rgmarks ar.e given in Section V.

there exists a non-zero probability that the channel does ng 1 Ne following notations are used throughout the paper.

support the desired data rate, also known as the informatiW? denote(x) = 5> ,~,z; as the arithmetic mean of

outage probability [1], [2]. The information outage probiap < = (21,---,25) andE [] as the exp(.ectedi\;a.lue_of a random

is also the word error rate given that an optimal coding seherf2"able- Thedexponen_t equaliff(¢) = K¢ indicates that

is employed for transmission [3]. Therefore, the channlallmffoC f(£)§ = K, with the exponentlal_mequahtleg,2

has zero capacity and the outage probability is the relevaifiiarly defined.|¢] denotes the largest integer not greater

performance measure. than¢. Component-m_se inequalities between_two vectors are
One system design criterion of importance is therefofi£NOted by=and=. Finally, 1., takes value 1 if the evend

to minimize the outage probability. When channel state ife true and takes value 0 otherwise.

formation is available at the transmitter, power allocatio

among other adaptive transmission schemes, can be used to Il. SYSTEM MODEL

reduce the outage probability. The optimal power allocatio Consider transmission over a block-fading channel vith

SCheme for systems_with Gaussian inputs is derive_d in [;&].’ [%Iocks where each is affected by a flat fading coefficient
Optimal and suboptimal schemes for systems with arb|tra£y: 1 ' B and additive noise. Assume that the fading coef-
inputs are also proposed in [5], [6]. These works consid§ oo :

r. . . .
power allocation for systems with peak (per codeword) an|&|ents are available at both the transmitter and the receiv

average power constraints, and show that power control %rgd that the transmitter allocates power to the blocks daogr

average power constraints provides significant perforreaar{é:,?1 dtirr]z] r;;?rf’ (\Za)ctzor(%léggéa' 'égB_h')h) rgh; r‘_371'8 th%pc_)rv;/zr
- bl YV — Ly Do

gains compared to that for peak power constraints. Moreovgauivalent baseband model is given by

1This work has been supported by the Australian Research cllauder
ARC Grants DP0558861, DP0881160 and RN0459498. Yy = \/pb('y)hbwb +ny, b=1,...,B, Q)



wherezx;, € CF andy, € CL are correspondingly the portionA solution p°?(~) for the problem is given by

of the codeword transmitted and received in blécissume opt( N _

that n, € CL is a white Gaussian noise vector with unit P (v) = arg Py Ip(P,7)- )

variance andz, is drawn from a unit-energy constellation (P)<Ppeax

X, Ezex [7] = 1. Then, the instantaneous received signal-t@Erom [5], we have that

noise ratio (SNR) at block is given byp,(v)~,. We consider 1

systems with the following power constraints: () = V—MMSE;(1 (min {1, ;7}) ,b=1,...,B, (5
b b

: < . -
Pealc: (p(7)) < Poea where MMSEx (p) is the minimum mean-square error for
Average : E[(p(7))] < Pay estimating an input symbol in the constellatidhtransmitted
We assume that the fading gaihg are independently iden- 0ver an AWGN channel with SN
tically distributed random variables whose magnitudeofo$ ‘Z re—ly—pe
zeX

| 2

the Nakagamm distribution Wlth unit meah The probability MMSEx(p) = 1 — 7/ e dy,
density function (pdf) ofh,| is then given by TJe Y.exe
Sin1(§) = el e E>0 andn is chosen such thgp®*(v)) = Pycax. We alternatively
Bl I'(m) T consider the following power allocation rule
V\)/Dcerfilf(m) is the Gamma functipn giv_en_ b)F_(a) = o () P (), (9°P'(Y)) < Ppeak ©)
Jo_te~ldt. The pdf of the power fading gaif, is given by Ppeak\V) = 0, otherwise,
mem—1
fo () = %e*mf, £>0. (2) wheregp(~) solves the following problem
m
opt _ :
The Nakagamin distribution represents a large class of fading P () = arg Pro (p)- @)
statistics, including the Rayleigh fading by letting= 1, and Ip(PY)ZR
an approximationQOf the Ricean fading with parameieby The solution of (7) is given by
settingm = 40 [11]. ) ;
opt _ = —1 . A _
1. MUTUAL INFORMATION AND OUTAGE PROBABILITY oy (1) = %MMSEX (mm {1’ T }) o=1,..., B,

For a given fading realizationy and power allocation ) opt (8)

schemep(~), the instantaneous mutual information is wherer) is now chosen such thdiz (0™ (v),7) = B.
5 The outage probability with peak power constraifit..i is
1 O O
IB(p(7)57) £ E ZIX(pb('Y)’Yb)a Pout(p pt('y)vaeak) =Pr (<P pt(7)> > Ppeak) .
b=1

. ) ) ) The power control rule given in (6) is also optimal, as given
where Ix(p) is the input-output mutual information of aNpy the following Proposition.

additive white Gaussian noise (AWGN) channel with input” proposition 1: Consider transmission over the block-fading
constellationt” and received SNR. We have that channel given in (1). The outage probability resulting frtra

Ix(p) = power control rule given in (6) is the same as that resulting
) from the rule given in (5), i.e.
o ~lvp(z—a")+ 212 +|Z|
M 2M 'EZXEZ [log2 <§Ye >] 7 POut(SOOpt('Y)a Ppeak) = PY(IB (pOPt('Y)»’Y) <R), 9)

for any fading statistics.
Proof: Assume that power control rupg?t(~) results in
n outage for a channel realizatigni.e. Iz (p°?*(v),~) < R.

where the expectation is ovef ~ AN (0,1). For communi-
cation at a fixed rate?, transmission is in outage whenever
Is(p(7),v) < R, and the corresponding outage probabilit

: hen, sincep°P(~) is the solution of (4), for all power

s Pr(Is(p(v),v) < R). control ruleSp(’yg s)atisfying<p(7)> < Pyeak, We have that
V. POWERALLOCATION FOR PEAK POWER Ig(p(v),v) < Ip(p°®*(v),v) < R. Consequently, since
CONSTRAINTS Ip(p°P*(v),v) > R due to the constraints in (7), we have

A. Power Allocation Schemes (©°P' (7)) > Pyeax- Therefore,p’®’, (v) also results in an

outage for the channel realizatign With similar arguments, if
a power control rul@ggzk(y) results in an outage for channel
realization-y, then p°P*(v) also gives an outage. Therefore,
Ppeak(Y) = arg mil(l) Pr(Ip(p(v),v) <R). (3) (9) follows. |
<p>ngmk The optimal power allocation scheme in (5), (8) requires
evaluating °P*(y) for each channel realizatiory, which
2Due to the perfect CSIR assumption, the phase can be comperieate requires significant computational power or tabulatingaie

For systems with peak power constrai}..., the optimal
power allocation schemgPe®(~) is given by



capacity due to the involvement of the MMSE expression. This Proposition 3: Consider using the truncated waterfilling
is not desirable in low cost devices. In [6], various subopli power control rulepfjgak described in (11) for transmission
schemes are proposed, aiming at reducing the computatiometr the block-fading channel given in (1). Assume that the

complexity. Among those, the truncated waterfilling schemeput constellation ist. Further assume that the power fading

p™ () is given by gains follows the distribution in (2). For larg&,c.x, the
8 1 outage probability behaves like
oW :min{,( —)},bzl,...,B, 10 —m
Pr ('7) Yo b ( ) Pout(@tw (7)a Ppeak) = ’C;)vgakppeakdg(R)a (13)
whereﬁtwis a predetermined parameter ands chosen such wheremdg(R) is the outage diversity, and
that (p"™“(v)) = Ppeax- Similar to the optimal case, we
consider the following truncated waterfilling scheme: ds(R) =1+ {B (1 __E
Ix(B)
tw : tw <
Ppeak(Y) = {p (), it (e .(Pm < Poealc (49 Proof: A sketch of the proof is as follows. From the
0, otherwise, characteristics ofp(v), for all channel realizationy, we
B
where o™ (v) is given by have that/p(p(v),v) = 1x(8) > =1 L{p,eur>py- More-

over, from the power constraintép(y)) < Ppeax, and
P = min{ﬁ, (77 _ 1) }, b=1,...,B, (12) from the fact tha}gtpgwgb < ( (due to (12)), we hﬁave tAhat
i e I5(P(7),7) < 24—y I (BPyeaxs) for all v, wherel, (p) =
with 1 chosen such thalz(p™(v),7) = R. The outage min(Ix(0),logy(1+ p)). Therefore,
probability obtained by the scheme is similarly defined as | B
w W tw > = B8
Pout (9" (), Prear) = Pr({9™ (%)) > Poca). FoulPocac 1), Foesk) 2 Pr <B 2 Te(BPocucw) < R)
The same duality as in Proposition 1 holds for the truncated 1 &
waterfilling schemes. In particular, we have the following. Pout(pg’gak('y), Preax) < Pr < Z Lip, =8y < R) )
= . o . B peal o=
Proposition 2: Consider transmission over the block-fading b=1

channel given in (1). The outage probability resulting fri/@  Now, following the analysis in [10], we have that
power control rule given in (11) is the same as that resulting

B
i i i 1 _
from the rule given in (10), i.e. Pr (B ZI/[\Z(BPpeak'}/b) < R) - ,Csze«iﬁ(R)
Pous (9™ (), Poeak) = Pr(Ip(p™(v),7) < R), b:;

- o 1 _

for any fading statistics. Pr{—=S 1p g < R| =Krp )
Compared to the schemes given in (5), (10), those given in B ; e 20 peals

(6) and (11) are computationally more demanding, and ase I?éading to the asymptotic behavior in (13). -

practical for transmission with peak power constraints.the 1o 55 mptotic analysis given above is useful in character-
optimal power control rules, while the outage probability- 0 jjng the asymptotic performance of optimal and suboptimal
tained by power allocation schemes in (5) and (6) are the samg,er allocation schemes for systems with average power
the power allocation scheme described in (6) is more useful ignsiraints. which is discussed in the next section.

the analysis of systems with average power constraintsle®im

observations apply for the truncated waterfilling schenmes i V. POWERALLOCATION FOR AVERAGE POWER
(10) and (11). In the following analysis, we will refer to (6) CONSTRAINTS
and (11) for the optimal and truncated waterfilling schemes, Power Allocation Schemes
respectively. For systems with average power constraints, the optimal
B. Asymptotic Performance power allocation schemes is given by

Refe_:rences [81, [71, [9], [10], [_6_] considt_ar the asymptotic Doy (7) = arg m;n P (p(v), R). (14)
behavior of the outage probability. At higf,c.k, under p=0

E <P,y
Nakagamim fading statistics, the outage probability for the ) [<p>]__ ) o )
optimal power allocation scheme is given by [10], [6] Following [3], under N_akagamn fading statistic, the solution
- of (14) has the following structure
Pout(popt(’y)vppeak) = erakpim 5 )7

peak
(7). () < s(p, Pay)
wheredg(R) is the Singleton bound Pay () = {0 otherwise (15)
dg(R) =1+ LB (1 - E)J . wheres(g(7), Pav) is chosen such that

~—

(16)

Furthermore, for systems with truncated waterfilling J (8 Pav) = 0o, im0 B [(Pay (7))] < Pav
schemes, we have the following result. E [(p.(7))] = Pay, otherwise.



The solution of (14), which is also the optimal power al- Theorem 2: Consider transmission over the block-fading
location schemepSPt(~), is obtained by replacings(v) in  channel with a power allocation schemg, (v) given in (15).
(15), (16) withgp°Pt(~) given in (8). Similarly, the suboptimal Assuming that for large,
truncated waterfilling scheme for systems with average powe B
constraintplY () is obtained by replacing () with o™ (v) Foul(p(7), 8) = Koealcs
given in (11). then we have that

In general, the outage probability of the system em- e If d(R) > 1, there exists & such thats(gp, o) = oo,
ploying the power allocation schemes given in (15) is Or equivalentlyP,u(o(7), s(¢, Pav)) = 0 for Poy > Fo.
Poui(9(7), s(, Pay)), Which is the outage probability of a Therefore, the delay-limited capacity [12] is non-zero.
system with power allocation schemgg(~) and peak power e« If d(R) <1, the asymptotic outage probability behaves
constraints(g, P.y). We employ this relationship, together as

—d(R)

with the knowledge of outage diversity of systems with peak Pout(9(7), 5(g0, Pay)) = KPR,

power constraints, to characterize the outage diversity of \here the average power outage diversity is related to the

systems with average power constraints. peak power outage diversity by

B. Asymptotic Performance d _ _d(R) 29
av(R) 1— d(R) ' ( )

For systems with average power constraints, we first char- pygof- A sketch of the proof is as follows. Fa(R) > 1
acterize the relationship betwedn,, and s in (15). Given \ya have from Theorem 2 that

a thresholds, let P,,(s) be the average power required for S
transmission using the power control rule described by, (15) lim Py (s) = zpav(s)ds
the following theorem characterizd3, (s). T . 0o
Theorem 1. Assume a threshold and a power allocation = P(s1) +/ ICpcaks’d(R)ds
scheme described by (15). Further assuming that for large 81

= Py < o0.

POll ) = ,C ea. 7d(R)7 . . . . .
t(0(7);8) = Kpears Therefore, noting thaP,, (s) is an increasing function of,
then, the resulting average powét,(s) = E[(p*'(vy))] the first part of the theorem follows.

satisfies, The outage diversity with respect to the average power is
d - —d(R) given by
— Poy(5) = Kpeaxd(R)s . a7
ds . . —log Pou(p(7),5)

Proof: A sketch of the proof is as follows. We have from dav (R) = lim ]
. 5—00 og Py (9)
definition that Zd(R)
T _log(lcpeaks )
d Py (as) — Puy(s) = lim (23)

(18) §—00 Py (s)
Whend(R) < 1, lim,_,o Pay(s) = co and (22) is obtained
Let R(s,as) 2 {v € RE : s < (p(v)) < as}. From the by applying the L'Hpital’s rule to (23) and noting the result

7P,V :1. av
ds v (5) ;?11 as — s

power control rule given in (15), in Theorem 1. ]
Theorems 1 and 2 characterize the asymptotic outage
AP,, £ P,y (as) — Pay(s) :/ (7)) fy(v)d~.  performance of power allocation schemes for systems with
YER(s,a5) (19) average power constraints given the asymptotic performanc

of the corresponding system with peak power constraints. Th
characterization is applicable to any fading statisticthwbn-
_ _ tinuous pdf. In particular, for systems employing the ojiim
/YER(s,as) Iy (dy = Foulp(7), ) = Fourlo(v), as) power allocation schemeg®t(~) over Nakagamin faded
K (s*d(R) _ (as)*d(m) channels, the outage diversity with peak power constragnts
peak ' mdg(R). From Theorem 2, it follows that, ifndg(R) < 1,
the outage diversity of systems with average power comsgrai
is given by %, while if mdg(R) > 1, the outage
AP, <as (’Cpeak (s—d(R) _ (as)—d(R>)) (20) diversity is infinite and the outage probability curve istical.
) Therefore, delay-limited capacit is achievable with a finite
AP,>s (/Cpeak (S_d(R) - (GS)_d(R))) . (21) average transmit powePr. Moreover, from Theorem 1Pg

can be approximated b
Finally, (17) follows by inserting the bounds in (20) and Y21 PP y

: ) g
into (18) and lettinga | 1. [ ] Pg = lim P, (s) = P (s1) +/ — P, (s)ds
The application of Theorem 1 to the asymptotic analysis of sTee s ds
the outage probability with average power constraintsdead - mdp(R)  1-mds(R)
. ~ Pav(Sl) + erakisl )
the following result. mdp(R) — 1

Furthermore,

Therefore, noting the definition dR (s, as), (19) leads to



where s; is chosen such that the asymptotic analysis holds
and P,,(s1), Kpeak Can be determined numerically. Similar
conclusions can be drawn for systems employing an arbitrat
power allocation scheme using the corresponding outage b
havior at large peak power constraints. For example, asym|
totic results for systems employing the truncated wategll
scheme is obtained by replaciig (R) in the previous anal-
ysis with dz(R).

The results are illustrated numerically in Figure 1 for <
transmission using the QPSK constellation over Nakagam=~
m block-fading channels wittB = 4 andm = 0.5,2 at rate
R = 1.7. The figure shows the outage probability obtainec
by the optimal and the truncated waterfilling scheme witt
(£ = 9dB, respectively. In this case, the peak power constrair
diversity is d(R) = dg(R) = dp(R) = 1. The figure 10 L I I 5 P P = 0
shows that with average power constraints, outage diyersit Fav, 5(9; Pav)(dB)

% = 1 is obtained whennd(R) = %, while reliable Fig. 2. Outage probability of transmissions with QPSK inpuatger
akagamim block-fading channel withB = 4,m = 0.8. The solid lines

transmission at rat& is possible (represented by the Vertlcallnd dashed lines correspondingly represent the optimal lamdruncated

slope of the two left most curves) whend(R) = 2. waterfilling scheme. Lines with] are plots of outage probability vs. the peak
power s(g, Pav) and lines without markers are plots of outage probability
vs. the average power,y .

©(7). (g, Pav))

10°E

10° @

VI. CONCLUSIONS

We have presented the asymptotic behavior of a power
allocation rule for transmission at a target rate with agera
power constraints. We can determine the outage diversity,
and thus the existence of positive delay-limited capaaify,
an average-power-constraint system based on the diverfsity
, the corresponding peak-power-constraint system. Theydela
limited capacity can be approximated based on the asyraptoti
performance of the peak-power-constraint system.
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Fig. 1. Outage probability of transmissions with QPSK inpuiger
Nakagamim block-fading channel withB = 4,m = 0.5 andm = 2.
The solid lines and dashed lines correspondingly represenbptimal and
the truncated waterfilling scheme. Lines withare plots of outage probability
vs. the peak powes(go, Pav) and lines without markers are plots of outage
probability vs. the average powét,, .



