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Abstract- We study an M-ary block-erasure channel with B
blocks, where with probability c a block of L coded symbols
is erased. We study the behavior of the error probability of
coded systems over such channels, and show that, if the code
is diversitywise maximum-distance separable, its word error
probability is equal to the outage probability, which admits a
very simple expression. This paper is intended to complement
the error probability analysis in previous work by Lapidoth and
shed some light on the design of coding schemes for nonergodic
channels.

I. INTRODUCTION

The block-erasure channel is a very simplified model of a
fading channel where parts of the codeword are completely
erased by a deep fade of the channel [1]. This channel
corresponds to the large signal-to-noise ratio (SNR) regime
of the block-fading channel [2], [3], and its interest lies on its
simplicity and non-ergodicity, typical from many real wireless
communication systems, such as orthogonal frequency division
multiplexing (OFDM) or frequency-hopped systems. In this
context, non-ergodicity means that the transmitted codeword
spans only a finite number B of independent realizations
(degrees of freedom) of the channel irrespectively of its length.

In this paper we study the problem of fixed-rate trans-
mission over the block-erasure channel. This paper comple-
ments previous error probability analysis for convolutional
codes in block-erasure channel done by Lapidoth in [1]. In
particular, we derive simple expressions for the word and bit
error probabilities of general codes of a fixed rate, as well
as tight bounds. We find that maximum-distance separable
(MDS) codes have the lowest possible error probability and
are therefore optimal for this channel. We also study the
performance of the random low-density parity-check (LDPC)
code ensemble with iterative decoding, which is particularly
suited for the binary erasure channel (BEC), and we show that
only strictly capacity achieving ensembles over the BEC are
MDS over the block-erasure channel.

II. CHANNEL MODEL

We study a block-erasure channel with B blocks. With
probability c a block of L symbols is completely erased and
with probability 1 -e a block of L coded symbols is received
correctly (noiseless sub-channel), independently from block to
block. Consider the transmission of an Al-ary code C of length
N = BL and rate R = K bits per channel use, where K
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lo&2 |C:. Also, let x = (xI ... XB) C {fO, ... ,N-1IN be
the codewords of C. We denote erasures by "?". The block-
erasure channel is illustrated in Figure 1.

1: The block-erasure channel with B blocks. The symbols of block
b, b = 1,... , B are erased with probability e. The symbols of
block b, b I ... . B are received correctly (noiseless channel) with
probability 1- c.

Define the erasure pattern vector e = (el, e2, eB)
{0, I}B, whose b-th component is eb 1 if the block is erased
and £b = 0 otherwise. Thus, P(eC 1) = e and P(Cb =

0) = -c, namely, the components of the erasure pattern e
are i.i.d. Bernoulli random variables (with success probability
c). We assume that the receiver has channel state information
(CSI), i.e., the receiver knows the erasure pattern e.

III. ERROR PROBABILITY ANALYSIS

In this section we define the word and bit error probabilities
of coded schemes over the block-erasure channel described in
the previous section. We also discuss the information theoretic
limits of the channel.
We define the word error probability as the probability of

decoding in favor of a codeword x when codeword x was
transmitted, averaged over all possible transmitted codewords
x C

pw (e)
e V v

E Pr ,kA~ x
APr x}or

Ixx i-1

(1)

We further consider linear codes only, and tbus, the error
probability does not depend on the transmitted codeword.
We then assume the transmission of the all-zero codeword,
i.e., x = (0, ... 0). Consider the inaximtini likelihood (ML)
decoder,

arg maxp(yx)
xec

(2)
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and define the subsets information between the input and output of the channel for
a given erasure pattern e as

C(e) = {x EC if eb = 0, Xb = (0,...,0) Vb E (1,...,B)}
a

B

as the subset of codewords that differ only in the erased 1(e) B eb log2 M (bits per channel use) (10)
symbols. Obviously, the transmitted codeword belongs to C(e) b=1
and by definition C(e) > 1,Ve In words, C( where eeb denotes the binary complement of eb. This comes

t s from the fact that the block-erasure channel is nothing butth e o oeorstat neersdbyagvn*rsr a set of B parallel channels (used an equal fraction of thepattern, look identical to the receiver. In such a case, the ML etoB paalel channelsdq r of
decoder will resolve the ties evenly, and will make an error time), each conveying either log2 M bits per channel use if
with probability [1] eb 0 or 0 if eb 1. Note that, since B is finite, I(e) is

P,W(Ece) = C-( ) (4)

which implies that

Pw (c) = E[Pwj((ce)] E [1 C(e)
. (5)

We remark that the only source of error (randomness) in the
decoding process is essentially how the ML decoder resolves
the ties between the equaly likely candidates in C(e).
We further define the average bit error probability as

IK
Pe (6) = f Pe,k(6) (6)

k=1

where Pe,k (e) is the probability of error of the k-th information
bit.

Definition 1: The block-diversity of a code is defined as

d = min {b C (1,...,B) Xb7 0O}. (7)
X7&xOc

In words, d represents the limit number erased blocks that C
can tolerate. Specifically, if d < B 1 eb, l(C(e) > 1 and the
ML decoder will make an error with probability 1- e)
Obviously, d < B. If d = B we say that C has full diversity.
The definition of d shows that it corresponds to the minimum
distance of a code of length B constructed over an alphabet
of size ML. Therefore by using the Singleton bound we get
[2]

a random variable. It B -> oc the channel the distributon ot
I(e) becomes a step function at the value of e corresponding
to the channel capacity, and the channel becomes an ergodic
M-ary erasure channel.
We define the information outage probability as the proba-

bility that the transmission rate R is not supported by a given
channel realization,

Put(e)-A Pr{I(e) < R} (1 1)

In such nonergodic channels, Pou1t (e) is then the best possible
word error probability .

We have the following result
Proposition 1: Consider the transmission M-ary codes over

the block-erasure channel. Then,

limP t (r)( BR 1 1)P -ooO loug2 M
Proof: We can write the outage probability as

Pout (e) Pr{I(e) < R}

Pr { B Eeblog2M < R}

Pr{ eb < 112. }

Pr{A F<2BR 1 }
BR 1 _1

|log2 M B

(8)

(9)

The Singleton bound states that given B, R and M, the block
diversity cannot be larger than (9), and thus full diversity is
only guaranteed if R < 1

10g2M -B'
Definition 2: A code C is diversitywise maximum-distance

separable (MDS) if it meets the Singleton bound with equality,
i.e., = B
In the following we elaborate on the optimality of MDS codes
over the block-erasure channel.

A. Outage Probability

Similarly to other non-ergodic channels, the block-erasure
channel has zero capacity in the strict Shannon sense, since,
in this case, with probability EB all channels are erased and
reliable communication is not possible. We write the mutual

(12)

(13)

A B
where A = Eb=l eb is a binomial random variable with
success probability 1 -e. We have quite trivially expressed the
outage probability as the c.d.f. of a binomial random variable.
Therefore we clearly get that

rim Pou1t(e)
E--~O

( B
IBR 1
log2 Ml

B
r BR 1log2 M
(B

Ir BR 1log2 M

) B [ BR 1±+1

B+L-log2M10M
1

1) 6 L ( log2 M)]j (14)

'Remark that this is only true for large block length. In general, Fano's
inequality gives [4], [5]

Pe() > E [1

where Ix + = max{O, x}.

I(e) 1 1
R BLR +
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which shows the result. U
Remark 1: The outage probability has slope 3B for low e in

B )
a log-log scale, and asymptotic coding gain BR1M1og2 M
Thus it clearly corresponds to the high SNR regime of a block-
fading channel [3].
Remark 2: If 1og M = (full diversity), Pou1t(e) = ,

i.e., the probability that the rate R is not supported by the
channel is equal to the probability of having all the blocks
erased.
Figure 2 shows the outage probability and the asymptotic limit
(12) for R = binary codes (M = 2) over a block erasure
channel with B = 2, 4 and 8 blocks.

since (17) coincides with Pou1t(e). In other words, if C is MDS,
its word error probability is given by the outage probability,
since the decoder will decode correctly under all erasure
patterns such that Y : eb <6B-

Figure 3 confirms the above discussion. We have plotted the
outage probability and the limiting behavior (12), as well as
the word error rate (WER) simulations for the (23, 33)8 and
(133,171)8 convolutional codes with L = 25 (circles/crosses)
and L = 2500 (diamonds/squares) respectively. As we ob-
serve, the simulated WER of the different codes for the
different block lengths is the same and matches perfectly with
the outage probability.

10 =. .........

P,(
eq. (1 1)

10 0 sim (22,33)8 L=25
sim (22,33). L=2500

-2 X sim (133,171)8 L=25

10

10 a sim (I 33,171)8 L=2500

............ ... ..... ....
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2: Outage probability (continuous lines) and Eq. (12) (dashed lines) in a
log-log scale in a block erasure channel with B = 2, B = 4 and B = 8
blocks for R and M = 2. The Singleton bound gives 6B = 2, 3 and 5
respectively.

B. Word Errors

The previous result proves the optimality (in diversity only)
of designing MDS codes for such channels. In order to achieve
the optimal performance, we start from

Pw (Ece) = - ( )1 (15)

For any code (with a given block diversity d < 6B), since
flC(e) < ('C we can trivially upperbound (15) (for large block

length) as

Pe ( e) < 1 f Eb=1 eb (16)
10 ifZeadetB

which leads to

10-
e

10°

3: Outage probability (continuous lines), Eq. (12) (dashed lines) and
simulations with the (23,33)8 and (133,171)8 convolutional codes with
L = 25 (corresponds to 100 information bits per codeword) and L = 2500
(corresponds to 10000 information bits per codeword) in log-log scale in a
block erasure channel with B = 8 blocks.

Remark 3: This result can be a priori surprising, since
it characterizes the performance of any MDS code of any
(sufficiently large) block length over the block erasure channel.
A posteriori, the result seems rather obvious, since it clearly
follows as an artifact from the channel model and the definition
of MDS codes. We should not then be misled by this, since
in realistic non-ergodic block-fading noisy channels MDS
codes are necessary, but not sufficient to approach the outage
probability [3]. For example, the WER of convolutional codes
in the block-fading channel increases with the block length,
while the WER of concatenated MDS codes (as the blockwise
concatenated codes of [3] or the parallel turbo-codes of [6])
is given by the distribution of the decoding threshold [7].

C. Bit Errors

In this section we show that diversitywise MDS codes are
also optimal for the bit error probability. We start with a very
simple upperbound

P6 (e) < Pr { Eeb > }
b=l

B B
Pr E e-b < B

b=l Peb(ce) < 2}
if EZ 1 eb > 3

if Zb 1 eb <-

(17) which yields that

In general (17) is not necessairly tight. However (and possibly
surprisingly), if C is MDS, i.e., = 6B, the bound is tight

Pe(c) = E[P,(ce)] < 2 Pr{eb
b=l

2PeW (c). (19)> a}
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By using the bit-error version of Fano's inequality with [8,
Th. 4.3.2] (using the fact that the encoder's inputs are bits)
we can lowerbound the bit-error probability and get that2

P(ce) >h-1(1 I )) (20)

where h(p) = p lg2 1 + (1 -p) 1og2 11p is the binary entropy
function and p = h- (x) denotes the probability p for which
h(p) = x. Therefore, we get that

Pb(c) = E[Peb(ce)] > E [h 1(1
I

±)I

4E h-1 ( 1 _0log2MEb=1eb
BR 1R 1

logg2M

E h -
k=o

-1 (1 log2M k ) (I
BR +, '~kr1 E)k B-k

(21)
since

/I _ \

12 1(1log2M~~~1eb 0 BRh1 1- 12
M =1 )b = O when E eb >_BR b 110o2M

(22)
Therefore, the bit-error probability has the same slope, namely,
the Singleton bound 6B and this slope is again achievable with
MDS codes. We can also lowerbound Pb(cEe) as,

Remark 5: The upperbound (19) and the lowerbounds (21)
and (25) coincide for full diversity codes.

Figure 4 shows several bounds and simulations of the bit-
error probability. As we see, the difference between the two
lowerbounds is quite remarkable, which indicates that (21)
might not be achievable in general.
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4: Bit-error probability in log-log scale in a block erasure channel with
B = 8 blocks for R = 1/2. We show the lowerbound (21) (dotted), the
analytical BER expression for the (23, 33)8 code from [1] (continuous line),
the BER simulation (diamonds), the upperbound in (19) (dashed-dotted line)
and the lowerbound (25) (dashed line).

1 B-_b= eb i*f B _< BR
Pb( 2e)> 2 B othber ibse 2 M
,OEe otherwise

which yields to

Peb() = E[Pe(6Ee)]
rBR 11

1log2 M

l 2BS2
k=O

zB

(23)

(24)

e) k6B-k (25)

since the best the decoder can do in case of an outage event
to guess a fraction B 1 b of the bits and correct all the
others. Depending on the structure of the code, the decoder
will do worse than that. For example, in the ML decoder of
a convolutional code will choose a wrong path through the
trellis, which will yield more errors in the bits corresponding
to the non-erased blocks.
Remark 4: The maximum exponent of e in the BER ex-

pression for the (23, 33)8 code with periodic interleaving in
[1, pp. 1470]

Pe() = 23.5c5(1)3+ 13.56(1 2+ 4(1 - ) + 0. 58
(26)

should not come as a surprise, since the code with periodic
interleaving is MDS, and thus, 6B = 5 (the results in [1] are
plotted in a linear scale for e and the effect of the slope is
not evident). It should also be clear that a random interleaver
yields a non-MDS convolutional code, and hence its error
probability has a worse slope.

2This lowerbound was also obtained in [9] for the multiple-antenna case.

IV. STANDARD LDPC CODES

In this section we consider low-density parity-check (LDPC)
codes over such block erasure channel. Any instance of a
randomly constructed LDPC code with degree distributions
A(x) = Ei Aixi-1 and p(x) = Ej pjx-l assigns a fraction
Ai of edges to variable nodes of degree i, and a fraction of
edges pj to check nodes of degree j. Since there is no further
structure in the graph, transmitting LDPC codewords over the
block erasure channel is equivalent to the random interleaver
of [1]. Thus, given an erasure pattern e, for every variable
node a component of e is selected at random with uniform
probability. If it is one, the corresponding variable node is
erased. Therefore, we can express the bit error probability for
a given erasure pattern e as

Pp(Be) pb,BEC (Z,Ieb) (27)

where pb,BEC(c) is the bit error probability in the ergodic
binary erasure channel with erasure probability e usually
denoted by BEC(E). For standard LDPC3,

(1 ifcE>cE*

pb,BEC 2e(~~E) 10 ifc<* (28)

3Depending on the degree distribution, some LDPC codes might show an
error probability characterstic with multiple steps. Here we ignore such case
and consider only the largest erasure probability such that the iterative decoder
yields an error probability that goes striclty to zero.
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where e* is the decoding threshold of the code [10]. Therefore,
the overall bit error proability is given by

Pb'(,) = E[Pe (,Ee)]

=Pr Eb=l(l >e*

B

= Pr 1:eb<B(l-

b=l

IB(1-,e*)1-l I KB
2 tk)

_ c*)}

(1 6)k6B k

FBCBEC1

k=O

10(
E)k B-k (29)

where C AEC -* is the capacity of an LDPC code
ensemble over the BEC channel. As we see from (29), as

e -> 0, the exponent of the dominant term is

B - FBCEC1 -1 (30)

which is only equal to the Singleton bound when the LDPC
is capacity achieving, namely, when CBEC CBEC, where
CBEC is the Shannon capacity of the BEC. From here we

see that standard LDPC codes are not MDS in the block
erasure channel. This is confirmed in the next few examples,
where we show the performance of regular and irregular LDPC
codes of R = 1/2. More precisely, we consider the regular
(3, 6) random ensemble and the irregular code with optimal
threshold in the ergodic binary erasure channel [11] whose
edge degree distributions are

A(x) = 0.224571x + 0.119576X2 + 0.120921X4
+ 0.0399026x5 + 0.0895559x90 + 0.0581616x1
+ 0.0963533x27 + 0.0578119x28 + 0.193147x99

and
p(x) = 0.15x8 + 0.85x9.

Figures 5 and 6 show that neither of the codes is MDS, as they
cannot recover from a number of erasures equal to (B -1)L,
which for R is half the code length. Note that an LDPC

2

code ensemble that can recover from half a codeword erased
would be strictly capacity achieving. Similar comments apply
to Figures 7, 8, 9 and 10, where the LDPC code ensembles
are shown to have error floors. These effects are due to the
stopping sets and their associated probabilities. In fact, for
small e all codes tend to have slope 1, regardless of the block
length or degree distribution. This shows that classical random
LDPC code ensembles with iterative decoding are not suited
for erasure channels where erasures appear in a non-ergodic
fashion.
Under ML decoding, however, this situation is different.

Recall iterative decoding solves a system of equations by
back-substitution of degree one equations, and whenever the
remaining set of equations has two or more variables in each
equations, the decoder stops [10]. Under ML decoding, the
decoder will successfully decode if the number of independent
parity-check equations is equal to the number of remaining
variables. This implies that some LDPC codes can be MDS.

3

10 10 10 10U

5: Word-error probability in log-log scale in a block erasure channel with
B = 2 blocks for R = 1/2 with LDPC codes with L = 500, 5000. We show
the outage probability (continuous line) and the upperbound (17) (dashed line)
for codes with d = 1. In this case AB = 2.

10

10

10

10

10

10

10
* (3,6) L=500
O (3,6) L=5000
O Irregular L=500
> Irregular L=5000

Fano Lower Bound
10o'

10 10 10 10

6: Bit-error probability in log-log scale in a block erasure channel with
B = 2 blocks for R = 1/2 with LDPC codes with L = 500, 5000. We
show the lowerbound (21) (continuous line) and the upperbound (19) (dashed
line) for codes with 6 = 1. In this case 6B = 2.

For example, an LDPC code whose check nodes are connected
to all blocks, will be MDS under ML decoding, provided that
the interleaving permutation yields a full rank system for every

combination of B -1 erased blocks.

V. CONCLUSIONS

A rather simple analysis reveals the usefulness of diversi-
tywise MDS codes for the non-ergodic block-erasure channel.
We show that these codes are optimal in this channel and we

derive the expresisons of their frame error rate as well as tight
bounds on their bit-error rate. We also study the performance
of random LDPC code ensembles and show that, only strictly
capacity achieving ensembles are MDS in the limit for large
block length.

7th Australian Communications Theory Workshop

10

10

..........

.........

...

...........

10 '

1-4244-0214-X/06/$20.00 (.)2006 IEEE 23

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on October 7, 2009 at 05:32 from IEEE Xplore.  Restrictions apply. 



101

-1 l I / ;;;;;

10 10 10

7: Word-error probability in log-log scale in a block erasure channel with

B = 4 blocks for R = 1/2 with LDPC codes with L = 250, 2500. We show
the outage probability (continuous line) and the upperbound (17) (dashed line)
for codes with d = 1, 2. In this case AB = 3.
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9: Word-error probability in log-log scale in a block erasure channel with
B = 8 blocks for R = 1/2 with LDPC codes with L = 125, 1250. We show
the outage probability (continuous line) and the upperbound (17) (dashed line)
for codes with = 1, 2, 3, 4. In this case AB = 5.
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8: Bit-error probability in log-log scale in a block erasure channel with
B = 4 blocks for R = 1/2 with LDPC codes with L = 250, 2500. We
show the lowerbound (21) (continuous line) and the upperbound (19) (dashed
line) for codes with d = 1, 2, 3. In this case 5B = 3.
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