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Abstract— This paper presents a simple closed-form expression II. ERRORPROBABILITY ANALYSIS

to evaluate the error probability of binary fully-interleaved
fading channels. The proposed expression does not require a- Channel Model
numerical Laplace transform inversion, numerical integration or We study coded modulation over binary-input (BPSK)

similar techniques, and captures the role of the relevant system ., ,qqian noise channels. The discrete-time received signal can
parameters in the overall error performance. The expression has

the same asymptotic behavior as the Bhattacharyya (Chernoff)- be expressed as
union bound but closes the gap with the simulation results. up = \/mhk vo+zp, k=1...,N @)

Its preg:isi_on is numeric_ally validate_d fo_r coded and uncoded
transmission over generic Nakagami fading channels. wherey;, € R is thek-th received sampléy, € R is thek-th
fading attenuationg, € {—1,+1} is the transmitted signal

|. INTRODUCTION AND MAIN RESULT at timek, and z;, € R is the k-th noise sample, assumed to
The computation of error probabilities in fadin channelge Li.d. ~ N(O, %)' The codewordsc = (xl""’xN) are
P b 9 Obtained by mapping the codewords= (cl, . .,cN) of the

suffers from the absence of a simple formula akin to the ) . . . :
Q(+) function in pure additive white Gaussian noise (AWGN qdeC, each of dimensiorit_ information bits and lengti,

channels. The Chernoff bound [1] can be expressed in clo e'éh the labelling rule — —1,1 — +1. The corresponding

. . . %rasnsmission rate iB = £ hits per channel use. The average
form but it is loose. An alternative method [2] uses Craig’s N b 9

expression of tha)() function, which usually requires nu- received signal-to-noise ratio iSNR. Perfect channel state
pressi . ' y req information (CSI) at the receiver is assumed. We shall consider
merical integration.

. VI
In a recent paper [3] we proposed the use of the Saddfﬁgeneral Nakagami: fading“ with m € (0,4o00) . Therefore

point approximation to evaluate the error probability of bit- e coefficientsh; follow the distribution
interleaved coded modulation (BICM) [4]. In this paper, we 2mmhim’1
particularize the analysis for the case of binary transmission I'(m)

f:?oii?fo?g]deig?;vs;iﬁt the approximation admits & SIMPI&, | o <o ared fading coefficient = [hx|? has the distri-

Pry, (hy) = e~ mhi, ©)

In particular, we shall show that for Nakagami fadiné)Utlon mmymt
with parameterm [1], average signal-to-noise ratiSNR, Pry, (xx) = We‘mx’“. (4)

and a diversity scheme witl identical branches, the error ) )
probability between two codewords at Hamming distaicer e recover the unfaded AWGN witih. — +-cc, the Rayleigh

pairwise error probability (PEP), can be closely approximatdading by lettingm = 1 and the Rician fading with parameter
by K by settingm = (K + 1)?/(2K +1).

PEP(d, SNR) ~

1 ( SNRY ™D+ 3 B. Error Probability Under ML Decoding
ey ®

2/7d SNR mD For maximum likelihood decoding (ML) the error proba-
It is worth recalling that Nakagami fading subsumes as s ity of_lmear b_mary codes is accurately given by the union
. i . ptfound in a region above the cut-off rate [5]. The codeword
cial cases the Rayleigh, Rice, and unfaded AWGN channe Sior probabilityPr. is very closelv uoper bounded b
The approximation is therefore valid for these cases as wéll[[°" P YiTe y y upp y
The precision of the proposed approximation is validated for Pr, < ZAd PEP(d,SNR), (5)
uncoded and coded transmission using either convolutional or P
turbo-like codes, over generic Nakagami fading channels.
2Even though the case: > 0.5 is usually considered in the literature [1],

1The work by A. Guilen i Fabregas has been supported by the Australiaf2], the distribution is well-defined fod < m < 0.5. In general reliable

Research Council (ARC) Grants DP0344856 and DP0558861. transmission is possible for. > 0.



where A, denotes the number of codewordsdrwith Ham- and assuming that the total average received signal-
ming weightd, PEP(d, SNR) is the pairwise error probability to-noise ratio is SNR, A(h) are normally distributed
(PEP) for two codewords differing id bits. Similarly, the bit- A(—4D~* ", x4 SNR,8D !>, x4 SNR), where y; =
error probability P, is given by the right-hand side of Eq. (5)|hq|?. Let us define the vectoxx = (x1,...,xp). The
with A, replaced byfld => %Ai7d, A; q being the number cumulant transform is now given by
of codewords inC with output Hamming weight/ and input s
weight i. Besides, for a memoryless channel and a binar)ﬁ(s) =log By Ex (e A(%)) L (14)
linear code, the pairwise error probability is given by the tail =logE, (e"*P" aXxda SNR+4sD7 37, xa SNR) - (15)
probability of a sum of random variables D
— ZlogE)(d (8743D71Xd SNR +45>D 1 xq SNR). (16)
d=1

d
PEP(d,SNR) = Pr (Z Aj > 0> , (6)
j=1 Using the formula for the distribution of the Nakagami-
where the variabled, to which we shall refer in the following fading, the last equation can be evaluated and gives

as a posteriori log-likelihood ratios, are independent and 4sSNR 4s2SNR
identically distributed, with value K(s) = —mD 10g<1 == ) 17)
Aj=1o Pr(cij = E‘V(C» 7 This is equivalent to a Nakagami fading with parameter=
Pr(¢; = ¢[V(c)) mD. In the limit D — oo itis equal to that of unfaded AWGN.

that is, the ratio of the a posteriori likelihoods of the pith p. saddlepoint Approximation
taking the valueg andc, having transmitted bit. The ratioA

depends on all the random elements in the channel, that is m
noise and fading realizationsand h respectively. In order to

avoid cumbersome notation, we have grouped them in a ve
A

In [3] we present a derivation of the saddlepoint approxi-

Stion and an estimate of the approximation error to the PEP.
Keeping only the first order term in the asymptotic series, the
CIBEP can be approximated by

V(c) = (#, h). Conditioned on a realization of the fadirig,
it is straightforward to show that(hy) is normally distributed PEP(d,SNR) ~ - e (3) (18)
N (—4xx SNR, 8x: SNR), where x; = |hi|?. Note that it 2mdr" (3)$
does not depend on the transmitted it —md+ %
. . o 1 SNR 2
In estimates of tail probabilities, the cumulant transform = 1 . (19)
k(s) (or cumulant generating function) df is a more conve- 2vmd SNR m

nient representation than the density. The transform is givéhe effect of the correction is found to be negligible in
by x(s) a log Ey () [esA], with s € C [6], [7]. Using the Ppractical calculations, which implies that we need not sum

definition of A, we rewritex(s) as over any more terms in the asymptotic series.
SACR) For Rayleigh fadings: = 1) (19) improves on Chernoff's
K(s) = log By . [e**] (8)  bound (Bhattacharyya) [1],
_ —4sx SNR +4s2x SNR .
=logE\ [e™**X N © PEP(d, SNR) < ¢%*() = (1 + SNR)~%.  (20)

+oo m., m—1
m _ _ 2
_ lOg/ X mX o 4sx SNR +4s“x SNR dX
0

T(m) e Similarly, under diversity withD identical branches, the

(10) PEP can be approximated by

Using [8] we can explicitly express Eq. (10) as PEP(d,SNR) ~ SN (21)
2mdr (3)3

(1. 4sSNR 4s?SNR 1 .

k(s) = —mlog| 1+ o . (1Y - 1 (1 SNR>mdD+2

The saddlepoint is the value for whichx'($) = 0. It can 2vmd SNR . mD o

be shown that this point exists and is unique [6]. Symmetry For m — oo or D — oo, i. e, AWGN, it gives the

dictates that the saddlepoint is placedsat 1/2 [7]. At the expansion of th&)(-) function into an exponential, that is
saddlepoint the first derivative/(3) = 0 and

(22)

d
1 —dSNR
N Pr AN >0 2 ———e ~ Q(V2dSNR).
K(3) = —mlog (1 + st> (12) (; ) 2v/7d SNR ( )
23
. . 8SNR (23)
(3 = —a i (13) [1l. N UMERICAL RESULTS AND DISCUSSION
] ] 1+ m In this section we show some numerical results that illustrate
C. Effect of Diversity the accuracy of the proposed methods as well as its asymptotic

Conditioned on a realization of the fading coefficientbehavior. In particular, we show the following: the Bhat-
in the D identical receiver branchesi = (hy...,hp), tacharyya union bound (B-UB), the saddlepoint approximation
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Fig. 1. Comparison of simulation and saddlepoint approximation for uncoded BPSK in Nakagami fading of pararmeteB, 0.5, 1, 4.

(19) union bound (SP-UB), and the simulation of the bit-error IV. CONCLUSIONS
ensembles. a tight closed-form approximation to the error probability

Figure 1 shows the bit-error probability simulation an@f binary transmission over fully-interleaved fading channels.
saddlepoint approximation for uncoded BPSK in Nakagarfmhis probability is found to correspond in a natural way to
fading with parametem = 0.3,0.5,1 and4. We observe that the tail probability of a sum of independent random vari-
both curves are very close. ables, which is calculated using the saddlepoint approximation.

Figure 2 shows the bit-error probability simulation andn contrast to numerical integration methods, the proposed
bounds for the 64-state rate 1/2 convolutional code in Nagaddlepoint approximation yields a simple expression that
agami fading with parametem = 0.3,0.5,1 and 4. As highlights the design tradeoffs among the different system
we see, the closed-form saddlepoint union bound yields parameters. We have verified the validity of the approximation
accurate estimation of the error probability. Figure 3 shower uncoded and coded (convolutional and turbo-like code
the corresponding curves for a repeat-accumulate code of ramsembles) transmission with various fading parameters. The
1/4 with K = 512. For the sake of presentation claritygeneral underlying method allows for straightforward exten-
Figure 3 does not include the curves of the Bhattacharyg@ns to other fading models, for instance, with correlation
union bound which gives a looser bound. For every block @mong successive fading realizations.
information _bits a _different interleaver is _randpmly generate_d. REFERENCES
The. S|mglat|0n points corres_pond_to an Iteratlye decoder WlﬁﬂeE. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels:
20 iterations. The saddlepoint union bound gives an accurate jnformation-theoretic and communications aspedBEE Trans. Inform.
estimation of the error floor region. Furthermore, it does also Theory vol. 44, no. 6, pp. 26192692, October 1998. _
provide an accurate approximaton to the "knee” of the el ¥, 1% ¢ 1S, Aour it Communicain et S
curve, i. e., the transition between the waterfall and the error |yerscience, 2000.
floor regions. [3] A.Martinez, A. Guillen i Fabregas, and G. Caire, “Error probability of bit-

In all the cases the saddlepoint approximation gives an glr:elrrl]?.a_\ll_ﬁgocr.oded modulation,” accepted for publication in IEEE Trans.
extremely accurate result at a fraction of the complexify] G. caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,”
required by alternative computation methods [2], such as the IEEE Trans. Inform. Theorwol. 44, no. 3, pp. 927-946, May 1998.

A. J. Viterbi and J. K. OmuraPrinciples of Digital Communication and
(exact) formula for the uncoded case (a Gauss hypergeom CCoding  McGraw-Hill, 1979.

function), or numerical integration of Craig’s form of thee] J. L. JensenSaddlepoint ApproximationsOxford, UK: Clarendon Press,
Q(-) function. Furthermore, as opposed to the numerical 1995. _ , o
integration method, the saddlepoint approximation is useful ifl 5\;”(:)', gﬁgaggg"snfi;mﬁgt'on Theory and Reliable Communicatio@ohn
an engineering sense, as it highlights the role of all relevast 1. s. Gradshteyrll, I. M. Ryzhik, and A. J. (EditorJable of Integrals,

system parameters in the overall error probability. Series, and Products Academic Press, 1994.



T
¢ - BER sim
— SP-UB

- - -B-UB

Bit Error Rate

10
E/N, (dB)

Fig. 2. Comparison of simulation, Bhattacharyya union bound and saddlepoint approximation for the 64-state rate 1/2 convolutional code in Nakagami fadinc
of parametern = 0.3,0.5, 1, 4.
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Fig. 3. Comparison of simulation and saddlepoint approximation for a rate 1/4 repeat-accumulate code in Nakagami fading of pararfeied.5, 1, 4.



