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Abstract— We characterize the asymptotic outage performance
of power allocation techniques for systems with average power
constraints. We show that the outage diversity of a system with
average power constraints can be obtained from the diversity
of the corresponding system with peak power constraints. The
characterization is therefore useful since the asymptotic perfor-
mance of systems with peak power constraints is well known in
the literature.

I. I NTRODUCTION

In many practical communication systems, codewords of
fixed rate are to be delivered over slowly time/frequency-
varying fading channels under stringent delay constraints.
Examples of such cases are Orthogonal Frequency Division
Multiplexing (OFDM) or slow frequency-hopping systems
used for fixed-rate transmission over slowly varying channels.
The block-fading channel [1], [2] is useful for the study
of such communication scenarios. In this model, fixed-rate
codewords are transmitted within a finite number of blocks,
each of which is affected by an independent fading coefficient.
Therefore, each codeword experiences a finite number of
degrees of freedom. Consequently, for most fading statistics,
there exists a non-zero probability that the channel does not
support the desired data rate, also known as the information
outage probability [1], [2]. The information outage probability
is also the word error rate given that an optimal coding scheme
is employed for transmission [3]. Therefore, the channel
has zero capacity and the outage probability is the relevant
performance measure.

One system design criterion of importance is therefore
to minimize the outage probability. When channel state in-
formation is available at the transmitter, power allocation,
among other adaptive transmission schemes, can be used to
reduce the outage probability. The optimal power allocation
scheme for systems with Gaussian inputs is derived in [3], [4].
Optimal and suboptimal schemes for systems with arbitrary
inputs are also proposed in [5], [6]. These works consider
power allocation for systems with peak (per codeword) and
average power constraints, and show that power control for
average power constraints provides significant performance
gains compared to that for peak power constraints. Moreover,

1This work has been supported by the Australian Research Council under
ARC Grants DP0558861, DP0881160 and RN0459498.

for a specific class of fading statistics, power control for
average power constraints may give zero outage, yielding a
non-zero delay-limited capacity [4].

In this work, we perform an asymptotic performance analy-
sis of systems with average power constraints and Nakagami-
m fading statistics. We show the duality between the power
allocation rules resulting from peak and average power con-
straints. This duality is instrumental in characterizing the
asymptotic performance of systems with average power con-
straints based on that of systems with peak constraints. The
result can be applied to any system whose performance at
large peak power constraints is known. This is a useful result
since the asymptotic behavior of systems with peak power
constraints is obtainable, e.g., in [7], [8], [9], [10], [6].

The remainder of the paper is organized as follows. The
system model and the information theoretic base of the work
is given in Sections II and III. Sections IV and V discuss the
power allocation schemes for systems with peak and average
power constraints and their asymptotic performance. Finally,
concluding remarks are given in Section VI.

The following notations are used throughout the paper.
We denote〈x〉 = 1

B

∑B
i=1 xi as the arithmetic mean of

x = (x1, . . . , xB) andE [·] as the expected value of a random
variable. The exponent equalityf(ξ)

.
= Kξ−d indicates that

limξ→∞ f(ξ)ξd = K, with the exponential inequalitieṡ≤, ≥̇
similarly defined.⌊ξ⌋ denotes the largest integer not greater
thanξ. Component-wise inequalities between two vectors are
denoted by� and�. Finally, 11A takes value 1 if the eventA
is true and takes value 0 otherwise.

II. SYSTEM MODEL

Consider transmission over a block-fading channel withB

blocks, where each is affected by a flat fading coefficienthb,
b = 1, . . . , B and additive noise. Assume that the fading coef-
ficients are available at both the transmitter and the receiver,
and that the transmitter allocates power to the blocks according
to the rulep(γ) = (p1(γ), . . . , pB(γ)) whereγ is the power
fading gain vector defined asγb = |hb|

2, b = 1, . . . , B. The
equivalent baseband model is given by

yb =
√

pb(γ)hbxb + nb, b = 1, . . . , B, (1)



wherexb ∈ C
L andyb ∈ C

L are correspondingly the portion
of the codeword transmitted and received in blockb. Assume
that nb ∈ C

L is a white Gaussian noise vector with unit
variance andxb is drawn from a unit-energy constellation
X , Ex∈X [x] = 1. Then, the instantaneous received signal-to-
noise ratio (SNR) at blockb is given bypb(γ)γb. We consider
systems with the following power constraints:

Peak : 〈p(γ)〉 ≤ Ppeak

Average : E [〈p(γ)〉] ≤ Pav

We assume that the fading gainshb are independently iden-
tically distributed random variables whose magnitude follows
the Nakagami-m distribution with unit mean2. The probability
density function (pdf) of|hb| is then given by

f|hb|(ξ) =
2mmξ2m−1

Γ(m)
e−mξ2

, ξ ≥ 0

where Γ(m) is the Gamma function given byΓ(a) =
∫∞
0

ta−1dt. The pdf of the power fading gainγb is given by

fγb
(ξ) =

mmξm−1

Γ(m)
e−mξ, ξ ≥ 0. (2)

The Nakagami-m distribution represents a large class of fading
statistics, including the Rayleigh fading by lettingm = 1, and
an approximation of the Ricean fading with parameterK by
settingm = (K+1)2

2K+1 [11].

III. M UTUAL INFORMATION AND OUTAGE PROBABILITY

For a given fading realizationγ and power allocation
schemep(γ), the instantaneous mutual information is

IB(p(γ),γ) ,
1

B

B
∑

b=1

IX (pb(γ)γb),

where IX (ρ) is the input-output mutual information of an
additive white Gaussian noise (AWGN) channel with input
constellationX and received SNRρ. We have that

IX (ρ) =

M −
1

2M

∑

x∈X
EZ

[

log2

(

∑

x′∈X
e−|√ρ(x−x′)+Z|2+|Z|2

)]

,

where the expectation is overZ ∼ NC(0, 1). For communi-
cation at a fixed rateR, transmission is in outage whenever
IB(p(γ),γ) < R, and the corresponding outage probability
is Pr (IB(p(γ),γ) < R).

IV. POWER ALLOCATION FOR PEAK POWER

CONSTRAINTS

A. Power Allocation Schemes

For systems with peak power constraintPpeak, the optimal
power allocation schemeppeak(γ) is given by

ppeak(γ) = arg min
p�0

〈p〉≤Ppeak

Pr (IB(p(γ),γ) < R) . (3)

2Due to the perfect CSIR assumption, the phase can be compensated for.

A solution p
opt(γ) for the problem is given by

p
opt(γ) = arg max

p�0
〈p〉≤Ppeak

IB(p,γ). (4)

From [5], we have that

p
opt
b (γ) =

1

γb

MMSE−1
X

(

min

{

1,
η

γb

})

, b = 1, . . . , B, (5)

where MMSEX (ρ) is the minimum mean-square error for
estimating an input symbol in the constellationX transmitted
over an AWGN channel with SNRρ

MMSEX (ρ) = 1 −
1

π

∫

C

∣

∣

∣

∑

x∈X xe−|y−√
ρx|2
∣

∣

∣

∑

x∈X e−|y−√
ρx|2 dy,

andη is chosen such that〈popt(γ)〉 = Ppeak. We alternatively
consider the following power allocation rule

p
opt
peak(γ) =

{

℘
opt(γ), 〈℘opt(γ)〉 ≤ Ppeak

0, otherwise,
(6)

where℘(γ) solves the following problem

℘
opt(γ) = arg min

p�0
IB(p,γ)≥R

〈p〉 . (7)

The solution of (7) is given by

℘
opt
b (γ) =

1

γb

MMSE−1
X

(

min

{

1,
η

γb

})

, b = 1, . . . , B,

(8)
whereη is now chosen such thatIB(℘opt(γ),γ) = R.

The outage probability with peak power constraintPpeak is

Pout(℘
opt(γ), Ppeak) = Pr

(〈

℘
opt(γ)

〉

> Ppeak

)

.

The power control rule given in (6) is also optimal, as given
by the following Proposition.

Proposition 1: Consider transmission over the block-fading
channel given in (1). The outage probability resulting fromthe
power control rule given in (6) is the same as that resulting
from the rule given in (5), i.e.

Pout(℘
opt(γ), Ppeak) = Pr(IB(popt(γ),γ) < R), (9)

for any fading statistics.
Proof: Assume that power control rulepopt(γ) results in

an outage for a channel realizationγ, i.e.IB(popt(γ),γ) < R.
Then, sincep

opt(γ) is the solution of (4), for all power
control rules℘(γ) satisfying 〈℘(γ)〉 ≤ Ppeak, we have that
IB(℘(γ),γ) ≤ IB(popt(γ),γ) < R. Consequently, since
IB(℘opt(γ),γ) ≥ R due to the constraints in (7), we have
〈℘opt(γ)〉 > Ppeak. Therefore,popt

peak(γ) also results in an
outage for the channel realizationγ. With similar arguments, if
a power control rulepopt

peak(γ) results in an outage for channel
realizationγ, then p

opt(γ) also gives an outage. Therefore,
(9) follows.

The optimal power allocation scheme in (5), (8) requires
evaluating ℘

opt(γ) for each channel realizationγ, which
requires significant computational power or tabulating storage



capacity due to the involvement of the MMSE expression. This
is not desirable in low cost devices. In [6], various suboptimal
schemes are proposed, aiming at reducing the computational
complexity. Among those, the truncated waterfilling scheme
p

tw(γ) is given by

ptw
b (γ) = min

{

β

γb

,

(

η −
1

γb

)}

, b = 1, . . . , B, (10)

whereβ is a predetermined parameter andη is chosen such
that 〈ptw(γ)〉 = Ppeak. Similar to the optimal case, we
consider the following truncated waterfilling scheme:

p
tw
peak(γ) =

{

℘
tw(γ), if 〈℘tw(γ)〉 ≤ Ppeak

0, otherwise,
(11)

where℘
tw(γ) is given by

℘tw
b = min

{

β

γ
,

(

η −
1

γb

)}

, b = 1, . . . , B, (12)

with η chosen such thatIB(℘tw(γ),γ) = R. The outage
probability obtained by the scheme is similarly defined as

Pout(℘
tw(γ), Ppeak) = Pr(

〈

℘
tw(γ)

〉

> Ppeak).

The same duality as in Proposition 1 holds for the truncated
waterfilling schemes. In particular, we have the following.

Proposition 2: Consider transmission over the block-fading
channel given in (1). The outage probability resulting fromthe
power control rule given in (11) is the same as that resulting
from the rule given in (10), i.e.

Pout(℘
tw(γ), Ppeak) = Pr(IB(ptw(γ),γ) < R),

for any fading statistics.
Compared to the schemes given in (5), (10), those given in

(6) and (11) are computationally more demanding, and are less
practical for transmission with peak power constraints. For the
optimal power control rules, while the outage probability ob-
tained by power allocation schemes in (5) and (6) are the same,
the power allocation scheme described in (6) is more useful in
the analysis of systems with average power constraints. Similar
observations apply for the truncated waterfilling schemes in
(10) and (11). In the following analysis, we will refer to (6)
and (11) for the optimal and truncated waterfilling schemes,
respectively.

B. Asymptotic Performance

References [8], [7], [9], [10], [6] consider the asymptotic
behavior of the outage probability. At highPpeak, under
Nakagami-m fading statistics, the outage probability for the
optimal power allocation scheme is given by [10], [6]

Pout(℘
opt(γ), Ppeak)

.
= KpeakP

−mdB(R)
peak ,

wheredB(R) is the Singleton bound

dB(R) = 1 +

⌊

B

(

1 −
R

M

)⌋

.

Furthermore, for systems with truncated waterfilling
schemes, we have the following result.

Proposition 3: Consider using the truncated waterfilling
power control rulep

tw
peak described in (11) for transmission

over the block-fading channel given in (1). Assume that the
input constellation isX . Further assume that the power fading
gains follows the distribution in (2). For largePpeak, the
outage probability behaves like

Pout(℘
tw(γ), Ppeak)

.
= Ktw

peakP
−mdβ(R)
peak , (13)

wheremdβ(R) is the outage diversity, and

dβ(R) = 1 +

⌊

B

(

1 −
R

IX (β)

)⌋

.

Proof: A sketch of the proof is as follows. From the
characteristics of℘(γ), for all channel realizationγ, we
have thatIB(p(γ),γ) ≥ IX (β)

∑B
b=1 11{Ppeakγb≥β}. More-

over, from the power constraints〈℘(γ)〉 ≤ Ppeak, and
from the fact that℘tw

b γb ≤ β (due to (12)), we have that
IB(p(γ),γ) ≤

∑B
b=1 I

β
X (BPpeakγb) for all γ, whereIβ

X (ρ) ,

min(IX (β), log2(1 + ρ)). Therefore,

Pout(p
tw
peak(γ), Ppeak) ≥ Pr

(

1

B

B
∑

b=1

I
β
X (BPpeakγb) < R

)

Pout(p
tw
peak(γ), Ppeak) ≤ Pr

(

1

B

B
∑

b=1

11{Ppeakγb≥β} < R

)

.

Now, following the analysis in [10], we have that

Pr

(

1

B

B
∑

b=1

I
β
X (BPpeakγb) < R

)

.
= KℓP

−dβ(R)
peak

Pr

(

1

B

B
∑

b=1

11{Ppeakγb≥β} < R

)

.
= KuP

−dβ(R)
peak ,

leading to the asymptotic behavior in (13).
The asymptotic analysis given above is useful in character-

izing the asymptotic performance of optimal and suboptimal
power allocation schemes for systems with average power
constraints, which is discussed in the next section.

V. POWER ALLOCATION FOR AVERAGE POWER

CONSTRAINTS

A. Power Allocation Schemes

For systems with average power constraints, the optimal
power allocation schemes is given by

pav(γ) = arg min
p�0

E[〈p〉]≤Pav

Pout(p(γ), R). (14)

Following [3], under Nakagami-m fading statistic, the solution
of (14) has the following structure

pav(γ) =

{

℘(γ), 〈℘(γ)〉 ≤ s(℘, Pav)

0, otherwise,
(15)

wheres(℘(γ), Pav) is chosen such that
{

s(℘, Pav) = ∞, lims→∞ E [〈pav(γ)〉] < Pav

E [〈pav(γ)〉] = Pav, otherwise.
(16)



The solution of (14), which is also the optimal power al-
location schemepopt

av (γ), is obtained by replacing℘(γ) in
(15), (16) with℘

opt(γ) given in (8). Similarly, the suboptimal
truncated waterfilling scheme for systems with average power
constraintsptw

av (γ) is obtained by replacing℘(γ) with ℘
tw(γ)

given in (11).
In general, the outage probability of the system em-

ploying the power allocation schemes given in (15) is
Pout(℘(γ), s(℘, Pav)), which is the outage probability of a
system with power allocation scheme℘(γ) and peak power
constraints(℘, Pav). We employ this relationship, together
with the knowledge of outage diversity of systems with peak
power constraints, to characterize the outage diversity of
systems with average power constraints.

B. Asymptotic Performance

For systems with average power constraints, we first char-
acterize the relationship betweenPav and s in (15). Given
a thresholds, let Pav(s) be the average power required for
transmission using the power control rule described by (15),
the following theorem characterizesPav(s).

Theorem 1: Assume a thresholds and a power allocation
scheme described by (15). Further assuming that for larges,

Pout(℘(γ), s)
.
= Kpeaks

−d(R),

then, the resulting average powerPav(s) = E [〈pav(γ)〉]
satisfies,

d

ds
Pav(s)

.
= Kpeakd(R)s−d(R). (17)

Proof: A sketch of the proof is as follows. We have from
definition that

d

ds
Pav(s) = lim

a↓1

Pav(as) − Pav(s)

as − s
. (18)

Let R(s, as) , {γ ∈ R
B : s ≤ 〈℘(γ)〉 ≤ as}. From the

power control rule given in (15),

∆Pav , Pav(as) − Pav(s) =

∫

γ∈R(s,as)

〈℘(γ)〉 fγ(γ)dγ.

(19)
Furthermore,
∫

γ∈R(s,as)

fγ(γ)dγ = Pout(℘(γ), s) − Pout(℘(γ), as)

.
= Kpeak

(

s−d(R) − (as)−d(R)
)

.

Therefore, noting the definition ofR(s, as), (19) leads to

∆Pav≤̇as
(

Kpeak

(

s−d(R) − (as)−d(R)
))

(20)

∆Pav≥̇s
(

Kpeak

(

s−d(R) − (as)−d(R)
))

. (21)

Finally, (17) follows by inserting the bounds in (20) and (21)
into (18) and lettinga ↓ 1.

The application of Theorem 1 to the asymptotic analysis of
the outage probability with average power constraints leads to
the following result.

Theorem 2: Consider transmission over the block-fading
channel with a power allocation schemepav(γ) given in (15).
Assuming that for larges,

Pout(℘(γ), s)
.
= Kpeaks

−d(R),

then we have that
• If d(R) > 1, there exists aP0 such thats(℘, P0) = ∞,

or equivalentlyPout(℘(γ), s(℘, Pav)) = 0 for Pav ≥ P0.
Therefore, the delay-limited capacity [12] is non-zero.

• If d(R) < 1, the asymptotic outage probability behaves
as

Pout(℘(γ), s(℘, Pav))
.
= KP−dav(R)

av ,

where the average power outage diversity is related to the
peak power outage diversity by

dav(R) =
d(R)

1 − d(R)
. (22)

Proof: A sketch of the proof is as follows. Ford(R) > 1,
we have from Theorem 2 that

lim
s→∞

Pav(s) =

∫ ∞

0

d

ds
Pav(s)ds

.
= P (s1) +

∫ ∞

s1

Kpeaks
−d(R)ds

.
= P0 < ∞.

Therefore, noting thatPav(s) is an increasing function ofs,
the first part of the theorem follows.

The outage diversity with respect to the average power is
given by

dav(R) = lim
s→∞

− log Pout(℘(γ), s)

log Pav(s)

= lim
s→∞

− log(Kpeaks
−d(R))

Pav(s)
. (23)

When d(R) < 1, lims→∞ Pav(s) = ∞ and (22) is obtained
by applying the L’Ĥopital’s rule to (23) and noting the result
in Theorem 1.

Theorems 1 and 2 characterize the asymptotic outage
performance of power allocation schemes for systems with
average power constraints given the asymptotic performance
of the corresponding system with peak power constraints. The
characterization is applicable to any fading statistics with con-
tinuous pdf. In particular, for systems employing the optimal
power allocation schemespopt(γ) over Nakagami-m faded
channels, the outage diversity with peak power constraintsis
mdB(R). From Theorem 2, it follows that, ifmdB(R) < 1,
the outage diversity of systems with average power constraints
is given by mdB(R)

1−mdB(R) , while if mdB(R) > 1, the outage
diversity is infinite and the outage probability curve is vertical.
Therefore, delay-limited capacityR is achievable with a finite
average transmit powerPR. Moreover, from Theorem 1,PR

can be approximated by

PR = lim
s→∞

Pav(s) ≈ Pav(s1) +

∫ ∞

s1

d

ds
Pav(s)ds

≈ Pav(s1) + Kpeak
mdB(R)

mdB(R) − 1
s
1−mdB(R)
1 ,



where s1 is chosen such that the asymptotic analysis holds,
and Pav(s1),Kpeak can be determined numerically. Similar
conclusions can be drawn for systems employing an arbitrary
power allocation scheme using the corresponding outage be-
havior at large peak power constraints. For example, asymp-
totic results for systems employing the truncated waterfilling
scheme is obtained by replacingdB(R) in the previous anal-
ysis with dβ(R).

The results are illustrated numerically in Figure 1 for
transmission using the QPSK constellation over Nakagami-
m block-fading channels withB = 4 and m = 0.5, 2 at rate
R = 1.7. The figure shows the outage probability obtained
by the optimal and the truncated waterfilling scheme with
β = 9dB, respectively. In this case, the peak power constraint
diversity is d(R) = dβ(R) = dB(R) = 1. The figure
shows that with average power constraints, outage diversity

md(R)
1−md(R) = 1 is obtained whenmd(R) = 1

2 , while reliable
transmission at rateR is possible (represented by the vertical
slope of the two left most curves) whenmd(R) = 2.
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Fig. 1. Outage probability of transmissions with QPSK inputsover
Nakagami-m block-fading channel withB = 4, m = 0.5 and m = 2.
The solid lines and dashed lines correspondingly representthe optimal and
the truncated waterfilling scheme. Lines with� are plots of outage probability
vs. the peak powers(℘, Pav) and lines without markers are plots of outage
probability vs. the average powerPav.

Simulation results for the same setup with rateR = 1.5, β =
7dB and m = 0.8 are illustrated in Figure 2. In this case,
dB(R) = 2 and dβ(R) = 1, and therefore, we can observe
the suboptimality in the outage diversity of systems employing
the truncated waterfilling scheme3. For systems with average
power constraints, the optimal power allocation scheme allows
for reliable transmission at rateR = 1.5, while systems with
the truncated waterfilling scheme have an outage diversity of

mdβ(R)
1−mdβ(R) = 4.

3Note that theβ parameter is deliberately chosen to show the suboptimal
outage diversity. In most cases,β can be chosen to obtain the optimal diversity.
Otherwise,β can be chosen such that the suboptimal diversity does not appear
at the outage levels of interest.
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Fig. 2. Outage probability of transmissions with QPSK inputsover
Nakagami-m block-fading channel withB = 4, m = 0.8. The solid lines
and dashed lines correspondingly represent the optimal and the truncated
waterfilling scheme. Lines with� are plots of outage probability vs. the peak
power s(℘, Pav) and lines without markers are plots of outage probability
vs. the average powerPav.

VI. CONCLUSIONS

We have presented the asymptotic behavior of a power
allocation rule for transmission at a target rate with average
power constraints. We can determine the outage diversity,
and thus the existence of positive delay-limited capacity,of
an average-power-constraint system based on the diversityof
the corresponding peak-power-constraint system. The delay-
limited capacity can be approximated based on the asymptotic
performance of the peak-power-constraint system.
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