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Abstract—Saddlepoint approximations of the meta-converse
and random-coding union bounds are derived. These bounds
accurately characterize the channel coding minimum error prob-
ability for symmetric memoryless channels in a wide range of
system parameters. The proposed approximations are simple to
compute and yield a unified analysis of both hypothesis-testing
lower bounds and random-coding upper bounds.

I. INTRODUCTION

In [1], Polyanskiy, Poor and Verdú derived new lower
and upper bounds to the error probability in channel coding.
Among other remarkable results, they showed that for trans-
mission over a length-n channel Wn(·|·), the error probability
of the best code of length n and M codewords, P ?e (n,M),
satisfies [1]

mc(n,M) ≤ P ?e (n,M) ≤ rcu(n,M), (1)

where mc(n,M) and rcu(n,M) are respectively the meta-
converse and the random-coding union (RCU) bounds.

The lower bound to P ?e (n,M) in (1) is related to the
error probability of a binary hypothesis testing problem. Let
αβ(P,Q) denote the smallest type-I error probability among
all tests discriminating between distributions P and Q, with
a type-II error probability of at most β. Then, [1, Th. 27]
establishes that mc(n,M) is given by

mc(n,M) , min
Pn

max
Qn

{
α 1
M

(
Pn ×Wn, Pn ×Qn

)}
, (2)

where the minimization is over all input distributions Pn, and
the maximization is over a set of auxiliary, independent of
the input, output distributions Qn. The bound (2) is usually
referred to as the meta-converse bound, since several previous
converse bounds can be derived from it via relaxation.

The upper bound to P ?e (n,M) in (1) follows from applying
the union bound to the random-coding error probability. For a
random-coding ensemble defined by the probability distribu-
tion Pn(x), rcu(n,M) is given by [1, Th. 16]

rcu(n,M) , E
[
min{1, (M − 1)pep(X,Y )}

]
, (3)

where (X,Y ) ∼ Pn ×Wn, and

pep(x,y) , Pr
[
Wn(y|X) ≥Wn(y|x)

]
, (4)
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is the pairwise error probability, with X ∼ Pn.
The RCU and the meta-converse bounds accurately char-

acterize the minimum error probability for a wide range of
lengths n and rates R , 1

n logM . Unfortunately, evaluat-
ing (2) and (3) involves integrating tail probabilities of n-
dimensional random variables, which is computationally hard
even for simple channels and moderate values of n.

In this work, we use the saddlepoint approximation to
approximate the RCU for i.i.d. random-coding ensembles
and the meta-converse bound for symmetric channels. This
technique is based on approximating the cumulant generating
function of the random variable of interest by its second-order
Taylor expansion, and obtaining the inverse Laplace integral
of the resulting expression. This technique is usually referred
to as saddlepoint approximation. The derived approximations
are accurate, simple to compute and yield a unified analysis
of both random-coding upper bounds and hypothesis-testing
lower bounds for memoryless symmetric channels.

The results derived in this paper are related to the works
[2]–[7]. In particular, [2] used saddlepoint methods to obtain
approximations of random-coding bounds under mismatched
decoding, [3] obtained refinements of the sub-exponential
factor of the random-coding bound, and [6], [7] also found
expansions of the random-coding error probability based on
large deviation techniques. Laplace integration methods were
used in [4] to approximate the meta-converse bound for the
AWGN channel, and in [5] for parallel channels, the binary-
input AWGN channel and the binary symmetric channel, for
both converse and achievability bounds.

The derivations of the saddlepoint approximations of the
RCU and meta-converse bounds are presented here in a tutorial
format, and are intended for an audience not familiar with the
saddlepoint technique. We first discuss the main steps to obtain
a saddlepoint approximation of a tail probability of the sum
of n random variables, and then study the tail probabilities
needed to compute the meta-converse and the RCU bounds
for symmetric memoryless channels. Finally, we discuss and
numerically evaluate the exponential gap between the RCU
and meta-converse bounds.

II. SADDLEPOINT APPROXIMATION

Let (X1, . . . , Xn) be a sequence of real-valued non-lattice
random variables. We wish to estimate the tail probability



Pr
[
Z ≥ γn

]
of the random variable Z =

∑n
i=1Xi. The

cumulant generating function of Z is defined as

κ(s) = log E
[
esZ
]
, (5)

with s ∈ S, where S ⊆ C is the region of convergence of κ(s).
For independent Xi, it is immediate that κ(s) is the sum of
the cumulant generating functions of each component Xi, i.e.,

κ(s) =

n∑
i=1

log E
[
esXi

]
. (6)

Using the inverse Laplace transformation [8], the probability
density function of Z, p(z), can be recovered from its cumu-
lant generating function κ(s) as

p(z) =
1

2πj

∫ ŝ+j∞

ŝ−j∞
eκ(s)−sz ds, (7)

where j =
√
−1, and ŝ is a real-valued parameter that allows

us to shift the integration line of (7).
The Taylor expansion of κ(s) around ŝ is given by

κ(s) = κ(ŝ)+κ′(ŝ)(s− ŝ)+
1

2
κ′′(ŝ)(s− ŝ)2 +εκ(s− ŝ), (8)

where εκ(·) collects the higher-order terms in the expansion,

εκ(t) =

∞∑
`=3

κ(`)(ŝ)

`!
t` (9)

and κ(`)(s) denote the `-th order derivative of κ(s).
Using the expansion (8) and the change of variable s↔ σ,

s = ŝ+ jσ, from (7) we obtain

p(z) =
eκ(ŝ)−ŝz

2π

∫ ∞
−∞

ejσ(κ
′(ŝ)−z)− 1

2κ
′′(ŝ)σ2

eεκ(jσ) dσ. (10)

Using the Taylor expansion of the exponential function, i.e.,
ex =

∑∞
m=0

1
m!x

m, the contribution of the remaining terms
εκ(·) of the expansion (8) in equation (10) can be expressed
as eεκ(jσ) = 1 + ε̃κ(σ), where

ε̃κ(σ) ,
∞∑
m=1

1

m!

( ∞∑
`=3

κ(`)(ŝ)

`!
(jσ)`

)m
. (11)

As a result, the probability density function (10) becomes

p(z) = eκ(ŝ)−ŝz ·

(
1

2π

∫ ∞
−∞

e−jσzϕ(σ) dσ + εp(z)

)
, (12)

where ϕ(σ) is the characteristic function of a normal distri-
bution [9] with mean κ′(ŝ) and variance κ′′(ŝ), i.e.,

ϕ(σ) = ejκ
′(ŝ)− 1

2κ
′′(ŝ)σ2

, (13)

and εp(z) is an approximation error term given by

εp(z) =
1

2π

∫ ∞
−∞

ejσ(κ
′(ŝ)−z)− 1

2κ
′′(ŝ)σ2

ε̃κ(σ) dσ. (14)

Since ϕ(σ) is integrable in R, solving (12) leads to the
saddlepoint expansion of the probability density function of
Z is given by

p(z) = eκ(ŝ)−ŝz ·

(
1√

2πκ′′(ŝ)
e
− (z−κ′(ŝ))2

2κ′′(ŝ) + εp(z)

)
. (15)

For ŝ 6= 0, the tail probability Pr
[
Z ≥ γn

]
is given by

Pr
[
Z ≥ γn

]
=

∫ ∞
γn

p(z) dz (16)

= ξ(ŝ) +
1

2πj

∫ ŝ+j∞

ŝ−j∞

eκ(s)−sγn

s
ds, (17)

where ξ(s) = 1{s < 0} and 1{·} is the indicator function. To
obtain (17), we used p(z) from equation (7), interchanged the
integration order, and solved the integral with respect to z. We
also used the Cauchy’s residue theorem [10] to accommodate
the case ŝ < 0 by introducing the additional term ξ(ŝ) due
to the single pole located at s = 0. By using (8) and solving
the integral in the second term of (17), we obtain that the tail
probability of Z can be expanded as

Pr
[
Z ≥ γn

]
= ξ(ŝ) + eκ(ŝ)−ŝγn ·

(
eŝ(γn−κ

′(ŝ))+ 1
2 ŝ

2κ′′(ŝ)

· sign(ŝ) · 1

2
erfc

(
γn − κ′(ŝ) + ŝκ′′(ŝ)√

2κ′′(ŝ)

)
+ ε

)
, (18)

where erfc(x) is the complementary error function, and the
approximation error term ε is given by

ε =
1

2π

∫ ∞
−∞

ejσ(κ
′(ŝ)−γn)− 1

2κ
′′(ŝ)σ2

ŝ+ jσ
ε̃κ(σ) dσ. (19)

The characterization of the approximation errors of the
expansions (15) and (18) involves the analysis of the terms
in εa(σ), and the integrations εp(z) and ε.

For the choice of ŝ satisfying κ′(ŝ) = γn, (18) becomes

Pr
[
Z ≥ γn

]
= ξ(ŝ) + eκ(ŝ)−ŝκ

′(ŝ) ·
(

Ψ
(
ŝ
√
κ′′(ŝ)

)
+ ε

)
,

(20)

where Ψ(x) is defined as

Ψ(x) ,
1

2
erfc

(
|x|√

2

)
e
x2

2 sign(x), (21)

where erfc(x) denotes the complementary error function and
sign(x) is equal to 1 for x ≥ 0 and −1 for x < 0.

When (X1, . . . , Xn) is a sequence of i.i.d. random variables
satisfying certain regularity conditions, this choice of ŝ yields
an approximation error ε with order O(n−1) [11, Ch. 2]. For
the sake of clarity, and given the tutorial nature of this paper,
in the next sections we shall only consider the approxima-
tions that follow from (15), (18) and (20) by neglecting the
corresponding approximation error terms εp(z) and ε.

III. META-CONVERSE BOUND

In this section, we consider the family of memoryless
symmetric channels with continuous output alphabet, i.e.,
Wn(y|x) =

∏n
i=1W (yi|xi), where Pr

[
W (Y |x) ≥ ζ

]
, for

Y ∼ W (·|x), is independent of x. For certain i.i.d. auxiliary
distributions Qn(y) =

∏n
i=1Q(yi), the term in braces in (2)

also becomes independent of Pn. More precisely, we consider
an i.i.d. auxiliary distribution Q such that the tail probability
Pr
[
W (Y |x) ≥ ζQ(Y )

]
is independent of x ∈ X . For sym-

metric memoryless channels, this condition is satisfied, e.g.,



when Q = Qca is the capacity-achieving output distribution,
or when Q = Qρ is an exponent-achieving output distribution
(see (38) for the precise definition of Qρ). For simplicity, we
shall also assume that W (·|x) and Q share the same support.

For any choice of Q satisfying this symmetry condition, the
meta-converse bound (2) is given by

mc(n,M,Q) = α 1
M

(
Wn(·|x), Qn

)
, ∀x ∈ Xn. (22)

We use the following characterization of the trade-off αβ(·).
Lemma 1: The optimal error probability trade-off for testing

between P and Q defined on Y , is given by

αβ
(
P,Q

)
=max

η≥0

{
Pr

[
P (Y )

Q(Y )
≤η
]

+η

(
Pr

[
P (Y )

Q(Y )
>η

]
−β
)}
(23)

where Y ∼ P and Y ∼ Q.
Defining the information density (y) for any x ∈ Xn as

(y) , log
Wn(y|x)

Qn(y)
, (24)

and applying Lemma 1 with η = enγ , from (22) we obtain

mc(n,M,Q) = max
γ

{
Pr
[
(Y ) ≤ nγ

]
+ enγ

(
Pr
[
(Y ) > nγ

]
− 1

M

)}
, (25)

where Y ∼Wn(·|x), and Y ∼ Qn.

A. Saddlepoint approximation

Let us define the random variables Z0 , (Y ), where Y ∼
Wn(·|x), and Z1 , (Y ), where Y ∼ Qn, and let κ0(s) and
κ1(s) be their respective cumulant generating functions, i.e.,

κ0(s) = log E
[
esZ0

]
, (26)

κ1(s) = log E
[
esZ1

]
. (27)

Applying the expansion (20) to the (lower and upper) tail
probabilities in (25), neglecting the remainder term ε, yields

Pr
[
(Y )≤γ

]
' ξ(−s0)

+ Ψ
(
−s0

√
κ′′0(s0)

)
· eκ0(s0)−s0κ′0(s0), (28)

Pr
[
(Y )>γ

]
' ξ(s1) + Ψ

(
s1

√
κ′′1(s1)

)
· eκ1(s1)−s1κ′1(s1),

(29)

where s0 and s1 satisfy κ′0(s0) = κ′1(s1) = nγ, and where we
recall that ξ(s) = 1{s < 0} and that Ψ(·) is defined in (21).

Both Z0 and Z1 are sums of i.i.d. random variables, and
their cumulant generating functions are a shifted version of
each other. Indeed, κ0(s) and κ1(s) are κ0(s) = nκ(s − 1)
and κ1(s) = nκ(s), where κ(s) is

κ(s) = log

∫
W (y|x)s

Q(y)s−1
dy. (30)

Then, using the approximations (28) and (29) in equation (25),
together with the relations κ0(s) = nκ(s − 1) and κ1(s) =
nκ(s), we obtain the following approximation of the meta-
converse expression, mc(n,M,Q) ' m̂c(n,M,Q).

Approximation 1 (Meta-converse with fixed Q):

m̂c(n,M,Q) ,max
s

{
cn(s)en(κ(s)+(1−s)κ′(s))

+
(
ξ(s)− 1

M

)
enκ

′(s)

}
(31)

where

cn(s) , ξ(1−s) + Ψ
(

(1−s)
√
nκ′′(s)

)
+ Ψ

(
s
√
nκ′′(s)

)
.

(32)

Obtaining a closed-form expression for the cumulant gen-
erating function κ(s) and its first and second derivatives
is difficult in general. By defining the functions J`(s), for
` = 0, 1, 2, as

J`(s) , log

∫
W (y|x)s

Q(y)s−1

(
log

W (y|x)

Q(y)

)̀
dy, (33)

inspecting κ(s) in (30), it follows that κ(s)=log J0(s) and

κ′(s)=
J1(s)

J0(s)
, (34)

κ′′(s)=
J0(s)J2(s)− J1(s)2

J0(s)2
. (35)

Hence, computing κ(s), κ′(s) and κ′′(s) involves solving
one-dimensional integrals, in contrast to the n-dimensional
integrals appearing in (25). The integrals in (33) can be
numerically approximated with arbitrary precision.

B. Sphere-packing exponent

We now relate the meta-converse approximation (31) with
the sphere-packing exponent. For a given input distribution P ,
the Gallager’s E0-function [12, Eq. (5.6.14)] is defined as

E0(ρ, P ) , − log

∫ (∫
P (x)W (y|x)

1
1+ρ dx

)1+ρ
dy, (36)

and we further define E0(ρ) , maxP E0(ρ, P ).
The sphere-packing exponent, which is defined as

Esp(R) , sup
ρ≥0

{
E0(ρ)− ρR

}
, (37)

is an upper bound to the reliability function in channel coding.
We consider a tilted output distribution that plays a crucial

role in the derivation of the sphere-packing exponent Esp(R),
as discussed in [13], [14]. We define Qρ(y) as

Qρ(y) ,
1

µ(ρ)

(∫
P (x)W (y|x)

1
1+ρ dx

)1+ρ
, (38)

for some input distribution P , valid for ρ ≥ 0, and where µ(ρ)
is a normalizing factor. For the particular choice of Q = Qρ
with P uniform over the input alphabet, the saddlepoint
approximation (31) maximized over ρ ≥ 0 yields

sup
ρ≥0

{
m̂c(n,M,Qρ)

}
= sup
ρ≥0,s

{
cn(s)en(κ(s)+(1−s)κ′(s))

+
(
ξ(s)− 1

M

)
enκ

′(s)
}
. (39)

In (39), we may let s be a function of ρ and still obtain a
lower bound to P ?e (n,M). Setting s = 1

1+ρ , or equivalently



ρ = 1−s
s yields, after tedious but straightforward algebra, that

κ(s) and κ′(s) are related to the E0-function as

κ(s) = −sE0

(
1−s
s

)
, (40)

κ′(s) =
1

s
E′0
(
1−s
s

)
− E0

(
1−s
s

)
, (41)

where E′0(ρ) denotes the derivative of E0(ρ) with respect to ρ.
While (41) coincides with the derivative of the right-hand
side of (40), this is not to be expected in general. Indeed,
the derivative κ′(s) is obtained assuming Q fixed and then
substituting Q = Qρ in the resulting expression, while this
assignment is already implicit in the right-hand side of (40).

Substituting (40) and (41) in (39) with the change of vari-
able s ∈ [0, 1]↔ ρ = 1−s

s ∈ [0,∞), using that M = enR, we
obtain the following approximation, P ?e (n,M) & m̂c(n,M).

Approximation 2 (Sphere-packing bound):

m̂c(n,M) , max
ρ≥0

{
e−n(E0(ρ)−ρE′0(ρ))·

·
(

Ψ
(√

nU(ρ)
)

+ Ψ
(
ρ
√
nU(ρ)

)
−e−n(R−E

′
0(ρ))

)}
(42)

where Ψ(·) is defined in (21), and the variance term U(ρ) is

U(ρ) ,
κ′′
(

1
1+ρ

)
(1 + ρ)2

, (43)

for κ′′(·) given in (35)-(33) with auxiliary Q = Qρ.
We observe that (42) recovers the sphere-packing error

exponent for the case of symmetric memoryless channels.
More precisely, let us fix ρ = ρ̂, where ρ̂ is the unique solution
to E′0(ρ̂) = R− δ, for some δ > 0. Then, (42) yields

P ?e (n,M) & max
δ>0

e−n(E0(ρ̂)−ρ̂(R−δ))·

·
(

Ψ
(√

nU(ρ̂)
)

+ Ψ
(
ρ̂
√
nU(ρ̂)

)
−e−nδ

)
. (44)

Since e−nδ vanishes for any δ > 0 as n→∞, and since the
functions Ψ(·) behave as O

(
n−

1
2

)
, it follows that equation

(44) recovers the sphere-packing exponent Esp(R) by first
letting n→∞, and then δ → 0.

IV. RANDOM CODING UNION BOUND

In this section, we first derive an approximation to the
pairwise error probability (4), and then use this approximation
to find the saddlepoint approximation of the RCU bound (3).

A. Pairwise error probability

Let Z(y) = logWn(y|X). For memoryless channels
Wn(y|x) =

∏n
i=1W (yi|xi), Z(y) is the sum of n indepen-

dent random variables with cumulant generating function

ω(τ) =

n∑
i=1

log EP
[
W (yi|X)τ

]
. (45)

By performing a Taylor expansion of ω(τ) around τ̂ , disre-
garding the εp(z) term in (15), the probability density function
of Z(y) can be approximated as

p(z) ' eω(τ̂)−τ̂z · 1√
2πω′′(τ̂)

e
− (z−ω′(τ̂))2

2ω′′(τ̂) , (46)

where ω′(τ) and ω′′(τ) are the first and the second derivative
of ω(τ), respectively. Integrating (46) over [γn(x,y),∞),
where γn(x,y) = logWn(y|x), we obtain that the pairwise
error probability pep(x,y) = Pr

[
Z(y) ≥ γn(x,y)

]
can be

approximated by

pep(x,y) ' λτ̂ (x,y)e−iτ̂ (x;y), (47)

where iτ̂ (x;y) is a tilted information density given by

iτ̂ (x;y) = log
Wn(y|x)τ̂

E
[
Wn(y|X)τ̂

] , (48)

and λτ̂ (x,y) is the pre-exponential factor

λτ̂ (x,y) = eτ̂(logW
n(y|x)−ω′(τ̂))+ 1

2 τ̂
2ω′′(τ̂)·

·1
2

erfc

(
logWn(y|x)− ω′(τ̂) + τ̂ω′′(τ̂)√

2ω′′(τ̂)

)
. (49)

We remark that the pairwise error probability (4) is a tail
probability evaluated at a point γn(x,y) = logWn(y|x) that
depends on x and y. Hence, the optimal parameter τ̂ would
be chosen as the unique solution to ω′(τ̂) = logWn(y|x).
However, given the outer expectation over X,Y in (3), this
would require one optimization for every x and y. Instead,
we let τ̂ > 0 be fixed for every x and y, at the cost of having
logWn(y|x)− ω′(τ̂) 6= 0 in the expression (49). As we will
see, the effect of this will be negligible.

B. Random coding union bound

Using that E[min{1, Z}] = Pr[Z ≥ U ], where U is
uniformly distributed in the [0, 1] interval, and defining the
random variable Z = log(M − 1) + log pep(X,Y )− logU ,
we may write the RCU bound (3) as the tail probability
rcu(n,M) = Pr[Z ≥ 0]. Plugging the saddlepoint approx-
imation of the pairwise error probability given in (48) and
taking log(M − 1) ' nR, the cumulant generating function
of Z is asymptotically given, according to (5), by

χ(ρ) ' nρR+ log E
[
λτ̂ (X,Y )ρe−ρiτ̂ (X;Y )

]
− log(1− ρ).

(50)
For a memoryless channel Wn(y|x) and i.i.d. input distribu-
tion Pn(x), it is convenient to set τ̂ = 1

1+ρ̂ and define the
following tilted distribution

Pnρ (x)Wn
ρ (y|x) =

1

νn
Pn(x)Wn(y|x)e−ρiτ̂ (x;y), (51)

Hence, after some mathematical manipulations, we may ex-
press equation (50) as

χ(ρ) ' nρR− nE0(ρ, P ) + log θn(ρ)− log(1− ρ), (52)

where E0(ρ, P ) corresponds to Gallager’s E0 function defined
in (36) and the term θn(ρ) is defined as

θn(ρ) = EPnρ Wn
ρ

[
λτ̂ (X,Y )ρ

]
. (53)

Since rcu(n,M) = Pr
[
Z ≥ 0] with cumulant generating

function (52), we use (17) to write the RCU bound as the
following complex integration

rcu(n,M) ' 1

2πj

∫ ρ̂+j∞

ρ̂−j∞

e−n(E0(ρ,P )−ρR)

ρ(1− ρ)
θn(ρ) dρ. (54)



The saddlepoint approximation of the RCU bound involves
expanding ρR − E0(ρ, P ) around ρ = ρ̂, the unique solution
of the equation

E′0(ρ̂, P ) = R. (55)

Hence,

ρR− E0(ρ, P ) ' ρ̂R− E0(ρ̂, P ) +
1

2
V (ρ̂)(ρ− ρ̂)2, (56)

where V (ρ̂) is the channel dispersion, i.e.,

V (ρ̂) = −E′′0 (ρ̂, P ). (57)

The convergence of the complex integration (54) depends on
the poles at ρ = 0 and ρ = 1. As discussed in [12, p. 142],
the error exponent of the random-coding i.i.d. ensemble with
distribution Pn(x) is given by

E(R,P ) = min
0≤ρ≤1

ρR− E0(ρ, P ). (58)

Clearly, a solution to (55) minimizes (58) only when
0 ≤ ρ̂ ≤ 1, i.e., for rates R between the critical rate R∗(P ),
defined as the rate for which E(R,P ) is achieved at ρ̂ = 1,
and the mutual information I(P ), for which ρ̂ = 0. For this
range of ρ̂, the complex integration (54) converges, otherwise
we need to shift the integration axis at a cost of introducing
additional terms. Following the footsteps in [15, Sec. IV] based
on the Cauchy’s residue theorem [8], we obtain that

rcu(n,M) ' ξ̃n(ρ̂) +
1

2πj

∫ ρ̂+j∞

ρ̂−j∞

e−n(E0(ρ,P )−ρR)

ρ(1− ρ)
θn(ρ) dρ,

(59)
where ξ̃n(ρ̂) accounts for the contribution of the poles as

ξ̃n(ρ̂) =


1 ρ̂ < 0

0 0 ≤ ρ̂ ≤ 1

e−n(E0(1,P )−R)θn(1) ρ̂ > 1.

(60)

Finally using the Taylor expansion (52), further approxi-
mating θn(ρ) ≈ θn(ρ̂), solving the complex integration (59)
yields the saddlepoint approximation of rcu(n,M).

Approximation 3 (RCU bound):

rcu(n,M) ' ξ̃n(ρ̂) + ψn(ρ̂)e−n(E0(ρ̂,P )−ρ̂R), (61)

where the pre-exponential factor ψn(ρ̂) is given by

ψn(ρ̂) = θn(ρ̂) ·
(

Ψ
(
ρ̂
√
nV (ρ̂)

)
+ Ψ

(
(1− ρ̂)

√
nV (ρ̂)

))
.

(62)

The term θn(ρ̂) can be numerically computed from equations
(53), (51) and (49). A simpler expression is obtained by further
expanding the pre-exponential factor of the pairwise error
probability λτ̂ (x,y) in the right hand side of (49), and solving
the expectation (53) with respect to the tilted distribution (51).
By choosing τ̂ = 1

1+ρ̂ , we obtain

θn(ρ̂) ' 1√
1 + ρ̂

(
1 + ρ̂√

2πnω′′(ρ̂)

)̂ρ
, (63)

as n→∞, where ω′′(ρ̂) is an averaged variance given by

ω′′(ρ̂) =

∫
Qρ̂(y)

[
∂2

∂τ2

(
log

∫
P (x)W (y|x)τ dx

) ∣∣∣∣
τ=τ̂

]
dy,

(64)
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Fig. 1. Channel coding error probability bounds vs block-length n with
parameters R = 0.65 bits per channel use and snr = 4.77 dB.

and Qρ(y) is the auxiliary distribution defined in (38).
We finally remark that since θn(ρ̂) in (63) behaves as
O(n−

ρ̂
2 ), and that the functions Ψ(·) behave as O

(
n−

1
2

)
, the

RCU approximation (61) recovers the error exponent for i.i.d.
random-coding ensembles.

V. DISCUSSION

In the previous sections, we have seen that the saddlepoint
approximation to the meta-converse bound (42) recovers the
sphere-packing exponent (37), whereas the RCU approxima-
tion (61) does it for the error exponent (58) of the i.i.d.
random-coding ensemble Pn(x). We next study their pre-
exponential factors in the region where the exponents coincide.
To this end, we expand Ψ(x) function defined in (21) as

Ψ(x) =
1√
2πx

(
1− 1

x2
+

3

x4
− 15

x6
+ ...

)
. (65)

For x→∞, we consider only the first term in the expansion.
Then, for sufficiently large n, the meta-converse saddlepoint
approximation (44) yields

P ?e (n, enR) & max
δ>0

e−n(E0(ρ̂(δ))−ρ̂(δ)(R−δ))·

·
(

1 + ρ̂(δ)

ρ̂(δ)
√

2πnU(ρ̂(δ))
− e−nδ

)
, (66)

where ρ̂(δ) is the solution to E′0(ρ) = R − δ, and the RCU
saddlepoint approximation (61), yields

P ?e (n, enR) . ξ̃n(ρ̂) +
θn(ρ̂)

ρ̂(1− ρ̂)
√

2πnV (ρ̂)
e−n(E0(ρ̂)−ρ̂R),

(67)
where ρ̂ satisfies E′0(ρ̂) = R. For rates between the critical
rate and the mutual information, ρ̂ ∈ (0, 1), ξ̃n(ρ̂) = 0, and the
error exponents of the meta-converse bound and of the RCU
bound asymptotically coincide as we let first n → ∞ and
then δ → 0. In contrast, for rates below the critical rate, since
ρ̂ > 1, the error exponent of the RCU bound is dominated by
the term ξ̃n(ρ̂) in (60), i.e., E0(1) − R, whereas the sphere
packing exponent remains E0(ρ̂)− ρ̂R.
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Fig. 2. Channel coding error probability bounds vs rate R in bits per channel
use, with parameters n = 100 and snr = 4.77 dB.

We numerically evaluate the derived approximations for the
binary-input AWGN channel, with real-valued noise variance
σ2. For a signal energy Es, codewords x ∈ {−

√
Es,+

√
Es}n

are distributed as Pn(x) = 2−n for the random-coding upper
bound. The signal-to-noise ratio is defined as snr = Es

σ2 , and
R = 1

n log2(M) is the rate in bits per channel use. We
consider the saddlepoint approximation of the RCU bound (61)
with θn(ρ̂) given in (63), and that of the meta-converse (MC)
(31) with the capacity-achieving output distribution Q = Qca,
and optimized over exponent achieving auxiliary distributions
Q = Qρ. As a reference, we also include the Gallager bound
P ?e (n,M) ≤ e−nE(R,P ) and Shannon lower bound for the
AWGN channel [16, Eq. (15)].

Fig. 1 depicts the approximations compared to a simulation
of the actual RCU bound (obtained from (3) and (4)) and the
corresponding MC bounds (25) via Monte Carlo integration
methods. We can see that both the saddlepoint approximation
of the RCU and that of the MC bounds are accurate for block-
lengths as short as n = 20. In this scenario, the rate considered
is above the critical rate of the channel, R∗(P ) = 0.5702.
Then, the error exponents of the RCU bound and MC bound
with Qρ coincide. The MC with capacity-achieving auxiliary
distribution Qca yields a weaker bound than that with Qρ.
Furthermore, as it does not attain the sphere-packing exponent,
the gap between the bounds exponentially increases with n.

Fig. 2 shows the error probability bounds versus the rate
R. For reference, the critical rate and mutual information are
also included. For snr = 4.77 dB, these are R∗(P ) = 0.5702
and I(P ) = 0.8453 bits per channel use, respectively. We can
see the the rate gap between the upper and lower bounds is
approximately constant in the range R∗ to I. However, below
the critical rate, the bounds start to diverge from each other, as
it could be expected from the error exponent analysis. Finally,
Fig. 3 shows that, for n = 1024 and R = 0.75 bits per
channel use, the RCU and MC bounds accurately characterize
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Fig. 3. Channel coding error probability bounds vs snr, with parameters
R = 0.75 bits per channel use and n = 1024.

P ?e (n,M) for the whole range of snr, as the relative gap is
surprisingly small.
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