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Abstract—This paper considers channel coding for the dis-

crete memoryless multiple-access channel with a given (possibly

suboptimal) decoding rule. Using constant-composition random

coding, an achievable error exponent is obtained which is tight

with respect to the ensemble average, and positive for all rate

pairs in the interior of Lapidoth’s achievable rate region.

I. INTRODUCTION

The problem of channel coding with a mismatched decod-
ing rule arises in numerous settings [1]–[5]. For example, in
practical systems the decoder may have imperfect knowledge
of the channel, or implementation constraints may prohibit
the use of an optimal decoder. The problem of finding the
mismatched capacity is an open problem in general, and most
existing results are on achievable rates via random coding.
Of particular note is the LM rate, which can be obtained via
constant-composition random coding [3], [4] or i.i.d. random
coding with a cost constraint [5].

The mismatched multiple-access channel (MAC) was con-
sidered by Lapidoth [1], who obtained an achievable rate
region and showed the surprising fact that the single-user
LM rate can be improved by treating the single-user channel
as a MAC. As an example, Lapidoth considered the channel
in Figure 1 consisting of two parallel binary symmetric
channels (BSCs) with crossover probabilities �1 < 0.5
and �2 < 0.5. The mismatched decoder assumes that both
crossover probabilities are equal to � < 0.5. By treating the
channel as a mismatched single-user channel from (x1, x2) to
(y1, y2) and using random coding with a uniform distribution
on the quaternary input alphabet, one can only achieve rates
R satisfying

R < 2

✓

1�H2

✓

�1 + �2
2

◆◆

(1)

where H2 is the binary entropy function in bits. On the other
hand, by treating the channel as a mismatched MAC from x1

and x2 to (y1, y2) and using random coding with equiprob-
able input distributions on each binary input alphabet, one
can achieve any sum-rate R satisfying

R <
�

1�H2(�1)
�

+

�

1�H2(�2)
�

. (2)

This is the best rate possible even under maximum-likelihood
(ML) decoding.
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Figure 1. Lapidoth’s Parallel BSC Example

A random coding converse was also given in [1], showing
that the the random-coding error probability tends to one
for rate pairs outside the given achievable rate region. In
this paper, we strengthen the results of [1] by obtaining
random-coding error exponents for the constant-composition
ensemble which are tight with respect to the ensemble
average, and positive within the interior of the rate region
given in [1].

The problem of finding the best achievable error exponents
for the MAC is unsolved even in the matched setting; see [6],
[7] and references therein. To our knowledge, no complete
results on the ensemble tightness of error exponents for
the MAC have been given previously, even in the matched
setting.

While error exponents for a given decoding rule are
presented in [7], they are not tight enough to prove the
achievability of Lapidoth’s rate region. For example, for
the parallel BSC example in Figure 1 with uniform input
distributions, the exponents of [7] are only positive when
the sum-rate R satisfies (1), whereas the ensemble-tight
exponent can be positive for all sum-rates satisfying (2). We
will see that the key difference in our analysis is a refined
application of the union bound (see Section III-B). Improving
the standard use of the union bound was also a key idea in
[1], but it was done differently to the present paper.



A. System Setup

We consider a 2-user discrete memoryless MAC
(DM-MAC) W (y|x1, x2) with input alphabets X1 and
X2 and output alphabet Y . The decoding metric is
denoted by q(x1, x2, y). We write W (y|x1,x2) and
q(x1,x2,y) as shorthands for

Qn
i=1 W (yi|x1,i, x2,i) and

Qn
i=1 q(x1,i, x2,i, yi) respectively, where yi is the i-th entry

of y and similarly for x1,i and x2,i.
The encoders and decoder operate as follows. Encoder ⌫

(⌫ 2 {1, 2}) selects a message m⌫ equiprobably from the
set {1, ...,M⌫}, and transmits the corresponding codeword
x

(m⌫)
⌫ from the codebook C⌫ = {x(1)

⌫ , ...,x
(M⌫)
⌫ }. Upon

receiving the signal y at the output of the channel, the
decoder forms an estimate (m̂1, m̂2) of the messages, given
by

(m̂1, m̂2) = argmax

i2{1,...,M1},j2{1,...,M2}
q(x

(i)
1 ,x

(j)
2 ,y). (3)

We assume that ties are broken at random. An error is
said to have occurred if the estimate (m̂1, m̂2) differs from
(m1,m2). We distinguish between the following three types
of error:

(Type 1) m̂1 6= m1 and m̂2 = m2

(Type 2) m̂1 = m1 and m̂2 6= m2

(Type 12) m̂1 6= m1 and m̂2 6= m2

The probabilities of these events are denoted by pe,1, pe,2 and
pe,12 respectively, and the overall error probability is denoted
by pe. The ensemble-average error probabilities for a given
random-coding ensemble are denoted by pe,1, pe,2, pe,12 and
pe respectively. Clearly we have

max{pe,1, pe,2, pe,12}  pe  pe,1 + pe,2 + pe,12 (4)

and similarly for pe.
A rate pair (R1, R2) is said to be achievable if, for any

� > 0, there exist sequences of codebooks with M1 �
exp(n(R1 � �)) and M2 � exp(n(R2 � �)) codewords of
length n for users 1 and 2 respectively such that pe ! 0.
We say that E(R1, R2) is an achievable error exponent if
there exist sequences of codebooks with M1 � exp(nR1)

and M2 � exp(nR2) codewords of length n such that

lim

n!1
� 1

n
log pe � E(R1, R2). (5)

For a given random-coding ensemble, we say that the
random-coding error exponent Er(R1, R2) exhibits ensemble

tightness if

lim

n!1
� 1

n
log pe = Er(R1, R2). (6)

B. Notation

The set of all probability distributions on an alphabet A is
denoted by P(A). The set of all sequences with a given type
PX is denoted by T (PX), and similarly for joint types. We
refer the reader to [8], [9] for an introduction to the method
of types. The main properties of types used in this paper are
outlined in the Appendix.

The probability of an event is denoted by P[·], and the
symbol ⇠ means “distributed as”. The marginals of a joint
distribution PXY (x, y) are denoted by PX(x) and PY (y).
Similarly, PY |X(y|x) denotes the conditional distribution
induced by PXY (x, y). We write PX =

ePX to denote
element-wise equality between two probability distributions
on the same alphabet. Expectation with respect to a joint
distribution PXY (x, y) is denoted by EP [·]. When the prob-
ability distribution is understood from the context, we simply
write E[·].

Given a distribution Q(x) and a conditional distribution
W (y|x), we write Q ⇥ W to denote the joint distribu-
tion Q(x)W (y|x), and similarly when there are more than
two distributions. For example, given Q1(x1), Q2(x2) and
W (y|x1, x2) we have

Q1 ⇥Q2 ⇥W ⇠ Q1(x1)Q2(x2)W (y|x1, x2). (7)

Mutual information with respect to a joint distribution
PXY (x, y) is written as IP (X;Y ).

For two sequences f(n) and g(n), we write f(n)
.
= g(n)

if limn!1
1
n log

f(n)
g(n) = 0, and similarly for ˙ and ˙�. All

logarithms have base e, and all rates are in units of nats
except in the examples, where bits are used. We define [c]+ =

max{0, c}, and denote the indicator function by 1{·}.

II. ERROR EXPONENT FOR CONSTANT-COMPOSITION
RANDOM CODING

In this section, we present the ensemble-tight random-
coding error exponent for the constant-composition ensem-
ble, in which each codeword of a given user has the same
empirical distribution. We show that this exponent recovers
Lapidoth’s achievable rate region [1]. The derivation of
the error exponent and the discussion of the analysis are
postponed until Section III.

We let X(i)
⌫ be the random variable corresponding to the i-

th codeword of user ⌫, and let Y denote the random sequence
at the output of the channel. The codewords are distributed
according to

⇣

{X(i)
1 }M1

i=1, {X
(j)
2 }M2

i=1

⌘

⇠
M1
Y

i=1

Q
X1(x

(i)
1 )

M2
Y

j=1

Q
X2(x

(j)
2 )

(8)

where Q
X⌫ is the codeword distribution for user ⌫. We

assume without loss of generality that message (1, 1) is
transmitted, and write X1 and X2 in place of X

(1)
1 and

X

(1)
2 . We write X1 and X2 to denote arbitrary codewords

which are generated independently of X1 and X2.
We fix Q1 2 P(X1) and take Q

X1 to be the uniform dis-
tribution over the type class T (Q1,n), where Q1,n 2 Pn(X1)

is the most probable type under Q1; similarly for Q2 and
Q2,n. That is,

Q
X1(x1) =

1

|T (Q1,n)|
1
�

x1 2 T (Q1,n)
 

(9)



Q
X2(x2) =

1

|T (Q2,n)|
1
�

x2 2 T (Q2,n)
 

. (10)

To ease notation, we write f(Q) to denote a function f which
depends on Q1 and Q2, and similarly for Qn.

Remark: All of the results in this paper can easily
be extended to the ensemble in which the codewords are
generated conditionally on a time-sharing sequence u, such
that the joint type of (u,x1) is fixed for every codeword
x1 of user 1, and similarly for user 2 (e.g. see [6], [7]).
However, in the mismatched setting there are some subtle
differences between the performance of this ensemble and
that of explicit time-sharing, and their study is beyond the
scope of this paper.

The error exponents and achievable rates will be expressed
in terms of the sets

S(Q)

4
=

⇢

PX1X2Y 2 P(X1 ⇥ X2 ⇥ Y) :

PX1 = Q1, PX2 = Q2

�

(11)

T1(PX1X2Y )
4
=

⇢

ePX1X2Y 2 P(X1 ⇥ X2 ⇥ Y) :

ePX1 = PX1 ,
ePX2Y = PX2Y ,

E eP [log q(X1, X2, Y )] � EP [log q(X1, X2, Y )]

�

(12)

T2(PX1X2Y )
4
=

⇢

ePX1X2Y 2 P(X1 ⇥ X2 ⇥ Y) :

ePX2 = PX2 ,
ePX1Y = PX1Y ,

E eP [log q(X1, X2, Y )] � EP [log q(X1, X2, Y )]

�

(13)

T12(PX1X2Y )
4
=

⇢

ePX1X2Y 2 P(X1 ⇥ X2 ⇥ Y) :

ePX1 = PX1 ,
ePX2 = PX2 ,

ePY = PY ,

E eP [log q(X1, X2, Y )] � EP [log q(X1, X2, Y )]

�

. (14)

The following theorem gives the random-coding error expo-
nent for each error type.

Theorem 1. The random-coding error probabilities for the

constant-composition ensemble in (8)–(10) satisfy

pe,1
.
= exp

�

� nEr,1(Q, R1)
�

(15)

pe,2
.
= exp

�

� nEr,2(Q, R2)
�

(16)

pe,12
.
= exp

�

� nEr,12(Q, R1, R2)
�

(17)

where

Er,1(Q, R1)
4
= min

PX1X2Y 2S(Q)
min

ePX1X2Y 2T1(PX1X2Y )

D(PX1X2Y kQ1 ⇥Q2 ⇥W ) +

⇥

I eP (X1;X2, Y )�R1

⇤+

(18)

Er,2(Q, R2)
4
= min

PX1X2Y 2S(Q)
min

ePX1X2Y 2T2(PX1X2Y )

D(PX1X2Y kQ1 ⇥Q2 ⇥W ) +

⇥

I eP (X2;X1, Y )�R2

⇤+

(19)

Er,12(Q, R1, R2)
4
= min

PX1X2Y 2S(Q)
min

ePX1X2Y 2T12(PX1X2Y )

D(PX1X2Y kQ1⇥Q2⇥W )+ max

⌫2{1,2}
 ⌫(

ePX1X2Y , R1, R2)

(20)

and

 1(
ePX1X2Y , R1, R2)

4
=

h

I eP (X1;Y ) +

⇥

I eP (X2;X1, Y )�R2

⇤+ �R1

i+
(21)

 2(
ePX1X2Y , R1, R2)

4
=

h

I eP (X2;Y ) +

⇥

I eP (X1;X2, Y )�R1

⇤+ �R2

i+
. (22)

Proof: See Section III.
Due to the lack of converse results in mismatched decod-

ing, it is important to determine whether the weakness in
the achievability results is due to the ensemble itself, or the
bounding techniques used in the analysis. Theorem 1 states
that the overall error exponent

Er(Q, R1, R2)
4
= min

⇢

Er,1(Q, R1),

Er,2(Q, R2), Er,12(Q, R1, R2)

�

(23)

is not only achievable, but it is also tight with respect to the
ensemble average.

The following achievable rate region follows from Theo-
rem 1 in a straightforward fashion, and coincides with the
ensemble-tight achievable rate region of [1].

Theorem 2. The overall error exponent Er(Q, R1, R2)

is positive for all rate pairs (R1, R2) in the interior of

RLM
(Q), where RLM

(Q) is the set of all rate pairs (R1, R2)

satisfying

R1  min

ePX1X2Y 2T1(Q1⇥Q2⇥W )
I eP (X1;X2, Y ) (24)

R2  min

ePX1X2Y 2T2(Q1⇥Q2⇥W )
I eP (X2;X1, Y ) (25)

R1 +R2 
min

ePX1X2Y 2T12(Q1⇥Q2⇥W )
I eP (X1;Y )R1, I eP (X2;Y )R2

D(

ePX1X2Y kQ1 ⇥Q2 ⇥ ePY ).

(26)

Proof: The conditions in (24)–(26) are obtained from
the error exponents in (18)–(20) respectively. Focusing on
(26), we note that the objective in (20) is always positive



when D(PX1X2Y kQ1 ⇥ Q2 ⇥W ) > 0. In the case that the
minimizing PX1X2Y satisfies D(PX1X2Y kQ1⇥Q2⇥W ) = 0,
we obtain that PX1X2Y = Q1 ⇥ Q2 ⇥ W , and hence Er,12

is positive provided that either

R1  I eP (X1;Y ) + [I eP (X2;X1, Y )�R2]
+ (27)

or
R2  I eP (X2;Y ) + [I eP (X1;X2, Y )�R1]

+ (28)

under the minimizing ePX1X2Y in (20). The condition in (27)
corresponds to the the case that  1 achieves the maximum
in (20), and (28) corresponds to the case that  2 achieves
the maximum. Finally, (27) and (28) can be combined to
obtain (26) by noting that (27) (respectively, (28)) always

holds when I eP (X1;Y ) > R1 (respectively, I eP (X2;Y ) >
R2), and using

I eP (X1;Y ) + I eP (X2;X1, Y ) = D(

ePX1X2Y kQ1 ⇥Q2 ⇥ ePY )

(29)
I eP (X2;Y )+ I eP (X1;X2, Y ) = D(

ePX1X2Y kQ1⇥Q2⇥ ePY ).
(30)

Using the usual time-sharing argument [1], [10], it follows
from Theorem 2 that we can achieve any rate pair in the
convex hull of

[

Q

RLM
(Q)

where the union is over all input distributions Q1 and Q2 on
X1 and X2 respectively.

In the proof of Theorem 1, it will be shown that a weaker
analysis yields the achievable type-12 error exponent

E0
r,12(Q, R1, R2)

4
=

min

PX1X2Y 2S(Q)
min

ePX1X2Y 2T12(PX1X2Y )
D(PX1X2Y kQ1⇥Q2⇥W )

+

⇥

D(

ePX1X2Y kQ1 ⇥Q2 ⇥ ePY )� (R1 +R2)
⇤+ (31)

which coincides with an achievable exponent given in [7].
Using a similar argument to the proof of Theorem 2, we see
that (31) yields a similar achievable rate region to (24)–(26),
but with (26) replaced by

R1 +R2

 min

ePX1X2Y 2T12(Q1⇥Q2⇥W )
D(

ePX1X2Y kQ1 ⇥Q2 ⇥ ePY ).

(32)

In the following subsection, we compare the ensemble-
tight type-12 exponent and the corresponding achievable rate
region with that of (31)–(32).

A. Numerical Example

We now return to the parallel BSC example given in Figure
1, where the output is given by y = (y1, y2). As mentioned
in the introduction, the decoder assumes that both crossover
probabilities are equal. It is straightforward to show that the
corresponding decoding rule is equivalent to minimizing the

sum of t1 and t2, where t⌫ is the number of bit flips from the
input sequence x⌫ to the output sequence y⌫ . As noted in [1],
this decision rule is in fact equivalent to ML. This channel
could easily be analyzed by treating the two subchannels
separately, but we treat it as a MAC because it serves as a
good example for comparing the ensemble-tight achievability
results with (31)–(32).

We let both Q1 and Q2 be the equiprobable distribution
on {0, 1}. With this choice, it was shown in [1] that the
right-hand side of (32) is no greater than

2

✓

1�H2

✓

�1 + �2
2

◆◆

. (33)

On the other hand, the refined condition in (26) can be used to
prove the achievability of any (R1, R2) within the rectangle
with corners (0, 0) and (C1, C2), where C⌫

4
= 1 � H2(�⌫)

[1]. This observation is analogous to the comparison between
(1) and (2) in the introduction. The main difference is that
the weakness in (1) is in the random-coding ensemble itself,
whereas the weakness in (33) is in the bounding techniques
used in the analysis.

We evaluate the error exponents using the optimization
software YALMIP [11]. Figure 2 plots each of the exponents
as a function of ↵, where the rate pairs are given by
(R1, R2) = (↵C1,↵C2). While the overall error exponent
Er(Q, R1, R2) in (23) is unchanged at low to moderate
values of ↵ when E0

r,12 is used in place of Er,12, this is not
true for high values of ↵. Furthermore, consistent with the
preceding discussion, E0

r,12 is non-zero only for ↵ < 0.865,
whereas Er,12 is positive for all ↵ < 1.

It is interesting to note that the curves Er,12 and E0
r,12

coincide at low values of ↵. Roughly speaking, the reason
for this is that the the arguments to the [·]+ functions in (21)–
(22) are positive when the rates are sufficiently small. This
is consistent with [7, Corollary 5], which states that (31) is
ensemble-tight at low rates.

III. PROOF OF THEOREM 1

While the random-coding error probabilities pe,1 and pe,2
can be handled very similarly to the single-user setting
[9], pe,12 requires a more refined analysis. Furthermore,
equivalent error exponents to (18)–(19) are given in [7]; we
therefore focus exclusively on pe,12. We first write

pe,12 =

c12E

2

4P

2

4

[

i 6=1,j 6=1

⇢

q(X
(i)
1 ,X

(j)
2 ,Y )

q(X1,X2,Y )

� 1

�

�

�

�

�

X1,X2,Y

3

5

3

5

(34)

for some c12 2 [

1
2 , 1]. Setting c12 = 1 yields the average

probability of error when ties are decoded as errors, and the
condition c12 2 [

1
2 , 1] arises since decoding ties at random

reduces the error probability by at most a factor of two.
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Figure 2. Error exponents Er,1 (dotted), Er,2 (dash-dot), Er,12 (solid) and
E0

r,12 (dashed) for the parallel channel shown in Figure 1 using �1 = 0.05,
�2 = 0.25 and equiprobable input distributions.

We will rewrite (34) in terms of the possible joint types of
(X1,X2,Y ) and (X

(i)
1 ,X

(j)
2 ,Y ). To this end, we define

Sn(Qn)
4
=

⇢

PX1X2Y 2 Pn(X1 ⇥ X2 ⇥ Y) :

PX1 = Q1,n, PX2 = Q2,n

�

(35)

T12,n(PX1X2Y )
4
=

⇢

ePX1X2Y 2 Pn(X1 ⇥ X2 ⇥ Y) :

ePX1 = PX1 ,
ePX2 = PX2 ,

ePY = PY ,

E eP [log q(X1, X2, Y )] � EP [log q(X1, X2, Y )]

�

. (36)

Roughly speaking, Sn is the set of possible joint
types of (X

(1)
1 ,X

(1)
2 ,Y ), and T12,n is the set of joint

types of (X

(i)
1 ,X

(j)
2 ,Y ) which lead to decoding errors

when (X1,X2,Y ) 2 T (PX1X2Y ). The constraints on
PX⌫ and ePX⌫ arise from the fact that we are using
constant-composition random coding, and the constraint
E eP [log q(X1, X2, Y )] � EP [log q(X1, X2, Y )] holds if and
only if q(x1,x2,y)

q(x1,x2,y)
� 1 for (x1,x2,y) 2 T (PX1X2Y ) and

(x1,x2,y) 2 T ( ePX1X2Y ). Fixing PX1X2Y 2 Sn(Qn)

and letting (x1,x2,y) be a triplet of sequences such that
(x1,x2,y) 2 T (PX1X2Y ), it follows that the event

[

i 6=1,j 6=1

⇢

q(X
(i)
1 ,X

(j)
2 ,y)

q(x1,x2,y)
� 1

�

(37)

can be written as
[

i 6=1,j 6=1

[

ePX1X2Y 2T12,n(PX1X2Y )
⇢

(X

(i)
1 ,X

(j)
2 ,y) 2 T ( ePX1X2Y )

�

. (38)

Expanding the probability and expectation in (34), substi-
tuting (38), and interchanging the order of the unions, we
obtain

pe,12 =

c12 ⇥
X

PX1X2Y 2Sn(Qn)

P
⇥

(X1,X2,Y ) 2 T (PX1X2Y )
⇤

⇥ P
"

[

ePX1X2Y 2T12,n(PX1X2Y )

E( ePX1X2Y )

�

�

�

�

�

Y 2 T (PY )

#

(39)

where

E( ePX1X2Y )
4
=

[

i 6=1,j 6=1

⇢

(X

(i)
1 ,X

(j)
2 ,Y ) 2 T ( ePX1X2Y )

�

. (40)

We define the conditional probability

pE( ePX1X2Y )
4
= P

h

E( ePX1X2Y )
�

�

Y 2 T ( ePY )

i

. (41)

We have replaced the condition Y 2 T (PY ) by Y 2
T ( ePY ) since we have that ePY = PY for all ePX1X2Y 2
T12,n(PX1X2Y ).

Applying the union bound to (39) and using the fact that
the number of joint types is polynomial in n, we obtain

pe,12
.
= max

PX1X2Y 2Sn(Qn)
P
⇥

(X1,X2,Y ) 2 T (PX1X2Y )
⇤

⇥ max

ePX1X2Y 2T12,n(PX1X2Y )
pE( ePX1X2Y ) (42)

.
= max

PX1X2Y 2Sn(Qn)
exp

�

� nD(PX1X2Y kQ1 ⇥Q2 ⇥W )

�

⇥ max

ePX1X2Y 2T12,n(PX1X2Y )
pE( ePX1X2Y ) (43)

where (43) follows from the property of types in (69). It
remains to determine the exponential behavior of pE .

Lemma 3. The probability pE( ePX1X2Y ) satisfies

pE( ePX1X2Y )
.
= exp

✓

� n max

⌫2{1,2}
 ⌫(

ePX1X2Y , R1, R2)

◆

(44)

for any

ePX1X2Y such that

ePX1X2Y 2 T12,n(PX1X2Y ) for

some PX1X2Y 2 Sn(Q), where  1 and  2 are defined in

(21) and (22) respectively.

Proof: See Section III-A for the upper bound, and
Section III-C for the matching lower bound.



Substituting (44) into (43) and noting that the sets Sn and
T12,n can be replaced by S and T12 respectively, we recover
the exponent in (20), and the proof is complete.

A. Upper Bound on pE( ePX1X2Y )

In this subsection, it will be convenient to write pE as

pE( ePX1X2Y ) =

P


[

i 6=1

[

j 6=1

(X

(i)
1 ,X

(j)
2 ,y) 2 T ( ePX1X2Y )

�

(45)

where y is an arbitrary sequence such that y 2 T ( ePY ). We
upper bound the probability in (45) by applying the truncated
union bound to one union at a time. Since there are M1 � 1

identically distributed codewords for user 1, we have

pE( ePX1X2Y )  min

⇢

1, (M1 � 1)

⇥ P


[

j 6=1

(X1,X
(j)
2 ,y) 2 T ( ePX1X2Y )

��

(46)

= min

⇢

1, (M1 � 1)

⇥ E

2

4P


[

j 6=1

(X1,X
(j)
2 ,y) 2 T ( ePX1X2Y )

�

�

�

�

X1

��

3

5 . (47)

Similarly, since there are M2 � 1 identically distributed
codewords for user 2, we obtain

pE( ePX1X2Y )  min

(

1, (M1 � 1)E
"

min

⇢

1,

(M2 � 1)P
⇥

(X1,X2,y) 2 T ( ePX1X2Y )

�

�

�

�

X1

⇤

�

#)

. (48)

The inner probability in (48) is zero unless (X1,y) 2
T ( ePX1Y ), since any other joint marginal must give a joint
type of (X1,X2,y) which differs from ePX1X2Y . Hence,
instead of writing the expectation in (48) as a summation
over joint types of (X1,y), we can limit attention to the
case that (X1,y) 2 T ( ePX1Y ), yielding

pE( ePX1X2Y )  min

(

1, (M1�1)P
⇥

(X1,y) 2 T ( ePX1Y )
⇤

⇥min

⇢

(M2 � 1)P
⇥

(x1,X2,y) 2 T ( ePX1X2Y )

�

)

(49)

where x1 is an arbitrary sequence such that (x1,y) 2
T ( ePX1Y ). Substituting the properties of types in (67) and
(68) into (49) yields

pE( ePX1X2Y )
˙ exp

�

� n 1(
ePX1X2Y , R1, R2)

�

(50)

where  1 is defined in (21). By following the steps from
(46)–(50) with the union bounds applied in the opposite
order, it can similarly be shown that

pE( ePX1X2Y )
˙ exp

�

� n 2(
ePX1X2Y , R1, R2)

�

(51)

where  2 is defined in (22). We therefore obtain the right-
hand side of (44).

B. Discussion

The key idea used in Section III-A is to apply the union
bound to (45) one union at a time. If the union bound was
instead applied to all (M1� 1)(M2� 1) events at once, then
the inner [·]+ functions of (21) and (22) would have been
replaced by their argument, yielding the exponent E0

r,12 in
(31) and the corresponding achievable rate condition in (32).
Hence, only the refined analysis is powerful enough to yield
the ensemble-tight error exponent.

We state without proof that under ML decoding (i.e.
q(x1, x2, y) = W (y|x1, x2)), the overall error exponent
Er(Q, R1, R2) given in (23) is unchanged when E0

r,12 in (31)
is used in place of Er,12.1 That is, while the refined analysis
of Section III-A is necessary to obtain the ensemble-tight
error exponent Er(Q, R1, R2) under mismatched decoding,
the analysis of [7] suffices under ML decoding.

C. Lower Bound on pE( ePX1X2Y )

In order to lower bound pE , we will make use of the
following result due to de Caen [12].

Proposition 4. [12] Let A1, ..., Ak be a sequence of proba-

bilistic events. Then

P
"

k
[

i=1

Ai

#

�
k
X

i=1

P[Ai]
2

Pk
j=1 P[Ai \Aj ]

. (52)

We begin by rewriting (41) as

pE( ePX1X2Y )

= P

2

4

[

i 6=1,j 6=1

�

Eij( ePX1X2Y )
 

�

�

�

�

Y 2 T (PY )

3

5 (53)

where Eij( ePX1X2Y ) is the event that (X

(i)
1 ,X

(j)
2 ,Y ) 2

T ( ePX1X2Y ). Using (52), we obtain from (53) that

pE( ePX1X2Y ) �
X

i 6=1,j 6=1

P[Eij ]2
P

i0 6=1,j0 6=1 P[Eij \ Ei0j0 ]
(54)

where the argument to Eij and the conditioning of the
probabilities on the event Y 2 T ( ePY ) are kept implicit.

1While it is possible that Er,12 > E0
r,12 under ML decoding, it can be

shown that this never occurs in the region where Er,12 is the dominant
exponent (i.e. achieves the minimum in (23))).



We claim that the pairwise probabilities of the events
Eij( ePX1X2Y ) satisfy

P[Eij \ Eij ]
.
= e�nD( ePX1X2Y kQ1⇥Q2⇥ ePY ) (55)

P[Eij \ Ei0j ]
.
= e�n

�

D( ePX1X2Y kQ1⇥Q2⇥ ePY )+I eP (X1;X2,Y )
�

(56)

P[Eij \ Eij0 ]
.
= e�n

�

D( ePX1X2Y kQ1⇥Q2⇥ ePY )+I eP (X2;X1,Y )
�

(57)

P[Eij \ Ei0j0 ]
.
= e�n 2D( ePX1X2Y kQ1⇥Q2⇥ ePY ) (58)

for any i 6= i0 and j 6= j0. The first case follows from the
property of types in (70), and the final case follows from
the pairwise conditional independence of Eij and Ei0j0 when
i 6= i0 and j 6= j0. The second case follows from the property
of types in (71), whose proof is outlined in the Appendix.
The third case is analogous to the second with the roles of
users 1 and 2 reversed.

An inspection of the denominator in (54) reveals that there
are 1, M1 � 2, M2 � 2 and (M1 � 2)(M2 � 2) terms in the
sum corresponding to the four cases in (55)–(58) respectively.
Furthermore, by symmetry, each term in the outer summation
of (54) is equal. Hence, substituting (55)–(58) into (54) and
canceling a common term of e�nD( ePX1X2Y kQ1⇥Q2⇥ ePY ) from
the numerator and denominator, we obtain

pE( ePX1X2Y )
˙� (M1�1)(M2�1)e�nD( ePX1X2Y kQ1⇥Q2⇥ ePY )

⇥
✓

1+(M1�2)e�nI eP (X1;X2,Y )
+(M2�2)e�nI eP (X2;X1,Y )

+ (M1 � 2)(M2 � 2)e�nD( ePX1X2Y kQ1⇥Q2⇥ ePY )

◆�1

(59)

.
= M1M2e

�nD( ePX1X2Y kQ1⇥Q2⇥ ePY )

⇥
✓

1 +M1M2e
�nD( ePX1X2Y kQ1⇥Q2⇥ ePY )

+max

⇢

M1e
�nI eP (X1;X2,Y ),M2e

�nI eP (X2;X1,Y )

�◆�1

(60)

where (60) follows since the sum of two terms has the
same exponential behavior as their maximum. We first con-
sider the case that the maximum in (60) is achieved by
M2e

�nI eP (X2;X1,Y ). In this case, we have

pE( ePX1X2Y )
˙�M1M2e

�nD( ePX1X2Y kQ1⇥Q2⇥ ePY )

✓

1

+M2e
�nI eP (X2;X1,Y )

+M1M2e
�nD( ePX1X2Y kQ1⇥Q2⇥ ePY )

◆�1

(61)

= M1e
�nI eP (X1;Y ) M2e

�nI eP (X2;X1,Y )

1 +M2e
�nI eP (X2;X1,Y )

⇥
✓

1 +M1e
�nI eP (X1;Y ) M2e

�nI eP (X2;X1,Y )

1 +M2e
�nI eP (X2;X1,Y )

◆�1

(62)

where (62) follows by dividing the numerator and denom-
inator by 1 + M2e

�nI eP (X2;X1,Y ) and making use of (29).
Applying the inequality a

1+a � 1
2 min{1, a} twice, we obtain

pE( ePX1X2Y )
˙� min

n

1,M1e
�nI eP (X1;Y )

⇥min

�

1,M2e
�nI eP (X2;X1,Y )

 

o

(63)

= exp

�

� n 1(
ePX1X2Y , R1, R2)

�

(64)

where  1 is defined in (21). Similarly, in the case that the
maximum in (60) is achieved by M1e

�nI eP (X1;X2,Y ), we
obtain

pE( ePX1X2Y )
˙� exp

�

� n 1(
ePX1X2Y , R1, R2)

�

(65)

where  2 is defined in (22). Combining (64) and (65), we
obtain the right-hand side of (44).

APPENDIX

Here we state the main properties of types used in
this paper. We use the notation and definitions given
at the beginning of Section II. The random variables
(X1,X2,Y ,X1,X2,X1,X2) are distributed according to

Q
X1(x1)QX2(x2)W (y|x1,x2)

⇥Q
X1(x1)QX2(x2)QX1(x1)QX2(x2). (66)

We have the following.
1) For ⌫ 2 {1, 2}, if y 2 T (PY ) then

P
h

(X⌫ ,y) 2 T ( ePX⌫Y )

i

.
= exp

�

� nI eP (X⌫ ;Y )

�

(67)
for any ePX⌫Y such that ePX⌫ = Q⌫,n and ePY = PY .

2) If (x1,y) 2 T (PX1Y ) then

P
h

(x1,X2,y) 2 T ( ePX1X2Y )

i

.
= exp

�

� nI eP (X2;X1, Y )

�

(68)

for any ePX1X2Y such that ePX2 = Q2,n and ePX1Y =

PX1Y .
3) The probability of (X1,X2,Y ) having a given type

satisfies

P [(X1,X2,Y ) 2 T (PX1X2Y )]

.
= exp

�

� nD(PX1X2Y kQ1 ⇥Q2 ⇥W )

�

(69)

for any PX1X2Y with marginals PX1 = Q1,n and
PX2 = Q2,n.

4) If y 2 T (PY ), then

P
h

(X1,X2,y) 2 T ( ePX1X2Y )

i

.
= exp

⇣

�nD
�

ePX1X2Y kQ1 ⇥Q2 ⇥ ePY

�

⌘

(70)



P


(X1,X2,y) 2 T ( ePX1X2Y )

\ (X1,X2,y) 2 T ( ePX1X2Y )

�

.
= exp

✓

� n
⇣

D
�

ePX1X2Y kQ1 ⇥Q2 ⇥ ePY

�

+ I eP (X1;X2, Y )

⌘

◆

(71)

where each equation holds for any ePX1X2Y such that
ePX1 = Q1,n, ePX2 = Q2,n and ePY = PY .

The proofs of (67)–(70) are omitted, since each is either a
known property or a straightforward extension thereof, e.g.
see [8], [9]. To prove (71), we write the left-hand side as

P
h

(X2,y) 2 T ( ePX2Y )

i

P
h

(X1,x2,y) 2 T ( ePX1X2Y )

i2

(72)
where x2 is an arbitrary sequence such that (x2,y) 2
T ( ePX2Y ). Substituting (67) and (68) into (72) and using the
identity in (30), we obtain (71).
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