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We consider transmission over a discrete memoryless chan-
nel (DMC) W (y|x) with finite alphabets X' and Y. It is
assumed that an (n, M, )-codebook M,, = {x1,..., 2z}
with rate R,, = %Llog M, is used for transmission. The type-
dependent maximum-metric decoder estimates the transmitted
message as

m = argmax ¢(Pg, 4),
z,EM,

6]

where Pw,y is the joint empirical distribution [1, Ch. 2] of the
pair (x,y) and the metric ¢ : P(X x ) — R is continuous.
Maximum-likelihood (ML) decoding is a special case of (1),
but the decoder may in general be mismatched [2], [3].

We construct the code M, such that any two distinct
codewords x,x’ € M, satisfy d(x,x’) > A for a given
distance function d(-,-) and A € R. This guarantees that
the minimum distance of the codebook exceeds A. Similar
constructions are used to prove the Gilbert-Varshamov bound
in Hamming spaces [4], [S]. Our construction depends on
an input distribution P € P(X), and we let P, denote an
arbitrary type [1, Ch. 2] whose entries are %—close to P. The
set of sequences with type P, is denoted by T (P,).

Fixing n, M,,, an input distribution P € P(X), a distance
function d(-, ), and constants 6 > 0, A € R, the construction
is described by the following steps:

1) The first codeword, @1, is drawn uniformly over 7;(P,),
given by T1(P,) = T (Py);
2) The second codeword x5 is uniformly drawn from

To(Pp 1) ={Z € T(P,) : d(Z,z1) > A}, 2)

the set of sequences of composition P,, whose distance
to &1 exceeds A;
3) The i-th codeword «; is drawn uniformly from

7;(Pn7w17"' 7:87;71)

={zeT(P,) :dZ,z;)>A,j=1...,i—1}. (3)

In order to ensure that the above procedure generates the
desired number of codewords M,, = e™F» (i.e., the sets 7; are
non-empty for i = 1,..., M), set A and § such that

"t voly (A) < [T (P)l, @
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where

volg(A) = [{z € T(P,) : d(@,z) < A} )

is the volume of a ball of radius A according to distance d(-, -)
centered at « € T (P,). If the distance d is type-dependent,
volg (A) does not depend on = € T(FP,) since all Z in (5)
belong to the same type class.

Our main result is as follows, namely, a single-letter lower
bound for the error exponent of the RGV construction. Let

ERGV(R7 P7 W q, d7 A) =
D(Vy|x|IW|P) + [I(X;Y, X) = R| ., (©)

min
VeTq,q,p(A)

and
Taq,r(A) 2 {VXXY EPXXxXxY):Vx=Vg=P,
a(Vgy) 2 a(Vxy), d(Pyx) = A}. (7)

Theorem 1. For all P € P(X), § >0, A€ R, d € Q, and
R > 0 satisfying

R< I(X;X)-25, (8)

min
Py % :d(Py%)<A, Px=Pg=P
the ensemble average error probability Pe(") of the RGV con-
struction with parameters (n, R, P,d, A, 0) and the continuous

type-dependent decoding metric q(-) over DMC W satisfies

P & g—nErev(R,P,W,q,d,A) 9)
) < .
In addition, if q is an additive decoding metric, then
P 5 g—nErav(R,P,W,q,d,Ate) (10)
e 2

for arbitrarily small € > 0.

While Theorem 1 states the error exponent, the central
part of the analysis is in arriving at the following asymptotic
expression for the ensemble average probability of error:

1 n
> iy Wl

€T (Pn),y
Z :
TPl |

' €T (Pn): q" (2',y)>q" (z,y)
d(z',x)>A

P =

. min{l, (M, —1)



This can be interpreted as a stronger (albeit asymptotic)
analog of the random coding union bound [6] that achieves
not only the random coding exponent, but also the low-rate
improvements of the expurgated exponent.

The following corollary shows that when the distance func-
tion d(-,-) is optimized, and A is chosen appropriately, the
exponent in Theorem 1 recovers the exponent of [7], denoted
by E,(R, P, W), known to be at least as large as the maximum
of the random-coding and expurgated exponents.

Corollary 1. Setting d(Py 3) = —I1(X; X), A = —(R + 25)
gives that for sufficiently small § > 0 and € > 0
ERGV(Rv Pamqa da A) > Eq(R7 va) — €. (12)

Lastly, we show that the non-universal distance function
d(Pyx5) = Brw,q(Pyg) also achieves the exponent of
Csiszar and Korner, where

Brw,e(Pxx) = (13)

min
VXJ?YET/(PX)T)

F(Vyxy)
with

T(Vygy) £ D(Vy x[[W|Vx) + [I(X;Y, X) — B[, (14)
and

T'(Pyg) 2{Vigy € PLX x X x D) :

Vi = Pya(Vey) 2 aVay) }. - (19)

We first provide a corollary characterizing the exponent of
Theorem 1 with d(-) = Br,w,(-), and then prove its equiva-
lence to E (R, P,W).

Corollary 2. If the pair (R,A) satisfies (8) with
d(-) = PBrw,q(:), then, the ensemble average error prob-
ability PQ(n) of the RGV construction with parameters

(n, R, P,Brw,q, A, 0) using the continuous type-dependent

decoding rule q(-) over the channel W satisfies P < ema,

Proposition 1. For any P € P(X), the achievable rate-
exponent pairs (R, E) resulting from Theorem 1 (i.e., taking
the union over all 5 > 0 and A > 0) are identical for the
choices d(Py ) = —I(X; X) and d(Py z) = Brw,q(Px 5)-
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