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We consider transmission over a discrete memoryless chan-
nel (DMC) W (y|x) with finite alphabets X and Y . It is
assumed that an (n,Mn)-codebook Mn = {x1, . . . ,xMn}
with rate Rn = 1

n logMn is used for transmission. The type-
dependent maximum-metric decoder estimates the transmitted
message as

m̂ = arg max
xi∈Mn

q(P̂xi,y), (1)

where P̂x,y is the joint empirical distribution [1, Ch. 2] of the
pair (x,y) and the metric q : P(X × Y)→ R is continuous.
Maximum-likelihood (ML) decoding is a special case of (1),
but the decoder may in general be mismatched [2], [3].

We construct the code Mn such that any two distinct
codewords x,x′ ∈ Mn satisfy d(x,x′) > ∆ for a given
distance function d(·, ·) and ∆ ∈ R. This guarantees that
the minimum distance of the codebook exceeds ∆. Similar
constructions are used to prove the Gilbert-Varshamov bound
in Hamming spaces [4], [5]. Our construction depends on
an input distribution P ∈ P(X ), and we let Pn denote an
arbitrary type [1, Ch. 2] whose entries are 1

n -close to P . The
set of sequences with type Pn is denoted by T (Pn).

Fixing n,Mn, an input distribution P ∈ P(X ), a distance
function d(·, ·), and constants δ > 0,∆ ∈ R, the construction
is described by the following steps:

1) The first codeword, x1, is drawn uniformly over T1(Pn),
given by T1(Pn) = T (Pn);

2) The second codeword x2 is uniformly drawn from

T2(Pn,x1) = {x̄ ∈ T (Pn) : d(x̄,x1) > ∆} , (2)

the set of sequences of composition Pn whose distance
to x1 exceeds ∆;

3) The i-th codeword xi is drawn uniformly from

Ti(Pn,x1, . . . ,xi−1)

= {x̄ ∈ T (Pn) : d(x̄,xj) > ∆, j = 1 . . . , i− 1} . (3)

In order to ensure that the above procedure generates the
desired number of codewords Mn = enRn (i.e., the sets Ti are
non-empty for i = 1, . . . ,Mn), set ∆ and δ such that

en(Rn+δ)volx(∆) ≤ |T (Pn)|, (4)
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where

volx(∆) = |{x̄ ∈ T (Pn) : d(x̄,x) ≤ ∆}| (5)

is the volume of a ball of radius ∆ according to distance d(·, ·)
centered at x ∈ T (Pn). If the distance d is type-dependent,
volx(∆) does not depend on x ∈ T (Pn) since all x̄ in (5)
belong to the same type class.

Our main result is as follows, namely, a single-letter lower
bound for the error exponent of the RGV construction. Let

ERGV(R,P,W, q, d,∆) =

min
V ∈Td,q,P (∆)

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
, (6)

and

Td,q,P (∆) ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), d(PXX̃) ≥ ∆
}
. (7)

Theorem 1. For all P ∈ P(X ), δ > 0, ∆ ∈ R, d ∈ Ω, and
R > 0 satisfying

R ≤ min
P

XX̃
: d(P

XX̃
)≤∆, PX=P

X̃
=P

I(X; X̃)− 2δ, (8)

the ensemble average error probability P̄ (n)
e of the RGV con-

struction with parameters (n,R, P, d,∆, δ) and the continuous
type-dependent decoding metric q(·) over DMC W satisfies

P̄ (n)
e

.
≤ e−nERGV(R,P,W,q,d,∆). (9)

In addition, if q is an additive decoding metric, then

P̄ (n)
e

.
≥ e−nERGV(R,P,W,q,d,∆+ε) (10)

for arbitrarily small ε > 0.

While Theorem 1 states the error exponent, the central
part of the analysis is in arriving at the following asymptotic
expression for the ensemble average probability of error:

P̄ (n)
e

.
=

∑
x∈T (Pn),y

1

|T (Pn)|
Wn(y|x)

·min

{
1, (Mn − 1)

∑
x′∈T (Pn) : qn(x′,y)≥qn(x,y)

d(x′,x)≥∆

1

|T (Pn)|

}
.

(11)



This can be interpreted as a stronger (albeit asymptotic)
analog of the random coding union bound [6] that achieves
not only the random coding exponent, but also the low-rate
improvements of the expurgated exponent.

The following corollary shows that when the distance func-
tion d(·, ·) is optimized, and ∆ is chosen appropriately, the
exponent in Theorem 1 recovers the exponent of [7], denoted
by Eq(R,P,W ), known to be at least as large as the maximum
of the random-coding and expurgated exponents.

Corollary 1. Setting d(PXX̃) = −I(X; X̃), ∆ = −(R+ 2δ)
gives that for sufficiently small δ > 0 and ε > 0

ERGV(R,P,W, q, d,∆) ≥ Eq(R,P,W )− ε. (12)

Lastly, we show that the non-universal distance function
d(PXX̃) = βR,W,q(PXX̃) also achieves the exponent of
Csiszár and Körner, where

βR,W,q(PXX̃) , min
V
XX̃Y

∈T ′(P
XX̃

)
Γ(VXX̃Y ), (13)

with

Γ(VXX̃Y ) , D(VY |X‖W |VX) +
∣∣I(X̃;Y,X)−R

∣∣
+
, (14)

and

T ′(PXX̃) ,
{
VXX̃Y ∈ P(X × X × Y) :

VXX̃ = PXX̃ , q(VX̃Y ) ≥ q(VXY )
}
. (15)

We first provide a corollary characterizing the exponent of
Theorem 1 with d(·) = βR,W,q(·), and then prove its equiva-
lence to Eq(R,P,W ).

Corollary 2. If the pair (R,∆) satisfies (8) with
d(·) = βR,W,q(·), then, the ensemble average error prob-
ability P̄

(n)
e of the RGV construction with parameters

(n,R, P, βR,W,q,∆, δ) using the continuous type-dependent
decoding rule q(·) over the channel W satisfies P̄ (n)

e

.
≤ e−n∆.

Proposition 1. For any P ∈ P(X ), the achievable rate-
exponent pairs (R,E) resulting from Theorem 1 (i.e., taking
the union over all δ > 0 and ∆ > 0) are identical for the
choices d(PXX̃) = −I(X; X̃) and d(PXX̃) = βR,W,q(PXX̃).
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