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Abstract— The main drawback in communicating via the free-
space optical channel is the detrimental effect the atmosphere
has on a propagating laser beam. Atmospheric turbulence causes
random fluctuations in the irradiance of the received laser
beam, commonly referred to as scintillation. We investigate the
mitigation of scintillation through the use of multiple lasers and
multiple apertures, thereby creating a multiple-input multiple
output (MIMO) channel. We adopt a quasi-static block fading
model and study the outage probability of the channel under the
assumption of orthogonal pulse-position modulation. Non-ideal
photodetection is also assumed such that the combined shot noise
and thermal noise are considered as signal-independent additive
Gaussian white noise. Assuming perfect receiver channel state
information (CSI), we compute the signal-to-noise ratio exponents
for the cases when the scintillation is lognormal, exponential
and gamma-gamma distributed, which cover a wide range of
atmospheric turbulence conditions. Furthermore, we illustrate
very large gains when CSI is also available at the transmitter.

I. INTRODUCTION

Free-space optical (FSO) communication offers an attractive
alternative to the radio frequency (RF) channel for transmitting
data at very high rates. By utilising a high carrier frequency
in the optical range, digital communication on the order of
gigabits per second is possible. In addition, FSO links are
difficult to intercept, immune to interference or jamming from
external sources, and are not subject to frequency spectrum
regulations. FSO communications has received recent attention
in applications such as satellite communications, fiber-backup,
RF-wireless back-haul and last-mile connectivity [1].

The main drawback of the FSO channel is the detrimental
effect the atmosphere has on a propagating laser beam. The
atmosphere is composed of gas molecules, water vapor, pollu-
tants, dust, and other chemical particulates that are trapped by
Earth’s gravitational field. Since the wavelength of a typical
optical carrier is comparable to these molecule and particle
sizes, the carrier wave is subject to various propagation effects
that are uncommon to RF systems. One such effect is scin-
tillation, caused by atmospheric turbulence, refers to random
fluctuations in the irradiance of the received optical laser beam
(analogous to fading experienced in RF systems) [2–4].

Recent works on the mitigation of scintillation concentrate
on the use of multiple-lasers and multiple-apertures to create a
multiple-input-multiple-output (MIMO) channel [5–13]. Many
of these works consider scintillation as an ergodic fading

process, and analyse the channel in terms of its ergodic
capacity. However, compared to typical data rates, scintillation
is a slow time varying process (with a coherence time on the
order of milliseconds), and it is therefore more appropriate to
analyse the outage probability of the channel. To some extent,
this has been done in the works of [6, 10, 12–14]. In [6, 13]
the outage probability of the MIMO FSO channel is analysed
under the assumption of ideal photodetection (PD) (i.e. PD
is modeled as a Poisson counting process) with no bandwidth
constraints. Wilson et al. [10] also assume perfect PD, but with
the further constraint of pulse-position modulation (PPM).
Lee and Chan [12], study the outage probability under the
assumption of on-off keying (OOK) transmission and non-
ideal PD, i.e. the combined shot noise and thermal noise
process is modeled as zero mean signal independent additive
white Gaussian noise (AWGN). Farid and Hranilovic [14]
extend this analysis to include the effects of pointing errors.
Recently, the outage probability was analysed in [15] for
the single-laser single aperture channel with PPM, subject to
lognormal and exponential scintillation corresponding to weak
and strong turbulence conditions, respectively.

In this paper, we extend the analysis of [15] to the MIMO
case, under the assumption of equal gain combining (EGC)
at the receiver. In addition to the lognormal and exponential
cases, we also analyse the gamma-gamma case, which was
recently proposed to model the scintillation for a wide range
of turbulence conditions [16]. When perfect CSI is only known
at the receiver (CSIR case), we show that the SNR exponent
is proportional to the number of lasers times the number
of apertures, times a channel related parameter, times the
Singleton bound [17–19]. When perfect CSI is also known
at the transmitter (CSIT case), we show that with the use of
MIMO one need only to code over a single fading realisation
to ensure positive delay-limited capacity [20]. These results
highlight the benefits of MIMO and block diversity in reducing
the outage probability in FSO systems.

The paper is organised as follows. In Section II, we define
the channel model and assumptions. In Section III we review
the lognormal, exponential and gamma-gamma scintillation
models. Then in Sections IV and V we present the main results
of our asymptotic outage probability analysis. Concluding
remarks are then given in Section VI.



II. SYSTEM MODEL

We consider an FSO system with M transmit lasers an N
aperture receiver. Information data is first encoded by a binary
code of rate Rc. The encoded stream is modulated according
to a Q-ary PPM scheme, resulting in rate R = Rc log2 Q
(bits/channel use). Repetition transmission is employed such
that the same PPM signal is transmitted in perfect synchronism
by each of the M lasers through an atmospheric turbulent
channel and collected by N receive apertures. We assume the
distance between the individual lasers and apertures is suffi-
cient so that spatial correlation is negligible. At each aperture,
the received optical signal is converted to an electrical signal
via PD. Non-ideal PD is assumed such that the combined shot
noise and thermal noise processes can be modeled as zero
mean, signal independent AWGN (an assumption commonly
used in the literature, see e.g. [3–5, 12, 14, 21–26]).

In FSO communications, channel variations are typically
much slower than the signaling period. As such, we model
the channel as a non-ergodic block-fading channel, for which
a given codeword of length BL sees only a finite number
B of scintillation realisations [27, 28]. The received signal at
aperture 1 ≤ n ≤ N can be written as

yn
b [`] =

(
M∑

m=1

h̃m,n
b

)√
p̃b xb[`] + z̃n

b [`], (1)

for b = 1, . . . , B, ` = 1, . . . , L, where yn
b [`], z̃n

b [`] ∈ RQ are
the received and noise signals at block b, time instant ` and
aperture n, xb[`],∈ RQ is the transmitted signal at block b
and time instant `, and h̃m,n

b denotes the scintillation fading
coefficient between laser m and aperture n. Each transmitted
symbol is drawn from a PPM alphabet, xb[`] ∈ X ppm ∆=
{e1, . . . ,eQ}, where eq is the canonical basis vector, i.e., it
has all zeros except for a one in position q, the time slot
where the pulse is transmitted. The noise samples of z̃n

b [`] are
independent realisations of a random variable Z ∼ N (0, 1),
and p̃b denotes the received electrical power of block b at each
aperture in the absence of scintillation. The fading coefficients
h̃m,n

b are independent realisations of a random variable H̃ with
probability density function (pdf) fH̃(h). At the receiver, we
assume equal gain combining (EGC) is employed, such that
the entire system is equivalent to a single-input single-output
(SISO) channel, i.e.

yb[`] =
1√
N

N∑
n=1

yn
b [`] =

√
pbhbxb[`] + zb[`], (2)

where zb[`] = 1√
N

∑N
n=1 z̃n

b [`] ∼ N (0, 1), and
hb, a realisation of the random variable H , is
defined as the normalised combined fading coefficient,
i.e. hb = c

MN

∑M
m=1

∑N
n=1 h̃m,n

b , where c =
1/(E[H̃]

√
1 + σ2

I/(MN)) is a constant to ensure
E[H2] = 1.1 Thus, the total instantaneous received electrical

1Since we consider only the asymptotic behaviour of the outage probability,
the specific normalisation is irrelevant and does not affect our results.

power at block b is pb = M2Np̃b/c, and the total average
received SNR is snr , E[h2

bpb] = E[pb].

III. SCINTILLATION DISTRIBUTIONS

The scintillation pdf, fH̃(h), is parameterised by the scin-
tillation index (SI), σ2

I , Var(H̃)

(E[H̃])2
. Under weak atmospheric

turbulence conditions (defined as those regimes for which
σ2

I < 1), the SI is proportional to the so called Rytov variance
which represents the SI of an unbounded plane wave in weak
turbulence conditions, and is also considered as a measure of
the strength of the optical turbulence under strong-fluctuation
regimes [4]. The distribution of the irradiance fluctuations
is dependent on the strength of the optical turbulence. For
weak turbulence, fluctuations are generally considered to be
lognormal distributed, and for strong turbulence, exponential
distributed [2, 29]. For moderate turbulence, the distribution
of the fluctuations is not well understood, and a number of
distributions have been proposed, such as the lognormal-Rice
distribution, K-distribution and gamma-gamma distribution
(see [4] and references therein). In this paper we focus on
the lognormal, exponential, and gamma-gamma distributed
scintillation. However, our analysis can be extended to the
other aforementioned distributions.

For lognormal distributed scintillation,

fH̃(h) =
1

hσ
√

2π
exp

(
−(log h− µ)2/(2σ2)

)
, (3)

where µ and σ are related to the SI via µ = − log(1 + σ2
I )

and σ2 = log(1 + σ2
I ).

For exponential distributed scintillation,

fH̃(h) = λ exp(−λh). (4)

Note that this corresponds to the super-saturated turbulence
regime, for which σ2

I = 1.
The gamma-gamma distribution arises from the product

of two independent Gamma distributed random variables
and [16],

fH̃(h) =
2(αβ)

α+β
2

Γ(α)Γ(β)
h

α+β
2 −1 Kα−β(2

√
αβh), (5)

where Kν(x) denotes the modified Bessel function of the
second kind. The parameters α and β are related with the
scintillation index via σ2

I = α−1 + β−1 + (αβ)−1.

IV. OUTAGE PROBABILITY ANALYSIS WITH CSIR

The channel described by (2) under the quasi-static assump-
tion is not information stable [30] and therefore, the channel
capacity in the strict Shannon sense is zero. The codeword
error probability of any coding scheme can be lower bounded
by the information outage probability [27, 28],

Pout(snr, R) = Pr(I(p,h) < R), (6)

where R is the transmission rate and [31],

I(p,h) =
1
B

B∑
b=1

Iawgn(pbh
2
b), (7)



is the instantaneous mutual information for a given power
allocation p = (p1, . . . , pb) and vector channel realisation
h , (h1, . . . , hB). For PPM over an AWGN channel [21],

Iawgn(ρ) = log2 Q− E

[
log2

(
1 + e−ρ

Q∑
q=2

e(
√

ρ(Zq−Z1))
)]

,

where ρ is the SNR and Zq ∼ N (0, 1) for q = 1, . . . , Q.
For the CSIR case, we employ uniform power allocation,

i.e. p1 = . . . = pB = snr. For codewords transmitted over
B blocks, obtaining a closed form analytic expression for
the outage probability is intractable. Even for B = 1, in
some cases, for example the lognormal or gamma-gamma
distributions, determining the exact distribution of H can be a
difficult task. Instead, as we shall see, obtaining the asymptotic
behaviour of the outage probability is substantially simpler.
Towards this end, and following the footsteps of [19, 32], we
derive the SNR exponent.

Theorem 4.1: The outage SNR exponent for a MIMO FSO
communications system modeled by (2) is given as follows:

dln
(log snr)2 =

MN

8 log(1 + σ2
I )

(1 + bB (1−Rc)c) (8)

dexp
(log snr) =

MN

2
(1 + bB (1−Rc)c) , (9)

dgg
(log snr) =

MN

2
min(α, β) (1 + bB (1−Rc)c) , (10)

for lognormal, exponential and gamma-gamma respectively,
where Rc = R/ log2(Q) is the rate of the binary code and

d(log snr)k
∆= − lim

snr→∞

log Pout(snr, R)
(log snr)k

k = 1, 2. (11)

From (8)-(10) we immediately see the benefits of spatial and
block diversity on the system. In particular, each exponent
is proportional to: the number of lasers times the number
of apertures, reflecting the spatial diversity; a channel related
parameter that is dependent on the scintillation distribution;
and the Singleton bound, which is the optimal rate-diversity
tradeoff for Rayleigh-faded block fading channels [17–19].

Comparing the channel related parameters in (8)-(10) the
effects of the scintillation distribution on the outage probability
are directly visible. For the lognormal case, the channel related
parameter is 8 log(1 + σ2

I ) and hence is directly linked to the
SI. Moreover, for small σ2

I < 1, 8 log(1 + σ2
I ) ≈ 8σ2

I and the
SNR exponent is inversely proportional to the SI. For the expo-
nential case, the channel related parameter is a constant 1/2 as
expected, since the SI is constant. For the gamma-gamma case
the channel related parameter is min(α, β)/2, which highlights
an interesting connection between the outage probability and
recent results in the theory of optical scintillation. For gamma-
gamma distributed scintillation, the fading coefficient results
from the product of two independent random variables, i.e.
H̃ = XY , where X and Y model fluctuations due to large
scale and small scale cells. Large scale cells cause refractive
effects that mainly distort the wave front of the propagating
beam, and tend to steer the beam in a slightly different
direction (i.e. beam wander). Small scale cells cause scattering

by diffraction and therefore distort the amplitude of the wave
through beam spreading and irradiance fluctuations [4, p. 160].
The parameters α, β are related to the large and small scale
fluctuation variances via α = σ−2

X and β = σ−2
Y . For a plane

wave (neglecting inner/outer scale effects) σ2
Y > σ2

X , and as
the strength of the optical turbulence increases, the small scale
fluctuations dominate and σ2

Y → 1 [4, p. 336]. This implies
that the SNR exponent is exclusively dependent on the small
scale fluctuations. Moreover, in the strong fluctuation regime,
σ2

Y → 1, the gamma-gamma distribution reduces to a K-
distribution [4, p. 368], and the system has the same SNR
exponent as the exponential case typically used to model very
strong fluctuation regimes.

In comparing (8) to (9) and (10) we observe a striking
difference. For the lognormal case (8) implies the outage
probability is dominated by a (log(snr))2 term, whereas for
the other cases it is dominated by a log(snr) term. Thus the
outage probability decays much more rapidly with SNR for
the lognormal case than it does for the exponential or gamma-
gamma cases. Furthermore, for the lognormal case, the slope
of the outage probability curve, when plotted on a log-log
scale, will not converge to a constant value. In fact, a constant
slope curve will only be observed when plotting the outage
probability on a log-(log)2 scale.

For the special case of single block transmission, B =
1, it is straightforward to express the outage probabil-
ity in terms of the cumulative distribution function (cdf)
of the scintillation random variable, i.e. Pout(snr, R) =
FH(

√
snrawgn

R /snr) where FH(h) denotes the cdf of H , and
snrawgn

R
∆= Iawgn,−1(R) denotes the SNR value at which the

mutual information is equal to R. Therefore, for B = 1,
we can compute the outage probability analytically when
the distribution of H is available, i.e., in the exponential
case for M,N ≥ 1 or in the lognormal and gamma-gamma
cases for M,N = 1. It is however possible to evaluate
the distribution numerically using the fast-Fourier transform
(FFT). This approach involves performing the FFT of the
truncated distribution of H̃ , raising it to the MN -th power
and then computing the inverse FFT (IFFT).The accuracy of
this method depends on the truncation, the sampling of the
distribution as well as the number of FFT points. In any
case, very accurate computations of the outage probability for
B = 1 and M,N ≥ 1 can be done in only a few seconds.

Outage probability curves for the B = 1 case are shown
in Fig. 1 (left). For the lognormal case, we see that the
curves do not have constant slope for large SNR, while, for
the exponential and gamma-gamma cases, a constant slope is
clearly visible. We also see the benefits of MIMO, particularly
in the exponential and gamma-gamma cases, where the SNR
exponent has increased from 1/2 and 1 to 2 and 4 respectively.

V. OUTAGE PROBABILITY ANALYSIS WITH CSIT

In this section we consider the case where the transmitter
and receiver both have perfect CSI knowledge. In this case,
the transmitter determines the optimal power allocation that
minimises the outage probability for a fixed rate, subject



to a power constraint [33]. For the SISO case with CSIT,
long-term and short-term power constraints were considered
in [15], the results of which were based on the application of
results from [34]. Since the MIMO channel with EGC can be
considered as a SISO channel (as evidenced by (2)) the same
optimal power allocation algorithms as described in [15] apply.

For a short-term power constraint P , such that
1
B

∑B
b=1 pb ≤ P , the optimal power allocation is given

by mercury-waterfilling at each channel realisation [34, 35],

pb =
1
h2

b

mmse−1

(
min

{
1,

η

h2
b

})
, (12)

for b = 1, . . . , B where mmse−1(u) is the inverse-MMSE
function and η is chosen to satisfy the power constraint. The
MMSE for PPM was derived in [15] and can be computed via
Monte Carlo simulations. From [34, Prop. 1] it is apparent that
the SNR exponent for the CSIT case under short-term power
constraints is the same as the CSIR case.

For a long-term power constraint P , such that
E
[

1
B

∑B
b=1 pb

]
≤ P the optimal power allocation is [34]

p =

{
℘,

∑B
b=1 ℘b ≤ s

0, otherwise,
(13)

where

℘b =
1
h2

b

mmse−1

(
min

{
1,

1
ηh2

b

})
, b = 1, . . . , B (14)

and s is a threshold such that s = ∞ if
lims→∞ ER(s)

[
1
B

∑B
b=1 ℘b

]
≤ P , and

R(s) ,

{
h ∈ RB

+ :
1
B

B∑
b=1

℘b ≤ s

}
, (15)

otherwise, s is chosen such that P = ER(s)

[
1
B

∑B
b=1 ℘b

]
.

In (14), η is now chosen to satisfy the rate constraint

1
B

B∑
b=1

Iawgn

(
mmse−1

(
min

{
1,

1
ηh2

b

}))
= R (16)

From [34], the long-term SNR exponent is given by

dlt
(log snr) =


dst
(log snr)

1−dst
(log snr)

dst
(log snr) < 1

∞ dst
(log snr) > 1

, (17)

where dst
(log snr) is the short-term SNR exponent. Note

that dlt
(log snr) = ∞ implies the outage probability curve

is vertical, i.e. delay-limited capacity [20] is positive.
From (8) we see that dst

(log snr) = ∞ for the lognormal
case, i.e. delay-limited capacity is always positive. Whereas
for the exponential and gamma-gamma cases, from (9)
and (10), we require MN (1 + bB (1−Rc)c) > 2 and
MN min(α, β) (1 + bB (1−Rc)c) > 2, respectively. Other-
wise delay-limited capacity is zero for these cases. Thus, for
these cases, M,N,B and Rc need to be chosen carefully to
ensure positive delay-limited capacity.

Single block transmission (B = 1) is most relevant in FSO
communications since the coherence time is on the order of
milliseconds which is large compared to typical data rates. In
this case the solution (14) can be determined explicitly since
η =

(
h2mmse(Iawgn,−1(R))

)−1 =
(
h2mmse(snrawgn

R )
)−1

.
Therefore,

℘opt =
snrawgn

R

h2
. (18)

Intuitively, (18) implies that for single block transmission,
whenever snrawgn

R /h2 ≤ s, one simply transmits at the mini-
mum power necessary so that the received instantaneous SNR
is equal to the SNR threshold (snrawgn

R ) of the code. Otherwise,
one does not transmit. Thus an outage occurs whenever h <√

snrawgn
R /s and hence Pout(snr, R) = FH

(√
snrawgn

R

γ−1(snr)

)
where γ−1(snr) is the solution to the equation γ(s) = snr,

γ(s) = snrawgn
R

∫∞
ν

fH(h)
h2 dh, where ν =

√
snrawgn

R

s [15].
Fig. 1 (right) compares the outage probability for the B = 1

CSIT case (with long-term power constraints) for each of the
scintillation distributions. For the MN = 1 case we see that
delay-limited capacity is positive only for the lognormal case,
since for the other two distributions dst

(log snr) < 1. For the
other cases, one must code over more blocks to ensure positive
delay-limited capacity. When MN = 4, delay-limited capacity
is positive in all three distribution cases since dst

(log snr) > 1.
Note that the SNR threshold at which Pout → 0 can be
determined by computing the expectation snrawgn

R E
[
H−2

]
,

and can also be determined explicitly for some cases [15].
Comparing the CSIR and CSIT cases (left and right curves)
we can see that very large gains are possible when CSI is
known at the transmitter.

VI. CONCLUSIONS

In this paper we have analysed the outage probability of
the MIMO Gaussian FSO channel under the assumption of
PPM and non-ideal PD. When CSI is known only at the
receiver, we have shown that the SNR exponent is proportional
to the number lasers and apertures, times a channel related
parameter (dependent on the scintillation distribution), times
the Singleton bound. When the scintillation is lognormal
distributed, we have shown that the outage probability is
dominated by a (log(snr))2 term, whereas for the exponential
and gamma-gamma cases it is dominated by a log(snr) term.
When CSI is also known at the transmitter, we applied the
techniques of [34] to show very significant power savings.
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