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Abstract— This paper presents a simple closed-form expression
to evaluate the error probability of binary fully-interleaved
fading channels. The proposed expression does not require a
numerical Laplace transform inversion, numerical integration or
similar techniques, and captures the role of the relevant system
parameters in the overall error performance. The expression has
the same asymptotic behavior as the Bhattacharyya (Chernoff)-
union bound but closes the gap with the simulation results.
Its precision is numerically validated for coded and uncoded
transmission over generic Nakagami fading channels.

I. I NTRODUCTION AND MAIN RESULT

The computation of error probabilities in fading channels
suffers from the absence of a simple formula akin to the
Q(·) function in pure additive white Gaussian noise (AWGN)
channels. The Chernoff bound [1] can be expressed in closed
form but it is loose. An alternative method [2] uses Craig’s
expression of theQ(·) function, which usually requires nu-
merical integration.

In a recent paper [3] we proposed the use of the saddle-
point approximation to evaluate the error probability of bit-
interleaved coded modulation (BICM) [4]. In this paper, we
particularize the analysis for the case of binary transmission
(BPSK) and show that the approximation admits a simple
closed-form expression.

In particular, we shall show that for Nakagami fading
with parameterm [1], average signal-to-noise ratioSNR,
and a diversity scheme withD identical branches, the error
probability between two codewords at Hamming distanced, or
pairwise error probability (PEP), can be closely approximated
by

PEP(d, SNR) ' 1
2
√

πd SNR

(
1 +

SNR
mD

)−mdD+
1
2
. (1)

It is worth recalling that Nakagami fading subsumes as spe-
cial cases the Rayleigh, Rice, and unfaded AWGN channels.
The approximation is therefore valid for these cases as well.
The precision of the proposed approximation is validated for
uncoded and coded transmission using either convolutional or
turbo-like codes, over generic Nakagami fading channels.

1The work by A. Guilĺen i F̀abregas has been supported by the Australian
Research Council (ARC) Grants DP0344856 and DP0558861.

II. ERRORPROBABILITY ANALYSIS

A. Channel Model

We study coded modulation over binary-input (BPSK)
Gaussian noise channels. The discrete-time received signal can
be expressed as

yk =
√

SNR hk xk + zk, k = 1, . . . , N (2)

whereyk ∈ R is thek-th received sample,hk ∈ R is thek-th
fading attenuation,xk ∈ {−1,+1} is the transmitted signal
at time k, andzk ∈ R is the k-th noise sample, assumed to
be i.i.d. ∼ N (0, 1

2 ). The codewordsx =
(
x1, . . . , xN

)
are

obtained by mapping the codewordsc =
(
c1, . . . , cN

)
of the

codeC, each of dimensionK information bits and lengthN ,
with the labelling rule0 → −1, 1 → +1. The corresponding
trasnsmission rate isR = K

N bits per channel use. The average
received signal-to-noise ratio isSNR. Perfect channel state
information (CSI) at the receiver is assumed. We shall consider
a general Nakagami-m fading2 with m ∈ (0,+∞) . Therefore
the coefficientshk follow the distribution

Prhk
(hk) =

2mmh2m−1
k

Γ(m)
e−mh2

k . (3)

and the squared fading coefficientχk = |hk|2 has the distri-
bution

Prχk
(χk) =

mmχm−1
k

Γ(m)
e−mχk . (4)

We recover the unfaded AWGN withm → +∞, the Rayleigh
fading by lettingm = 1 and the Rician fading with parameter
K by settingm = (K + 1)2/(2K + 1).

B. Error Probability Under ML Decoding

For maximum likelihood decoding (ML) the error proba-
bility of linear binary codes is accurately given by the union
bound in a region above the cut-off rate [5]. The codeword
error probabilityPre is very closely upper bounded by

Pre ≤
∑

d

Ad PEP(d, SNR), (5)

2Even though the casem ≥ 0.5 is usually considered in the literature [1],
[2], the distribution is well-defined for0 < m < 0.5. In general reliable
transmission is possible form > 0.



whereAd denotes the number of codewords inC with Ham-
ming weightd, PEP(d,SNR) is the pairwise error probability
(PEP) for two codewords differing ind bits. Similarly, the bit-
error probabilityPb is given by the right-hand side of Eq. (5)
with Ad replaced byÃd =

∑
i

i
K Ai,d, Ai,d being the number

of codewords inC with output Hamming weightd and input
weight i. Besides, for a memoryless channel and a binary
linear code, the pairwise error probability is given by the tail
probability of a sum of random variables

PEP(d,SNR) = Pr

(
d∑

j=1

Λj > 0

)
, (6)

where the variablesΛ, to which we shall refer in the following
as a posteriori log-likelihood ratios, are independent and
identically distributed, with value

Λj = log
Pr(ĉj = c̄|V(c))
Pr(ĉj = c|V(c))

, (7)

that is, the ratio of the a posteriori likelihoods of the bitj-th
taking the values̄c andc, having transmitted bitc. The ratioΛ
depends on all the random elements in the channel, that is the
noise and fading realizationsz andh respectively. In order to
avoid cumbersome notation, we have grouped them in a vector
V(c) ∆= (z, h). Conditioned on a realization of the fadinghk,
it is straightforward to show thatΛ(hk) is normally distributed
N (−4χk SNR, 8χk SNR), where χk = |hk|2. Note that it
does not depend on the transmitted bitc.

In estimates of tail probabilities, the cumulant transform
κ(s) (or cumulant generating function) ofΛ is a more conve-
nient representation than the density. The transform is given
by κ(s) ∆= log EV(c)

[
esΛ
]
, with s ∈ C [6], [7]. Using the

definition of Λ, we rewriteκ(s) as

κ(s) = log Eh,z

[
esΛ(h)

]
(8)

= log Eχ

[
e−4sχ SNR +4s2χ SNR

]
(9)

= log
∫ +∞

0

mmχm−1

Γ(m)
e−mχ e−4sχ SNR +4s2χ SNR dχ.

(10)

Using [8] we can explicitly express Eq. (10) as

κ(s) = −m log
(

1 +
4sSNR

m
− 4s2 SNR

m

)
. (11)

The saddlepoint̂s is the value for whichκ′(ŝ) = 0. It can
be shown that this point exists and is unique [6]. Symmetry
dictates that the saddlepoint is placed atŝ = 1/2 [7]. At the
saddlepoint the first derivativeκ′(ŝ) = 0 and

κ(ŝ) = −m log
(

1 +
SNR
m

)
(12)

κ′′(ŝ) =
8 SNR

1 +
SNR
m

. (13)

C. Effect of Diversity

Conditioned on a realization of the fading coefficients
in the D identical receiver branches,h = (h1 . . . , hD),

and assuming that the total average received signal-
to-noise ratio is SNR, Λ(h) are normally distributed
N (−4D−1

∑
d χd SNR, 8D−1

∑
d χd SNR), where χd =

|hd|2. Let us define the vectorχ = (χ1, . . . , χD). The
cumulant transform is now given by

κ(s) = log Eh Ez

(
esΛ(h)

)
(14)

= log Eχ

(
e−4sD−1 P

d χd SNR +4s2D−1 P
d χd SNR

)
(15)

=
D∑

d=1

log Eχd

(
e−4sD−1χd SNR +4s2D−1χd SNR

)
. (16)

Using the formula for the distribution of the Nakagami-m
fading, the last equation can be evaluated and gives

κ(s) = −mD log
(

1 +
4sSNR

mD
− 4s2 SNR

mD

)
. (17)

This is equivalent to a Nakagami fading with parameterm̃ =
mD. In the limit D →∞ it is equal to that of unfaded AWGN.

D. Saddlepoint Approximation

In [3] we present a derivation of the saddlepoint approxi-
mation and an estimate of the approximation error to the PEP.
Keeping only the first order term in the asymptotic series, the
PEP can be approximated by

PEP(d, SNR) ' 1√
2πdκ′′(ŝ)ŝ

edκ(ŝ) (18)

=
1

2
√

πd SNR

(
1 +

SNR
m

)−md+
1
2
. (19)

The effect of the correction is found to be negligible in
practical calculations, which implies that we need not sum
over any more terms in the asymptotic series.

For Rayleigh fading (m = 1) (19) improves on Chernoff’s
bound (Bhattacharyya) [1],

PEP(d, SNR) ≤ edκ(ŝ) = (1 + SNR)−d. (20)

Similarly, under diversity withD identical branches, the
PEP can be approximated by

PEP(d, SNR) ' 1√
2πdκ′′(ŝ)ŝ

edκ(ŝ) (21)

=
1

2
√

πd SNR

(
1 +

SNR
mD

)−mdD+
1
2
. (22)

For m → ∞ or D → ∞, i. e., AWGN, it gives the
expansion of theQ(·) function into an exponential, that is

Pr

(
d∑

l=1

Λi > 0

)
' 1

2
√

πd SNR
e−d SNR ' Q

(√
2d SNR

)
.

(23)

III. N UMERICAL RESULTS AND DISCUSSION

In this section we show some numerical results that illustrate
the accuracy of the proposed methods as well as its asymptotic
behavior. In particular, we show the following: the Bhat-
tacharyya union bound (B-UB), the saddlepoint approximation
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Fig. 1. Comparison of simulation and saddlepoint approximation for uncoded BPSK in Nakagami fading of parameterm = 0.3, 0.5, 1, 4.

(19) union bound (SP-UB), and the simulation of the bit-error
rate (BER sim) for both convolutional and turbo-like code
ensembles.

Figure 1 shows the bit-error probability simulation and
saddlepoint approximation for uncoded BPSK in Nakagami
fading with parameterm = 0.3, 0.5, 1 and4. We observe that
both curves are very close.

Figure 2 shows the bit-error probability simulation and
bounds for the 64-state rate 1/2 convolutional code in Nak-
agami fading with parameterm = 0.3, 0.5, 1 and 4. As
we see, the closed-form saddlepoint union bound yields an
accurate estimation of the error probability. Figure 3 shows
the corresponding curves for a repeat-accumulate code of rate
1/4 with K = 512. For the sake of presentation clarity,
Figure 3 does not include the curves of the Bhattacharyya
union bound which gives a looser bound. For every block of
information bits a different interleaver is randomly generated.
The simulation points correspond to an iterative decoder with
20 iterations. The saddlepoint union bound gives an accurate
estimation of the error floor region. Furthermore, it does also
provide an accurate approximation to the “knee” of the error
curve, i. e., the transition between the waterfall and the error
floor regions.

In all the cases the saddlepoint approximation gives an
extremely accurate result at a fraction of the complexity
required by alternative computation methods [2], such as the
(exact) formula for the uncoded case (a Gauss hypergeometric
function), or numerical integration of Craig’s form of the
Q(·) function. Furthermore, as opposed to the numerical
integration method, the saddlepoint approximation is useful in
an engineering sense, as it highlights the role of all relevant
system parameters in the overall error probability.

IV. CONCLUSIONS

In this paper we have presented a simple method to compute
a tight closed-form approximation to the error probability
of binary transmission over fully-interleaved fading channels.
This probability is found to correspond in a natural way to
the tail probability of a sum of independent random vari-
ables, which is calculated using the saddlepoint approximation.
In contrast to numerical integration methods, the proposed
saddlepoint approximation yields a simple expression that
highlights the design tradeoffs among the different system
parameters. We have verified the validity of the approximation
for uncoded and coded (convolutional and turbo-like code
ensembles) transmission with various fading parameters. The
general underlying method allows for straightforward exten-
sions to other fading models, for instance, with correlation
among successive fading realizations.
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Fig. 2. Comparison of simulation, Bhattacharyya union bound and saddlepoint approximation for the 64-state rate 1/2 convolutional code in Nakagami fading
of parameterm = 0.3, 0.5, 1, 4.
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Fig. 3. Comparison of simulation and saddlepoint approximation for a rate 1/4 repeat-accumulate code in Nakagami fading of parameterm = 0.3, 0.5, 1, 4.


