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Abstract—This paper presents a random-coding upper bound
on the average error probability of joint source-channel coding
that attains Csiszár’s error exponent. The bound is based on
a code construction for which source messages are assigned to
disjoint subsets (classes), and codewords generated according to a
distribution that depends on the class of the source message. For
a single class, the bound recovers Gallager’s exponent; identifying
the classes with source type classes, it recovers Csiszár’s exponent.
Moreover, it is shown that as a two appropriately designed classes
are sufficient to attain Csiszár’s exponent.

I. INTRODUCTION

We study the problem of transmitting a length-k discrete
memoryless source over a discrete memoryless channel using
length-n block codes. The source is characterized by a dis-
tribution PV (v) =

∏k
i=1 PV (vi), v = (v1, . . . , vk) ∈ Vk,

where V is a discrete alphabet with cardinality |V|. The
channel law is given by a conditional probability distribution
PY |X(y|x) =

∏n
i=1 PY |X(yi|xi), x = (x1, . . . , xn) ∈ Xn,

y = (y1, . . . , yn) ∈ Yn, where X and Y are discrete alphabets
with cardinalities |X | and |Y|, respectively.

In this joint source-channel coding (JSCC) setup, the en-
coder maps the source message v to a length-n codeword
x(v), which is then transmitted over the channel. We refer
to the ratio t , k/n as the transmission rate. Based on the
channel output y, the decoder guesses a source message v̂
according to the maximum a posteriori (MAP) criterion, i.e.,

v̂ = arg max
v

PV (v)PY |X
(
y|x(v)

)
. (1)

When clear from the context, we shall simplify notation by
writing x instead of x(v), making the message v implicit.

We study the random-coding average error probability ε̄ by
means of the random-coding union (RCU) bound [1], [2]:

ε̄ ≤ E

[
min

{
1,
∑

v′ 6=V

Pr

{
PV (v′)PY |X(Y |X̄)

PV (V )PY |X(Y |X)
≥ 1

∣∣∣∣V XY

}}]
,

(2)
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where the expectation is taken according to the joint distribu-
tion PV PX|V PY |X and the probability computed with respect
to the distribution PX|V for each v′ in the summation.

Optimization over the conditional distributions PX|V , nec-
essary to obtain the tightest possible bound in (2), quickly
becomes computationally unfeasible as the block length grows
large. In this paper, we focus instead on the exponential decay
of (2) with respect to n and slightly loosen the RCU bound into
a convenient form that is proven to attain the JSCC exponent
found by Csiszár [3].

II. PREVIOUS WORK

In [4, Prob. 5.16] Gallager provided an upper bound on
ε̄ when the codewords corresponding to different source mes-
sages are drawn independently according to a distribution PX :

ε̄ ≤ e−E0(ρ,PY |X ,PX)+Es(ρ,PV ), for every ρ ∈ [0, 1], (3)

where E0(ρ, PY |X , PX) denotes Gallager’s channel function,

E0(ρ, PY |X , PX)

, − log
∑
y

(∑
x

PX(x)PY |X(y|x)
1

1+ρ

)1+ρ

, (4)

and where Es(ρ, PV ) denotes Gallager’s source function,

Es(ρ, PV ) , log

(∑
v

PV (v)
1

1+ρ

)1+ρ

. (5)

While the derivation of (3) assumes that PX is independent
of the source message, it may be proved that considering an
arbitrary distribution PX|V does not improve the bound.

When PX is a product distribution, i.e., PX(x) =∏n
i=1 PX(xi), the bound in (3) becomes

ε̄ ≤ e−n(E0(ρ,PY |X ,PX)−tEs(ρ,PV )), (6)

thus proving that ε̄ exponentially vanishes with respect to n.
By maximizing over PX and ρ, this bound provides a lower
bound on the JSCC exponent EJ

EJ ≥ EG
J , max

ρ∈[0,1]

{
E0(ρ, PY |X)− tEs(ρ, PV )

}
, (7)

where we define E0(ρ, PY |X) , maxPX E0(ρ, PY |X , PX).
Csiszár refined Gallager’s result using a code construction

based on fixed composition codes [3]. Specifically, he showed



that for all δ > 0, there exists an n0 ∈ N such that, for n ≥ n0
ε̄ is upper-bounded as

ε̄ ≤
Mk∑
i=1

e−n
(
e(Ri,PV )+Er(Ri,PY |X)−2δ

)
, (8)

where Mk is the number of source-type classes in Vk [5],
e(R,PV ) is the source reliability function [5]–[7]

e(R,PV ) , sup
ρ≥0

{
ρR− Es(ρ, PV )

}
, (9)

and where Er(R,PY |X) is the channel random-coding expo-
nent, given by [4]

Er(R,PY |X) , max
ρ∈[0,1]

{
E0(ρ, PY |X)− ρR

}
. (10)

Eq. (8) leads to another lower bound on the exponent EJ,

EJ ≥ ECs
J (11)

, min
H(V )≤R≤RV

{
te

(
R

t
, PV

)
+ Er(R,PY |X)

}
, (12)

where RV , t log |V|. Comparing (12) with the sphere packing
exponent [8], Csiszár verified that ECs

J gives the actual JSCC
error exponent EJ when the minimum in (12) is attained at a
rate R > Rcr, where Rcr is the critical rate of the channel [3].

Zhong et al. [9] quantified the improvement of Csiszár’s ex-
ponent (12) over Gallager’s (7) via Fenchel’s duality theorem
[10, Thm. 31.1], which allows one to rewrite (12) as

ECs
J = max

ρ∈[0,1]

{
Ē0(ρ, PY |X)− tEs(ρ, PV )

}
, (13)

where Ē0(ρ, PY |X) denotes the concave hull of E0(ρ, PY |X),
defined as the pointwise infimum over the family of affine
functions that upper-bound E0(ρ, PY |X), as a function of ρ in
ρ ∈ [0, 1] [10, Cor. 12.1.1]. It follows that ECs

J ≥ EG
J , with

the inequality possibly strict, as shown in an example in [9].

III. RANDOM CODING BOUND

We have recently proposed a random-coding upper bound
which attains Csiszár’s exponent [11]. The derivation of this
bound involves the following steps:

1) Define a partition Pk of the message set Vk into Nk
disjoint subsets A1, . . . ,ANk satisfying

⋃Nk
i=1Ai = Vk.

We shall refer to these subsets as classes.
2) Assign a channel input distribution P

(i)
X to each class

Ai. Then, for each source message v ∈ Ai randomly
and independently generate codewords x(v) ∈ Xn
according to P (i)

X .
3) Upper-bound the probability of error using Gallager’s

bounding techniques [4].
In the following we define

E(i)
s (ρ, PV ) , log

(∑
v∈Ai

PV (v)
1

1+ρ

)1+ρ

, (14)

for i = 1, . . . , Nk.
Theorem 1: For every partition Pk, for every set of product

channel input distributions P
(i)
X (x) =

∏n
i=1 P

(i)
X (xi), i =

1, . . . , Nk, and for every set of parameters ρ1, . . . , ρNk ∈
[0, 1], the average probability of error is upper-bounded by

ε̄ ≤ ε̄B(Pk) (15)

, h(k)

Nk∑
i=1

e
− max
ρi∈[0,1]

{
nE0(ρi,PY |X)−E(i)

s (ρi,PV )
}
, (16)

where h(k) , 2Nk(k + 1)|V|(k/t+ 1)|X ||Y|.
Proof: See [11].

If we choose the partition Pk such that Nk = 1 and
A1 = Vk for k = 1, 2, . . ., then E(i)

s (ρ, PV ) = Es(ρ, PV ) and
log h(k)/k → 0 as n → ∞. Hence, (15) recovers Gallager’s
bound on the error exponent (7)

lim
n→∞

− 1

n
log ε̄B(Pk) = EG

J . (17)

With a more judicious choice of Pk the upper bound (15)
also recovers Csiszár’s lower bound on the error exponent
(12). Specifically, (12) can be achieved by identifying the
classes A1, . . . ,ANk with the source-type classes T1, . . . , TNk .
A source-type class Ti is defined as the set of all source
messages v ∈ Vk with type Pi [5, Def. 2.1]. Thus, for a
given distribution Pi on V , the source-type class Ti is the set
of all source messages v ∈ Vk satisfying

Pi(a) =
1

k
N(a|v), a ∈ V, (18)

where N(a|v) denotes the number of occurrences of a ∈ V in
v. With this choice of Pk it can be shown [11] that

lim inf
n→∞

− 1

n
log ε̄B(Pk) ≥ ECs

J . (19)

As the number of classes used to optimize the bounds (7)
and (12) ranges from one (Gallager) to a polynomial function
of k (Csiszár), one may pose the natural question of how many
channel input distributions are needed to attain the exponent.
We next show that two classes, and therefore two associated
input product distributions, suffice to attain Csiszár’s exponent.

A. Attaining Csiszár’s exponent with two classes
Let T (v) denote the source-type class associated to message

v. We define the partition P̂k(λ0) as follows. For some λ0 ≥ 0
and every k ≥ 1, we assign the source messages into two sets,
A1 and A2, respectively defined as

A1 ,
{
v : |T (v)| ≥ etkλ0

}
, (20)

A2 ,
{
v : |T (v)| < etkλ0

}
. (21)

Then, we have the following theorem.
Theorem 2: Consider the family of partitions {Pk =

P̂k(λ0), λ0 ∈ [0, RV ]} for every k ≥ 1. Then,

sup
λ0∈[0,RV ]

lim
n→∞

− 1

n
log ε̄B(P̂k(λ0)) ≥ ECs

J . (22)

Proof: See Section V.
The division of Vk into the classes A1 and A2 for the best

threshold λ?0, together with the optimal distributions P (1)
X and

P
(2)
X , induce a conditional distribution PX|V (x|v) given by

PX|V (x|v) =

{∏n
i=1 P

(1)
X (xi), v ∈ A1,∏n

i=1 P
(2)
X (xi), v ∈ A2.

(23)
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Figure 1. Error exponent bounds. Csiszár’s and Gallager’s curves correspond
to Ē0(ρ, PY |X)−tEs(ρ, PV ) and E0(ρ, PY |X)−tEs(ρ, PV ), respectively.
Single class correspond to E0(ρ, PY |X) − lim

n→∞
1
n
E

(i)
s (ρ, PV ), for i =

1, 2.

By construction, the new random coding bound (16) is
looser with respect to the RCU bound (2) for all n and PX|V .
Thus, when the codewords are generated according to (23), the
resulting RCU bound (2) attains an exponent at least as large as
Csiszár’s. Furthermore, if the minimum in (12) is attained for
R > Rcr, then the resulting RCU attains the JSCC exponent.

IV. EXAMPLE

Consider a binary memoryless source (BMS) and a non-
symmetric memoryless channel with |X | = 6, |Y| = 4 and
transition-probability matrix

PY |X =


1− 3ξ1 ξ1 ξ1 ξ1
ξ1 1− 3ξ1 ξ1 ξ1
ξ1 ξ1 1− 3ξ1 ξ1
ξ1 ξ1 ξ1 1− 3ξ1

1
2 − ξ2 1

2 − ξ2 ξ2 ξ2
ξ2 ξ2

1
2 − ξ2 1

2 − ξ2

 , (24)

which is similar to the channel given in [4, Fig. 5.6.5]. Note
that this channel is composed of two quaternary-output sub-
channels. One sub-channel is a quaternary-input symmetric
channel with parameter ξ1 and the other one is a binary-input
channel with parameter ξ2. In this example we set ξ1 = 0.068,
ξ2 = 0.01, t = 2 and PV (1) = 0.041. Therefore, the source
entropy is H(V ) = 0.2469 bits/source symbol, the channel
capacity is C = 0.9468 bits/channel use, and the critical rate
is Rcr = 0.4564 bits/channel use.

As Gallager observed, optimizing the E0(ρ, PY |X , PX)
function over the input distribution may lead to a discontinuity
of the derivative of the function E0(ρ, PY |X) with respect to
ρ. In this example, the optimal distribution abruptly changes
from P

(1)
X =

(
1
4

1
4

1
4

1
4 0 0

)
to P

(2)
X =

(
0 0 0 0 1

2
1
2

)
for

some ρ ∈ [0, 1]. In turn, this implies that E0(ρ, PY |X) is not
concave. Therefore, for some ρ, Ē0(ρ, PY |X) > E0(ρ, PY |X).

In Fig. 1 we plot several bounds on the JSCC exponent
based on the aforementioned random-coding bounds. For
Gallager and Csiszár exponents we use the arguments in (7)
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Figure 2. Random coding upper bounds to the error probability ε.

and (13) as a function of ρ respectively. The figure shows
how the non-concavity of Gallager’s exponent function around
the optimal ρ of Csiszár’s exponent translates into a loss in
exponent. For reference purposes, Fig. 1 shows the value
of Csiszár’s exponent with a horizontal dashed line. For
the random-coding bound (16) with two classes, we apply
Theorem 2 and plot the exponent of each individual class as
a function of ρ. The optimum value of λ0 that determines
the partition is given by λ?0 = 0.732. The resulting exponent
is obtained by first individually maximizing the exponent of
each class over ρ, and then choosing the minimum. The figure
illustrates that for the optimal partition, the exponent of both
classes coincides with Csiszár’s.

In Fig. 2 we compare Gallager’s upper bound (6), the
RCU bounds with a single input distribution (either P (1)

X or
P

(2)
X ) and the RCU bound when the two-class construction is

employed and each class distribution independently optimized.
While the single-class RCU bound is tighter than Gallager’s
bound, it attains the same asymptotic slope. The two-class
construction achieves a tighter upper bound on the random
coding error probability. In this example, Csiszár’s exponent
(12) is attained at R? = 0.7273 > Rcr and thus, ECs

J is tight
and gives the JSCC exponent.

V. PROOF OF THEOREM 2

This section provides proof of Theorem 2. To this end
we first introduce two lemmas which are then used in the
derivation of the main result.

Consider the partition P̂k(λ0) defined by (20)-(21). By
noting that E(i)

s (ρ) , E
(i)
s (ρ, PV ) is a continuous first-order

differentiable function of ρ we define, for i = 1, 2,

λi(ρ) ,
1

n

∂E
(i)
s (ρ)

∂ρ
. (25)

For future reference, we also define

F1(λ, ρ) , max
ρ1∈[0,ρ]

{
E0(ρ1, PY |X) + λ(ρ− ρ1)

}
, (26)

F2(λ, ρ) , max
ρ2∈[ρ,1]

{
E0(ρ2, PY |X) + λ(ρ− ρ2)

}
. (27)



Lemma 1: For every ρ ∈ [0, 1], the limits limn→∞ λi(ρ),
i = 1, 2 exist. Furthermore, for every 0 ≤ λ0 ≤ RV we have

lim
n→∞

λ2(1) ≤ λ0 ≤ lim
n→∞

λ1(0). (28)

Lemma 2: For ρ ∈ [ρ̂, 1] where ρ̂ is the smallest value ρ̂?
that satisfies ρ̂? = arg maxρ′∈[0,1]

{
E0(ρ′, PY |X)− ρ′RV

}
, it

holds that

max
λ∈[0,RV ]

min
i=1,2

{
Fi(λ, ρ)

}
= min
λ∈[0,RV ]

max
i=1,2

{
Fi(λ, ρ)

}
. (29)

Armed with the above two lemmas, we proceed to prove the
lower bound (22). Since E

(i)
s (ρ) are convex non-decreasing

functions of ρ for i = 1, 2 we have that
1) λi(ρ) ≥ 0 for ρ ∈ [0, 1], and
2) λi(0) ≤ λi(ρ1) ≤ λi(ρ2) ≤ λi(1) for 0 ≤ ρ1 ≤ ρ2 ≤ 1.

Then, using the first order Taylor expansion of E(i)
s (ρi) at a

given ρi ∈ [0, 1], we can bound E
(i)
s (ρ0), for i = 1, 2 and

ρ0 ∈ [0, 1], as

E(1)
s (ρ0) ≥ E(1)

s (ρ1) + nλ1(ρ1)(ρ0 − ρ1) (30)

≥ E(1)
s (ρ1) + nλ1(0)(ρ0 − ρ1), ρ1 ≤ ρ0, (31)

E(2)
s (ρ0) ≥ E(2)

s (ρ2) + nλ2(ρ2)(ρ0 − ρ2) (32)

≥ E(2)
s (ρ2) + nλ2(1)(ρ0 − ρ2), ρ2 ≥ ρ0. (33)

Since the limit limn→∞
1
nE

(i)
s (ρ) exists for ρ ∈ [0, 1],

Lemma 1, together with (31) and (33), shows that

lim
n→∞

1

n
E(1)

s (ρ0) ≥ lim
n→∞

1

n
E(1)

s (ρ1) + λ0(ρ0 − ρ1), (34)

lim
n→∞

1

n
E(2)

s (ρ0) ≥ lim
n→∞

1

n
E(2)

s (ρ2) + λ0(ρ0 − ρ2), (35)

for ρ1 ∈ [0, ρ0] and ρ2 ∈ [ρ0, 1].
From (15) we have that, for an arbitrary dummy variable

ρ0 ∈ [0, 1],

lim
n→∞

− 1

n
log ε̄B(P̂k(λ0))

= lim
n→∞

− 1

n
log

(
h(tn)

×
∑
i=1,2

e
− max
ρi∈[0,1]

{
nE0

(
ρi,PY |X

)
−E(i)

s (ρi)
})

(36)

= lim
n→∞

min
i=1,2

{
max
ρi∈[0,1]

{
E0(ρi, PY |X)− 1

n
E(i)

s (ρi)

}}
(37)

= min
i=1,2

{
max
ρi∈[0,1]

{
E0(ρi, PY |X)− lim

n→∞

1

n
E(i)

s (ρi)

}}
(38)

≥ min

{
max

ρ1∈[0,ρ0]

{
E0(ρ1, PY |X)− lim

n→∞

1

n
E(i)

s (ρ1)

}
,

max
ρ2∈[ρ0,1]

{
E0(ρ2, PY |X)− lim

n→∞

1

n
E(i)

s (ρ2)

}}
(39)

≥ min
i=1,2

{
Fi(λ0, ρ0)− lim

n→∞

1

n
E(i)

s (ρ0)

}
(40)

≥ min
i=1,2

{
Fi(λ0, ρ0)

}
− tEs(ρ0, PV ), (41)

where (37) follows by noting that h(tn) is subexponential in
n; in (38) we used that the limit exists for each set of the
parameters over which the optimization is performed; (39)
follows from restricting the intervals over which ρ1 and ρ2
are maximized; in (40) we applied (34)-(35) and used the
definition of Fi(λ, ρ), i = 1, 2, cf. (26)-(27); and in (41) we
used that, by definition, E(i)

s (ρ) ≤ Es(ρ, PV ) = kEs(ρ, PV )
since the sum is taken over a smaller number of terms.

As (36)-(41) hold for arbitrary ρ0 ∈ [ρ̂, 1] (with ρ̂ defined
in Lemma 2), we obtain upon maximizing over λ ∈ [0, RV ]
and ρ0 ∈ [ρ̂, 1]

sup
λ0∈[0,RV ]

lim
n→∞

− 1

n
log ε̄B(P̂k(λ0))

≥ max
ρ0∈[ρ̂,1]

{
max

λ0∈[0,RV ]
min
i=1,2

{
Fi(λ0, ρ0)

}
− tEs(ρ0, PV )

}
(42)

= max
ρ0∈[ρ̂,1]

{
min

λ0∈[0,RV ]
max
i=1,2

{
Fi(λ0, ρ0)

}
− tEs(ρ0, PV )

}
(43)

= max
ρ0∈[ρ̂,1]

{
min

λ0∈[0,RV ]
max
ρ∈[0,1]

{
E0(ρ, PY |X) + λ0(ρ0 − ρ)

}
− tEs(ρ0, PV )

}
(44)

≥ max
ρ0∈[ρ̂,1]

{
min
λ0≥0

max
ρ∈[0,1]

{
E0(ρ, PY |X) + λ0(ρ0 − ρ)

}
− tEs(ρ0, PV )

}
(45)

= max
ρ0∈[ρ̂,1]

{
Ē0(ρ0, PY |X)− tEs(ρ0, PV )

}
(46)

where in (42) we used that Fi(λ, ρ), i = 1, 2 are continuous
functions of λ to write a maximum instead of a supremum; in
(43) we applied Lemma 2; (44) follows from the fact that
maxi=1,2 maxx∈Di f(x) = maxx∈D1∪D2

f(x); in (45) we
relaxed the range over which λ0 is optimized; and finally, (46)
follows from the fact that the convex hull of a function can be
written as the double conjugate of the original function [10,
Thm. 12.2]. The concave hull is then the negative of the double
conjugate of the negative of the original function.

In order to conclude the proof it remains to show that the
range of ρ0 over which the argument of (46) is optimized can
be extended to ρ0 ∈ [0, 1] without violating the inequality
chain (42)-(46). We prove it by contradiction. To this end, let
us consider a ρ?0 that satisfies

ρ?0 = arg max
ρ0∈[0,1]

{
Ē0(ρ0, PY |X)− tEs(ρ0, PV )

}
, (47)

and assume that ρ?0 < ρ̂.

From the definition of the concave hull, it follows
that the smallest value of ρ? that satisfies ρ? =
arg maxρ∈[0,1]

{
Ē0(ρ, PY |X)−ρRV

}
equals ρ̂. Then we have



that

Ē0(ρ?0, PY |X)− tEs(ρ
?
0, PV )

= Ē0(ρ?0, PY |X)− ρ?0RV + ρ?0RV − tEs(ρ
?
0, PV ) (48)

< Ē0(ρ̂, PY |X)− ρ̂RV + ρ?0RV − tEs(ρ
?
0, PV ) (49)

≤ Ē0(ρ̂, PY |X) +RV(ρ?0 − ρ̂)

− t
(
Es(ρ̂, PV ) +

∂Es(ρ, PV )

∂ρ
(ρ?0 − ρ̂)

)
(50)

≤ Ē0(ρ̂, PY |X)− tEs(ρ̂, PV ) (51)

where in (49) we used the definition of ρ̂; (50) follows from
the convexity of Es(ρ, PV ); and in (51) we used that

∂Es(ρ, PV )

∂ρ
≤ lim
ρ′→∞

∂Es(ρ, PV )

∂ρ

∣∣∣∣
ρ=ρ′

=
RV
t
. (52)

From (48)-(51) it follows that by choosing ρ0 = ρ̂ we would
achieve an objective strictly larger than by choosing ρ0 = ρ?0,
hence contradicting the initial assumption.

It thus follows that

max
ρ0∈[ρ̂,1]

{
Ē0(ρ0, PY |X)− tEs(ρ0, PV )

}
= max
ρ0∈[0,1]

{
Ē0(ρ0, PY |X)− tEs(ρ0, PV )

}
. (53)

Since (53) is equal to (13), this concludes the proof.
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