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Abstract—Based on the hypothesis-testing method, we derive
lower bounds on the average error probability of finite-length
joint source-channel coding. The extension of the meta-converse
bound of channel coding to joint source-channel coding depends
on the codebook and the decoding rule and thus, it is a priori
computationally challenging. Weaker versions of this general
bound recover known converses in the literature and provide
computationally feasible expressions.

I. INTRODUCTION

Reliable communication of messages in the finite block
length regime can be characterized by upper and lower
bounds on the average error probability of the best possible
code. In order to prove the existence of a good code, random-
coding techniques are often employed to derive upper bounds
on the average error probability. In contrast, the computation
of lower bounds satisfied by every code is in general chal-
lenging since one must optimize the bound over each possible
codebook and decoding rule.

For equiprobable messages, a number of lower bounds
on the average error probability [1]–[5] lead to a proof of
the converse part of Shannon’s theorem [6] when the block
length grows to infinity. More recently, some of these bounds
have been generalized to non-equiprobable messages using
information-spectrum measures [7], [8] or the hypothesis-
testing method [9].

In this paper, we elaborate the hypothesis-testing method
in the context of joint source-channel coding to provide
lower bounds on the average error probability. Following the
footsteps of [4], [5], we propose an extension of the meta-
converse by Polyanskyi et al. [5, Th. 26], which states that
every channel code with M codewords, block length n and
average error probability ε satisfies

inf
PX

sup
QY

β1−ε
(
PX × PY |X , PX ×QY

)
≤ 1

M
, (1)

where βα
(
PX × PY |X , PX ×QY

)
is the minimum type-

II error given by the Neyman-Pearson lemma [10] for a
maximum type-I error of 1 − α when testing between
PX×PY |X and PX×QY , where PX is the input distribution
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induced by the codebook, PY |X is the channel law and QY

is an arbitrary output distribution.
The central idea of our method is to consider an inde-

pendent binary hypothesis test for every source message and
obtain a lower bound on the average error probability by
applying the Neyman-Pearson lemma [10] to each test. This
approach initially provides a converse bound involving a
costly optimization over all possible codebooks and decoding
rules. Moreover, we show that this bound recovers several
known results, including the information-spectrum bounds
[7], [8] and more importantly, it is proven to attain Csiszár’s
sphere-packing exponent for joint source-channel coding [11,
Th. 3]. Finally, we weaken the converse result to obtain
lower bounds on the average error probability that can
be numerically computed for some source-channel pairs of
interest.

A. Notation and System Model

We consider the transmission of a length-k discrete mem-
oryless source over a discrete memoryless channel using
length-n block codes that are known both at the transmitter
and receiver. The source is distributed according to PV (v) =∏k
i=1 PV (vi), v = (v1, . . . , vk) ∈ Vk, where V is a discrete

alphabet with cardinality |V|. The channel law is given by
PY |X(y|x) =

∏n
i=1 PY |X(yi|xi), x = (x1, . . . , xn) ∈ Xn,

y = (y1, . . . , yn) ∈ Yn, where X and Y are discrete
alphabets with cardinalities |X | and |Y|, respectively.

Without loss of generality we assume that the source
messages are indexed as v1, . . . ,v|V|k . An encoder maps
the length-k source message vl to a length-n codeword xl,
which is then transmitted over the channel. We refer to
the ratio t , k/n as the transmission rate. Based on the
length-n channel output y the decoder guesses which source
message was transmitted. The decoding rule is specified by
the (possibly random) transformation PZ|Y : Yn → Vk. The
decoded message will be denoted in the following by z. The
average error probability ε is given by

ε =

|V|k∑
l=1

PV (vl)ε(vl), (2)



where

ε(vl) , Pr
{
Z 6= vl

}
(3)

= 1−
∑
y

PY |X(y|xl)PZ|Y (vl|y), (4)

is the error probability when message vl is transmitted.
In this paper, we obtain tight lower bounds on the average

error probability of the best code following a hypothesis-
testing approach [4], [5].

II. HYPOTHESIS-TESTING APPROACH

For every pair (vl,xl) we define a binary hypothesis-
testing problem between the channel conditional distribution
PY |X=xl

and an arbitrary output distribution Q(l)
Y as

H0 : Y ∼ PY |X=xl
, (5)

H1 : Y ∼ Q(l)
Y . (6)

We can construct a sub-optimal test for the above problem
from the system described in Section I-A: for a given source
message vl, upon observation of the channel output y, we
choose H0 if z = vl, and H1, otherwise. The performance
of this test can be evaluated according to its type-I and type-
II errors. Specifically, the probability of choosing Q(l)

Y when
the true distribution is PY |X=xl

(type-I error) is equal to

ε(vl) = 1−
∑
y

PY |X(y|xl)PZ|Y (vl|y). (7)

Similarly, the probability of choosing PY |X=xl
when the

true distribution is given by Q(l)
Y (type-II error) is given by

Q
(l)
Z (vl) ,

∑
y

Q
(l)
Y (y)PZ|Y (vl|y). (8)

The two types of error can be related via the Neyman-
Pearson lemma [10]. This result states that the optimal type-
II error among all possibly randomized tests PW |Y : Yn →
{H0,H1} with a type-I error of at most 1− α is given by

βα
(
PY |X=xl

, Q
(l)
Y

)
, min

PW |Y :∑
y PY |X(y|xl)PW |Y (H0|y)≥α

∑
y

Q
(l)
Y (y)PW |Y (H0|y).

(9)

In the rest of the paper, for ease of notation, we shall use
βα(x, QY ) , βα(PY |X=x, QY ). Consequently, the type-II
error of any test for (5)–(6) is lower-bounded by βα

(
xl, Q

(l)
Y

)
as long as the type-I error is no greater than 1 − α. In
particular, by setting 1 − α = ε(vl) in (9) and combining
it with (8) we obtain

β1−ε(vl)

(
xl, Q

(l)
Y

)
≤ Q(l)

Z (vl), l = 1, . . . , |V|k, (10)

which upon recalling (2) gives an implicit lower bound on
the average error probability of our proposed coding scheme.

In order to obtain a valid converse bound from (10) one
needs to perform a challenging optimization over all possible
codebooks {x1, . . . ,x|V|k} and decoding transformations
PZ|Y . In contrast, any choice of Q(l)

Y , l = 1, . . . , |V|k, gives

a converse bound as it is independent of the codebook and
the decoder. Alternatively, a converse bound can be derived
by defining PZ|Y according to the MAP decoding rule and
optimizing (10) over all possible codebooks.

In both cases, the derivation of a converse bound becomes
computationally unfeasible as the block length increases.
Hence, in the rest of the paper we analyze the performance
of lower bounds derived from (10) which are computable in
several cases of interest. In particular, in the next section we
weaken (10) to re-derive a generalized version of the Verdú-
Han lemma for source-channel coding and we show that the
lower bound induced by (2)–(10) attains Csiszár’s sphere-
packing exponent [11, Th. 3]. Then, in Section IV we further
weaken (10) to obtain computable finite-length lower bounds
on the average error probability of source-channel coding.

III. CONNECTION WITH PREVIOUS WORK

A. Information-Spectrum Bounds

In [8, Th. 6], we derived a lower bound on the average
error probability as a generalization of the Verdú-Han lemma
for channel coding [3],

ε ≥ Pr
{
PV (V )PY |X

(
Y |X(V )

)
≤ γ(Y )

}
−
∑
y

γ(y),

(11)
where X(V ) denotes the mapping induced by a specific
codebook and γ : Yn → R+ is an arbitrary non-negative
function. By choosing γ(Y ) = γQY (Y ), with QY (Y )
being an arbitrary output distribution and γ > 0, optimizing
the bound over γ, QY and the PX|V induced by each
codebook, one obtains the converse bound

ε ≥ inf
PX|V

sup
γ>0

{
sup
QY

Pr

{
PV (V )PY |X(Y |X)

QY (Y )
< γ

}
− γ
}
,

(12)

which has been independently given in [9, Eq. 34].
We next show that (12) can be seen as a consequence

of (10). First, fix a given codebook x1, . . . ,x|V|k . Then, by
combining the inequality [2]

β1−ε(x, QY ) ≥ sup
γ>0

1

γ

(
Pr

{
PY |X(Y |x)

QY (Y )
< γ

}
− ε
)
(13)

where Pr{·} is computed according to Y ∼ PY |X=x,
with (10) for a (message-independent) distribution QY , one
obtains the set of inequalities

QZ(vl) ≥
1

γl

(
Pr

{
PY |X(Y |xl)
QY (Y )

< γl

}
− ε(vl)

)
, (14)

for γl > 0, l = 1, . . . , |V|k. By choosing γl = γ
PV (vl)

with
γ > 0 for every l = 1, . . . , |V|k such that PV (vl) 6= 0, (14)
is equivalent to

QZ(vl)

≥ PV (vl)

γ

(
Pr

{
PY |X(Y |xl)
QY (Y )

<
γ

PV (vl)

}
− ε(vl)

)
,

(15)



for l = 1, . . . , |V|k. Consider now the set of condi-
tional distributions PX|V induced by the codebook, i.e,
PX|V (xi|vj) = 1 if i = j and PX|V (xi|vj) = 0, otherwise.
By summing both sides of (15) over l = 1, . . . |V|k we finally
have

ε ≥ Pr

{
PV (V )PY |X(Y |X)

QY (Y )
< γ

}
− γ, (16)

which upon optimization over γ, QY and PX|V yields (12).
In particular, Han’s generalization of the Verdú-Han

lemma derived in [7, Lemma 3.2] can be recovered from
(12) by setting QY = PY to be the output distribution
induced by a particular codebook and by rewriting (12) with
the definitions of entropy density h(V ) , − logPV (V ), and
information density i(X,Y ) , log

PY |X(Y |X)

PY (Y ) [12], as

ε ≥ inf
PX|V

sup
γ>0

Pr
{
i(X;Y )− h(V ) < − log γ

}
− 1

γ
. (17)

B. Csiszár’s Sphere-Packing Exponent

Csiszár showed in [11, Th. 3] that the error exponent of
every source-channel code is upper-bounded by

Esp
J , min

R∈[tH(V ),t log |V|]
te

(
R

t
, PV

)
+Esp(R,PY |X), (18)

where
e (R,PV ) , min

Q:H(Q)≥R
D(PQ‖PV ) (19)

is the source reliability function [13] and

Esp(R,PY |X) , max
PX

min
P ′

Y |X :

I(PX ,P
′
Y |X)≤R

D(P ′Y |X‖PY |X |PX)

(20)
is the channel-coding sphere-packing exponent [14].

When the minimizing R in (18) lies above the critical rate
of the channel [11], [15], the bound (18) is tight and gives
the actual error exponent.

We next show that using (10) with an appropriate choice
of Q(l)

Y recovers Csiszár’s result. We first decompose the
average error probability using the set of source-type classes
T ki , i = 1, . . . , Nk. Rewriting (2) we have that

ε =

Nk∑
i=1

Pr
{
T ki
}
εi, (21)

where

εi ,
1

|T ki |
∑
v∈T k

i

ε(v). (22)

Our re-derivation relies on the next result.
Lemma 1 ([4, Thm. 20]): For every vl ∈ T ki consider

the binary hypothesis test in (5) between PY |X=xl
and the

distribution Q
(l)
Y = Q

(T k
i )

Y . Let a decision rule have type-I
error equal to ε(vl) and type-II error equal to b. Then, there
exists a distribution Q(T k

i )
Y such that, if R̄ > 0 satisfies

b ≤ γe−n(R̄+η), η > 0, γ ∈ (0, 1), (23)

then

ε(vl) ≥
1

2

(
1− A(R̄)

nη2
− γ
)
e−n

(
Esp(R̄− log 2

n ,PY |X)+η
)
(24)

for all vl ∈ T ki , where A(R̄) > 0 is a function of R̄
independent of n.

For every source type-class T ki , i = 1, . . . , Nk, we define
the probability distribution

Q̄
(T k

i )
Z (v) ,


Q

(T k
i )

Z (v)∑
v′∈T k

i
Q

(T k
i

)

Z (v′)
, v ∈ T ki ,

0 , otherwise,
(25)

where Q(l)
Z = Q

(T k
i )

Z for all vl ∈ T ki . In view of (25) there
must exist v ∈ T ki , such that

Q
(T k

i )
Z (v) ≤ Q̄(T k

i )
Z (v) ≤ 1

|T ki |
. (26)

Otherwise,
∑

v∈T k
i
Q̄

(T k
i )

Z (v) > 1 and Q̄
(T k

i )
Z would not be

a probability distribution. Without loss of generality and for
ease of exposition we next assume that the indexing of the
message set is such that vi is a source message fulfilling (26)
for T ki , i = 1, . . . , Nk. Then, we rewrite (26) as

Q
(T k

i )
Z (vi) ≤ γe−n

(
R̄i(k,n)+η(n)

)
, (27)

for γ ∈ (0, 1), η(n) = K√
n

, K > 0, and where we defined

R̄i(k, n) ,
1

n
log
∣∣T ki ∣∣+

1

n
log γ − K√

n
(28)

such that γe−n
(
R̄i(k,n)+ K√

n

)
= |T ki |−1. We now apply

Lemma 1 with PY |X(y|x) = PY |X
(
y|x(vi)

)
, b =

Q
(T k

i )
Z (vi), and R̄i(k, n), which satisfies (27) for γ ∈ (0, 1).

Then, it follows from (24) that

ε(v) ≥ 1

2

(
1−

A
(
R̄i(k, n)

K2
− γ

)
× e−n

(
Esp(R̄i(k,n)− log 2

n ,PY |X)+ K√
n

)
(29)

for all v ∈ T ki . By plugging (29) into (22) we have that

εi =
1

|T ki |
∑
v∈T k

i

ε(v) (30)

≥ 1

2

(
1−

A
(
R̄i(k, n)

K2
− γ

)
e
−n
(
Esp(Ri(k,n),PY |X)+ K√

n

)
(31)

where Ri(k, n) , R̄i(k, n) − log 2
n . We now focus on the

terms Pr
{
T ki
}

, i = 1, . . . , Nk in (21). Using [16, Lemma
2.6] we have that Pr{T ki } can be lower-bounded as

Pr{T ki } ≥ (k + 1)−|V|e−kD(Pk
i ‖PV ), (32)



for every i = 1, . . . , Nk, where Pki is the type associated
to the class T ki . Hence, combining (21), (31) and (32), we
obtain

ε ≥
Nk∑
i=1

e−n
(
tD(Ptn

i ‖PV )+Esp(Ri(k,n),PY |X)
)

+o1(k,n) (33)

where

o1(k, n) , K
√
n− |V| log(k + 1)

+ log

(
1−

A
(
R̄i(k, n)

)
K2

− γ

)
− log 2 (34)

on account of (28). Finally, by choosing K > 0 appropriately,
using that A(·) is a continuous function and Esp(R,PY |X)
is a non-increasing continuous function with respect to R,
the proof follows along the same lines as in [11] to conclude
that

lim
n→∞

− 1

n
log(ε) ≤ te

(
R

t
, PV

)
+ Esp(R,PY |X), (35)

for some R ∈
[
tH(V ), t log |V|

]
, such that R ,

limn→∞ R̄i(k, n), which after minimization over all R ∈
[tH(V ), t logV] yields (18).

IV. COMPUTABLE BOUNDS

The aim of this section is to show that (10) can be
conveniently weakened to obtain practical converse results
in several cases of interest. First, observe from (10) that if
βα
(
xl, Q

(l)
Y

)
is invertible with respect to α in an appropriate

range, one may formulate (10) as an explicit lower bound on
ε(vl) for every l = 1, . . . , |V|k, which in turn gives a lower
bound on ε after averaging over all source messages.

To this end, we make use of the analytical properties of
βα(x, QY ) as a function of α. It is known that βα(xl, QY )
is a piecewise-linear, convex, and non-decreasing function in
α ∈ [0, 1] [17] that takes values in [0, βmax], where βmax ≤
1. Then, the fact that β0(xl, QY ) = 0 and the convexity in
α ∈ [0, 1] implies there must exist αmin ∈ [0, 1] such that
the function takes the value 0 in [0, αmin) and it is strictly
increasing in [αmin, 1]. As a consequence, the function βα(·)
is invertible with respect to α in the range (0, βmax]. The
aforementioned arguments can be used to define the function

αb(x, QY ) ,


αmin, b = 0,

a such that βa = b, b ∈ (0, βmax],

1, b ∈ (βmax, 1],
(36)

in the domain [0, 1]. From the above definition one can check
that for given a, b ∈ [0, 1],

βa(x, QY ) ≤ b ⇒ αb(x, QY ) ≥ a. (37)

Consequently, by applying (37) to (10) it follows that

ε(vl) ≥ 1− α
Q

(l)
Z (vl)

(
xl, Q

(l)
Y

)
(38)

for l = 1, . . . , |V|k. Averaging (38) over the source messages
and upon appropriate optimization we obtain the next result.

Lemma 2: The average error probability ε incurred by any
codebook is lower-bounded by

ε ≥

1− sup
x1,...,x|V|k
PZ|Y


|V|k∑
l=1

PV (vl) inf
Q

(l)
Y

{
α
Q

(l)
Z (vl)

(xl, Q
(l)
Y )
} .

(39)

In order to provide computationally feasible bounds, we
restrict our attention to channels for which, when QY is
appropriately chosen, the function βα(QY ) , βα(x, QY )
and thus, αb(QY ) , αb(x, QY ), is independent of x.
Channels of interest fulfilling this property are symmetric
channels according to [18, p. 94] and Q

(l)
Y (y) = QY (y) =∏n

j=1QY (yj) with QY being the capacity-achieving output
distribution [5].

For this class of channels we can rewrite (39) using the
decomposition of the message set into Nk source-type classes
as

ε ≥ 1− sup
QZ

Nk∑
i=1

Pr
{
T ki
} 1

|T ki |
∑

v′∈T k
i

αQZ(v′)(QY ). (40)

Although αb(QY ) is independent of x, the outer sum in
(40) still depends on the codebook and the decoder through
QZ(·). Hence, the optimization in (40) can be performed
over all possible distributions QZ(v), v ∈ Vk. Given that
αb(·, ·) is concave with respect to b ∈ [0, 1] (see Appendix
A) this is a convex optimization problem. However, since
the minimization must be carried out over an exponentially
large number of elements, the optimization soon becomes
computationally infeasible as the message length increases. A
possible approach to simplify the aforementioned drawback
is to weaken (40) using Jensen’s inequality.

Theorem 1: The average error probability of every source-
channel code in a symmetric channel is lower-bounded as

ε ≥ 1− sup
QT

Nk∑
i=1

Pr
{
T ki
}
αQT (i)

|T k
i

|
(QY ), (41)

where QT (i) ,
∑

v∈T k
i
QZ(v), i = 1, . . . Nk, and QY is

the capacity-achieving output distribution.
Proof: Using Jensen’s inequality, we obtain

ε ≥ 1−
Nk∑
i=1

Pr
{
T ki
} 1

|T ki |
∑

v′∈T k
i

αQZ(v′)(QY ) (42)

≥ 1−
Nk∑
i=1

Pr
{
T ki
}
α{∑

v∈T k
i

QZ (v)

|T k
i

|

}(QY ) (43)

= 1−
Nk∑
i=1

Pr
{
T ki
}
αQT (i)

|T k
i

|
(QY ). (44)

Theorem 1 depends on the codebook and the decoder only
through the distribution QT (·), and therefore it is optimized
over all distributions defined over source-type classes. Since
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Figure 1. Upper and lower bounds for a BMS-BSC pair. Parameters:
PV (1) = 0.05, PY |X(1|0) = PY |X(0|1) = 0.1, t = 1.

the dimension of the domain of QT grows polynomially
with the block length n, this involves an (exponentially) less
complex computation than that of (40).

Remark 1: It can be checked (for instance, by performing
the method of the Lagrange multipliers) that the optimizing
QZ(·) of (40) is uniform over the values of v belonging
to the same source-type class. Hence, the optimizing QT (·)
in (41) induces the optimizing QZ(·) of (40) and as a
consequence, both bounds coincide. This is tantamount to
state that Theorem 1 also recovers the generalization of
the Verdú-Han lemma and attains Csiszár’s sphere-packing
exponent.

Theorem 1 can be weakened to obtain a converse bound
that does not require an optimization over the distribution
QT . Using the fact that αb(QY ) is a non-decreasing function
of b ∈ [0, 1] and upper-bounding QT (i) ≤ 1, i = 1, . . . Nk
in (41) we obtain the following result.

Corollary 1: The average error probability of every
source-channel code in a symmetric channel is lower-
bounded as

ε ≥ 1−
Nk∑
i=1

Pr
{
T ki
}
α 1

|T k
i

|
(QY ), (45)

where QY is the capacity-achieving output distribution.
Equation (45) does not depend on the decoder nor the

codebook, and thus, it gives directly a computable converse
result. While Corollary 1 cannot be used to recover (12) using
(13), it still can be shown to attain Csiszár’s exponent by
applying the arguments in [5, Sec. III-F] for each source-
type class.

We next compare the finite length-bounds given in The-
orem 1 and Corollary 1 for two source-channel pairs: a
binary memoryless source (BMS) transmitted over a binary
symmetric channel (BSC) and over a binary erasure channel
(BEC) respectively.

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

Blocklength, n

E
rr
o
r
b
o
u
n
d
,
ǫ

 

 
RCU
Converse (41)
VH (12)
Converse (45)

Figure 2. Upper and lower bounds for a BMS-BEC pair. Parameters:
PV (1) = 0.001, PY |X(e|0) = PY |X(e|1) = 0.95, t = 1.

A. BMS-BSC

In this example we consider a source-channel pair given
by a BMS with PV (1) = 0.05 and a BSC with crossover
probability PY |X(1|0) = PY |X(0|1) = 0.1, t = 1. We
now compare the finite length-bounds given in (41) from
Theorem 1 (computed using [19]) and (45) from Corollary
1 with respect to the Verdú-Han lemma (12), and the RCU
upper bound [8] corresponding to a random-coding ensemble
generated with the product uniform distribution.

For the BSC the capacity-achieving output distribution
is the uniform distribution. For this choice of QY and
for Y distributed according to PY |X=x, the random vari-
able Ψx =

PY |X(Y |x)

QY (Y ) is independent of x, and so it is
Pr {PV (V )Ψx < γ}. Hence, in this case it is possible to
compute a valid lower bound from the Verdú-Han lemma
without resorting to an optimization over all possible code-
books.

Fig. 1 shows that in this scenario the bound (45) is looser
than (12) while the bound (41) is tighter in the range of block
lengths shown. This agrees with the fact that while (12) can
be derived by weakening Thm. 1, this is not possible from
Cor. 1.

B. BMS-BEC

We now consider an scenario of a BMS with PV (1) =
0.001 which needs to be transmitted over a BEC with erasure
probability PY |X(e|0) = PY |X(e|1) = 0.95, t = 1. Fig. 2
shows the same plot as Fig. 1 for this source-channel pair.
From the figure we observe that in this case the lower bound
(45) is tighter than (12), hence none of these two bounds
dominates in general. Similarly to the previous case, the
bound (41) improves the other two.

APPENDIX A
CONCAVITY OF THE FUNCTION αb

Lemma 3: The function αb ≡ αb(·, ·) is a concave func-
tion with respect to b in [0, 1].



Proof: Consider αb, αb′ , where b, b′ ∈ [0, 1] and denote
βa ≡ βa(·, ·). Since βα is convex, this implies ∀λ ∈ [0, 1]
that

β (λαb + (1− λ)αb′) ≤ λβαb
+ (1− λ)βαb′ (46)

≤ λb+ (1− λ)b′, (47)

where βαb
≤ b in (47) follows from (36). If λb+(1−λ)b′ ≤

βmax, the monotonicity of βα implies that

λαb + (1− λ)αb′ ≤ αλb+(1−λ)b′ (48)

on account of (36). Otherwise, if λb+ (1−λ)b′ > βmax, we
have that

λαb + (1− λ)αb′ ≤ 1 (49)
= αλb+(1−λ)b′ , (50)

where (49) follows from αb, αb′ ∈ [0, 1] and (50) from λb+
(1− λ)b′ > βmax and (36).
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